
CS302
Topic: Priority Queues / Heaps

Tuesday, Sept. 26, 2006

Announcements
Lab 3 (Graphical Stock Charts); due Monday, Oct. 2

Don’t procrastinate!!

I love deadlines. I like the whooshing sound as I love deadlines. I like the whooshing sound as
they make as they fly by. they make as they fly by.

---- Douglas AdamsDouglas Adams

The Priority Queue

P=5 P=25P=2 P=1 P=9

We call it a priority queue - but its not FIFO

Items in queue have PRIORITY

Elements are removed from priority queue in either
increasing or decreasing priority

Min Priority Queue

Max Priority Queue

The Priority Queue (Example #1)

Next user chosen will be

P=5 P=25P=2 P=1 P=9

Consider situation where we have a computer whose
services we are selling

Users need different amounts of time

Maximize earnings by min priority queue of users

i.e. when machine becomes free, the user who
needs least time gets the machine; get through
more users quicker

The Priority Queue (Example #2)

P=5 P=25P=2 P=1 P=9

Next user chosen will be

Consider situation where users are willing to pay more
to secure access - they are in effect bidding against
each other

Maximize earnings by max priority queue of users

i.e. when machine becomes free, the user who is
willing to pay most gets the machine

The Priority Queue
Priority queue is a common data structure used in CS

Example Applications:
Unix/Linux job scheduling

Processes given a priority
Time allocated to process is based on priority of job

Priority of jobs in printer queue
Sorting
Standby passengers at airport
Auctions
Stock market
Event-driven simulations
VLSI design (channel routing, pin layout)
Artificial intelligence search algorithms

Min Priority Queue ADT
(i.e, Abstract Data Type)

Instances:
Finite collection of zero or more elements; each has a priority;
represented as Key-Value pair

Main Operations of a Min Priority Queue:
insert(key, value) : Add element into the priority queue

deleteMin() : Remove the element with the min priority

Additional Operations that are often supplied:

minKey() : Return the key with the minimum priority

minVal(): Return the value of the node with min priority

size() : Return number of elements in the queue

empty() : Return true if the queue is empty; else false

(We’ll look at STL C++ interface/implementation next time)

Total Order Relations
Keys in a priority queue can be arbitrary objects on which an
order is defined

Mathematical concept of “total order relation ≤”:
Reflexive property:

x ≤ x

Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y

Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

Two distinct entries in a priority queue can have the same key

Priority Queue Implementation Options

Sorted linear list

Time complexities:

insert: O(n), since we
have to find the place
to insert the item

deleteMin: O(1), since
the smallest key is at
the beginning

2 3 4 51

Unsorted linear list

Time complexities:

insert: O(1), since we
can insert item at the
beginning or end of
sequence

deleteMin: O(n), since
we have to traverse
entire sequence to find
smallest key

5 2 3 14

Priority Queue Implementation Options
(con’t.)

Red-black tree

Time complexities:
insert: O(log n)

deleteMin: O(log n)

Heap

Time complexities:
insert: O(1), on
average

deleteMin: O(log n)

Heaps

A heap is a binary tree storing keys at its nodes and
satisfying the following properties:

Structure property:
Complete binary tree. Let h be the height of the heap. Then:

For i =0, …, h - 1, there are 2i nodes of depth i

At depth h - 1, the internal nodes are to the left of the
external nodes

In other words, tree is completely filled, with possible
exception of last level, which is filled from left to right

Heap-Order property (for a min heap):
For every internal node v other than the root,

key(v) ≥ key(parent(v))

Examples: Is the following a min heap?

2

3 9 6

10 7

5

8 4

No, heap-
order
property is
violated

Examples: Is the following a min heap?

2

8 9 6

10 7

5

3 4

No,
structure
property is
violated

Examples: Is the following a min heap?

2

8 9

10 7

5

3 4

No,
structure
property is
violated

Height of a Heap

Theorem: A heap storing n keys has height O (log n)

Proof: (we apply the complete binary tree property)
Let h be the height of a heap storing n keys

Since there are 2i keys at depth i = 0, …, h-1 and at
least one key at depth h, we have n ≥ 2h ⇒ h ≤ log n

depth keys
0 1

1 2

h-1 2h-1

h 1

“Last node” of a Heap

Define “last node” of a heap as the rightmost
node of depth h

last node

Insertion of key k into a Heap

2

5

9 7

6
Insert algorithm has 3
steps:

Find the insertion
node z (i.e., the new
last node)

Store k at z

Restore the heap-
order property (we’ll
discuss this next)

z

insertion node

2

5

9 7

6

z
1

Restoring heap property after insert

After the insertion of a new key k, the heap-
order property may be violated
“Percolate up”: Restore heap-order property
by swapping k along an upward path from the
insertion node
Terminate when key k reaches the node or a
root whose parent has a key ≤ k
Since heap has height O(log n), restoring
heap-order can be done in O(log n) time

But, average case requires 2.607 comparisons
1.607 element moves O(1) average time

Example:
Restoring Heap Property after insert

2

5

9 7

6

z
1

2

5

9 7

1

z
6

1

5

9 7

2

z
6

deleteMin operation on a Heap
2

5

9 7

6

w

last node

new last node

7

5

9

6

w

deleteMin corresponds to
removal of root key from
the heap
deleteMin algorithm has
3 steps:

Replace root key with
the key of the last node
w
Remove w
Restore the heap-order
property (discussed
next)

Restoring heap property after deleteMin

After replacing the root key with the key k of
the last node, the heap-order property may be
violated

“Percolate down”: Restore heap-property by
swapping key k along a downward path from
the root, swapping it with smaller child

Terminate when key k reaches a leaf or a node
whose children have keys ≥ k

Since heap has height O(log n), restoring
heap-order can be done in O(log n) time

Example:
Restoring Heap Property after deleteMin

7

5

9

6

w

5

7

9

6

w

Pseudocode for percolateDown
/* Given a node i in the heap with children l and r.

Each sub-tree rooted at l and r is assumed to be a heap. The
sub-tree rooted at i may violate the heap property
[key(i) > key(l) OR key(i) > key(r)]
Thus Heapify lets the value of the parent node “percolate”
down so the sub- tree at i satisfies the heap property. */

PercolateDown(A, i)
l ← LEFT_CHILD (i);
r ← RIGHT_CHILD (i);

if (l ≤ heap_size[A]) and (A[l] < A[i])
then smallest ← l;
else smallest ← i;

if (r ≤ heap_size[A]) and (A[r] < A[smallest])
then smallest ← r;

if smallest ≠ i
then exchange A[i] ⇔ A[smallest]

percolateDown (A,smallest)

Array-Based Heap Implementation
We can represent heap with n
keys by means of a vector of
length n +1
For the node at rank i

The left child is at rank 2i
The right child is at rank
2i+1

Links between nodes are not
explicitly stored
The cell at rank 0 is not used
Operation insert corresponds to
inserting at rank n+1
Operation deleteMin
corresponds to removing at
rank n

2

5

9 7

6

1

2 3

4 5

2 5 6 9 7

1 2 3 4 50 6

Another Example of Heap Implementation

2

5

9 7 8 6

12 11

6

1

2 3

4 5 6 7

8 9

2 5 6 9 7 2 6 12 11

0 1 2 3 4 5 6 7 8 9 10

Example of Max Heap

9

8

6 7 8 6

5 1

7

Inserting An Element Into A Max Heap

9

8

6 7 8 6

5 1

7

7

Inserting An Element Into A Max Heap

9

8

6 7 8 6

5 1

7

720

New element is 20

Inserting An Element Into A Max Heap

9

8

6

7

8 6

5 1

7

7

New element is 20

7

20

Inserting An Element Into A Max Heap

9

8

6

7

8 6

5 1

7

77

New element is 20

20

Inserting An Element Into A Max Heap

9

86

7

8 6

5 1

7

77

New element is 20

20

Inserting An Element Into A Max Heap

New element is 20 9

86

7

8 6

5 1

7

77

20

Inserting An Element Into A Max Heap

New element is 20

9

86

7

8 6

5 1

7

77

20

Inserting An Element Into A Max Heap

9

86

7

8 6

5 1

7

77

20New element is 15

Inserting An Element Into A Max Heap

9

86

7

8 6

5 1

7

77

20New element is 15

15

Inserting An Element Into A Max Heap

9

8

6

7

8 6

5 1

7

77

20

8

New element is 15

15

Inserting An Element Into A Max Heap

8

6

7

8 6

5 1

7

77

20

8

9

15

Complexity is O(log n),
where n is heap size

New element is 15

Removing The Max Element

Max element
is in the root

8

6

7

8 6

5 1

7

77

20

8

9

15

Removing The Max Element
After max element
is removed - root
is left empty

8

6

7

8 6

5 1

7

77 8

9

15

Removing The Max Element
Reinsert last leaf
node (8) into the
top of the heap

8

6

7

8 6

5 1

7

77 8

9

15

Removing The Max Element
8

6

7

8 6

5 1

7

77

9

15

Removing The Max Element
Percolate down

8

6

7

8 6

5 1

7

77

9

15

Removing The Max Element

6

7

8 6

5 1

7

77

9

15

8

Percolate down

Removing The Max Element

Max element is 15

6

7

8 6

5 1

7

77

9

15

8

Removing The Max Element
After max
element is
removed

6

7

8 6

5 1

7

77

9

8

Removing The Max Element
Reinsert last
leaf node (7)
into the heap

6

7

8 6

5 1

7

77

9

8

Removing The Max Element

6 8 6

5 1

79

8

7

Removing The Max Element

Percolate down

6 8 6

5 1

7

9

8

7

Removing The Max Element

6 8 6

5 1

7

9

8

7

Complexity is
again O(log n)

Build Heap

buildHeap(A)
1. for i ⎣ length [A]/2 ⎦ downto 1 do
2. percolateDown(A, i)

To build heap originally, two alternatives:
One approach (not the best):

Repeatedly insert into initially empty heap

Runtime: O(n log n)

Better approach (“Build Heap”):
Start with elements in any order

Apply “percolate down” for nodes n/2 down to 1

Running Time of buildHeap
We represent a heap in the
following manner:

Total work to Build Heap:
log

1

log

1

1
log

log

loglog

1

log

1

2 ()

 Taking log :

2 (log)

Substituting log , we get:

2

2
2

2
()

h n
i

i

h n
i

i

n j

j n

nn

j
j

n

j
j

h i

h n

n i

j n i

j

j

jn

O n

=

=

=

=

−

=

=

=

−

=

= −

= −

=

=

=

=

∑

∑

∑

∑

∑

h
i

For nodes at level i , there
are 2i nodes. Work is done
for h-i levels.

Total work done to build the
heap is the sum of the work
for these levels

Build min Heap example

Start here, percolating down

16 2 14

5 20

27

19

28

7

Build min Heap example

5 2 14

16 20

27

19

28

7

Build min Heap example

2 14

20

27

19

28

7

Next, percolate down

5

16

Build min Heap example

27 14

20

2

19

28

75

16

Build min Heap example

27 14

20

2

19

28

75

16
Next, percolate down

Build min Heap example

27 14

20

2

19

5

728

16

Build min Heap example

27 14

20

2

19

5

716

28

Build min Heap example

27 14

20

2

19

5

716

28
Next, percolate down

Build min Heap example

27 14

20

19

2

5

716

28

Build min Heap example

27 19

20

14

2

5

716

28

	CS302Topic: Priority Queues / Heaps
	Announcements
	The Priority Queue
	The Priority Queue (Example #1)
	The Priority Queue (Example #2)
	The Priority Queue
	Min Priority Queue ADT (i.e, Abstract Data Type)
	Total Order Relations
	Priority Queue Implementation Options
	Priority Queue Implementation Options (con
	Heaps
	Examples: Is the following a min heap?
	Examples: Is the following a min heap?
	Examples: Is the following a min heap?
	Height of a Heap
	“Last node” of a Heap
	Insertion of key k into a Heap
	Restoring heap property after insert
	Example: Restoring Heap Property after insert
	deleteMin operation on a Heap
	Restoring heap property after deleteMin
	Example: Restoring Heap Property after deleteMin
	Pseudocode for percolateDown
	Array-Based Heap Implementation
	Another Example of Heap Implementation
	Example of Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Inserting An Element Into A Max Heap
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Removing The Max Element
	Build Heap
	Running Time of buildHeap
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example
	Build min Heap example

