Learning and Generalization of Motor Skills
by Learning from Demonstration
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Abstract—We provide a general approach for learning a new version of the dynamic equations that overcomes
robotic motor skills from human demonstration. To represent  numerical problems with changing the goal parameter that
an observed movement, a non-linear differential equation is occurred in the previous formulation [3], [4], [5], [6].

learned such that it reproduces this movement. Based on this We will he d . D
representation, we build a library of movements by labeling e will use the dynamic movement primitives to represent

each recorded movement according to task and context (e.g., @ movementtrajectory in end-effector space; thus, we address
grasping, placing, and releasing). Our differential equation is the above-mentioned correspondence problem. For object
formulated such that generalization can be achieved simply by manipulation — here, grasping and placing — besides the end-
adapting a start and a goal parameter in the equation to the oo ctor position, we also need to control the orientation

desired position values of a movement. For object manipulation, . .- .
we present how our framework extends to the control of gripper of the gripper and the position of the fingers. The DMP

orientation and finger position. The feasibility of our approach ~ framework allows to combine the end-effector motion with
is demonstrated in simulation as well as on a real robot. The any further degree-of-freedom (DOF); thus, adding gripper
robot learned a pick-and-place operation and a serving-water grientation in quaternion notation and finger position is
task and could generalize these tasks to novel situations. straight-forward. In our robot demonstration, we use standard
. INTRODUCTION resolved motion rate inverse kinematics to map end-effector

Humanoid robots assisting humans can becon%;);terc;nw?nd gripper orientation onto the appropriate joint

widespread only i the humanqids are easy to program. 1 geal with complex motion, the above framework can
Easy programming might be achieved through learning fro(rsr)re used to build a library of m,ovements primitives out of

demonstration [1], [2]. A human movement is recorde hich | . b db :
and later reproduced by a robot. Three challenges ne% Ich complex mo_non can be composed by sequencing.
A or example, the library may contain a grasping, placing,
to be mastered for this imitation: the correspondencgnd releasin . .
o . . g motion. Each of these movements, which was
problem, generalization, and robustness aga'T‘St perturpapcr)g(':orded from human demonstration, is represented by a
g::/v ggrr]rehslf);giegﬁg P(ggg'lrenr:ami?)rtlsmtgtith“r(g(:ng?:n Zlg,:ir:)éiﬁerential equation, and labeled accordingly. For moving
: . y ) . an object on a table, a grasping-placing-releasing sequence is
is required because we cannot demonstrate every single

movement that the robot is supposed to make. Learning Qeqwred, and the corresponding primitives are recalled from

demonstration is feasible only if a demonstrated movemen  library. Due to the generalization ability of each dynamic

can be generalized to other contexts, like different goarpoyement prrrnrtrve, an object may be placed between two
arbitrary positions on the table based solely on the three

positions. Finally, we need robustness against perturbat'c.)é]émonstrated movements.

Replaying exactly an observed movement is unrealistic ih : . : o .
; . : : In the remainder of this article, we explain in Section Il the
a dynamic environment, in which obstacles may appe : L
ynamic movement primitive framework and present the new

suddenly. o ) ; .
. . modified form. In Section Il we emphasize the generation
To address these issues, we present a model that is bas . )
of a library of movements. In Section IV we present an

on the dynamic movement primitive (DMP) framework (see. . . .
: application of the framework on a simulated as well as on a
[31: [4]. [5], [6])- In this framework, any recorded movement ) .
. : : -~ real robot arm. In Section V we conclude this approach and
can be represented with a set of differential equations. .
. . . : . rovide an outlook for future work.
Representing a movement with a differential equation has the
advantage that a perturbance can be automatically corrected 1I. DYNAMIC SYSTEMS FOR MOVEMENT
for by the dynamics of the system; this behavior addresses GENERATION

the above mentroned flexibility. Furthermore, the equations This section briefly describes the dynamic movement
are formulated in a way that adaptation to a new go

) . : ; primitive framework and presents a modification to allow
is achieved by simply changing a goal parameter. Thi

A 2 ; gdaptation to a new goal position in a more robust and
characteristic allows generalization. Here, we will preserﬁuman-like way
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integrating the following set of differential equatidnahich  and integrating the canonical system, i.e. evaluatifg.
can be interpreted as a linear spring system perturbed by An illustrated in Fig. 1, the obtained phase variable then

external forcing term: drives the non-linear functiorf which in turn perturbs the
10 = K(g—2)—Dv+(g—x0)f 1) linear spring-damper system to compute the desired attractor
landscape.

TE = W 2
’ ( ) Learned Task Specific
Weights @ Parameters x,, g

wherex andv are position and velocity of the systemyg ;
andg are the start and goal position;is a temporal scaling | T0 = -«0

. . . Y Y Position X
factor; K acts like a spring constant; the damping tefim Canonical fio.&) | Transformation -1 vuortr »
is chosen such that the system is critically damped, And System L System Ll ermton

is a non-linear function which can be learned to allow thgpwmp
generation of arbitrary complex movements. This first set

of equations is referred to as a transformation system. Tr|1:e L Sketch of g ional DMP: th cal svsteimesd
non-linear fUnCtion iS deﬁned as 1g. 1. etch orf a one dimensional . the canonical systaue

the nonlinear functionf which perturbs the transformation system.
, with; (0)0
£(6) = 00 @
PRI
where; (6) = exp(—hi(6 — ¢;)?) are Gaussian basis func- N this section, we describe how to adapt the movement
tions, with centerc; and width 7;, and w; are adjustable 0 @& new goal position by changing the goal paramegter
weights. The functionf does not directly depend on time; The original DMP formulation has three drawbacks: first,
instead, it depends on a phase variaylevhich monotoni- if start and goal position andg, of a movement are the

cally changes from towards0 during a movement and is Same, then the non-linear term in (1) cannot drive the system
obtained by the equation away from its initial state; thus, the system will remain at

. xo. Second, the scaling of with ¢ — xp is problematic if
™ =—af , (4) : . ;

g — xg is close to zero; here, a small changeyimay lead to
where o is a pre-defined constant. This last differentiahtuge accelerations, which can break the limits of the robot.
equation is referred to as canonical system. These sets dfird, whenever a movement adapts to a new gagl such
equations have some favorable characteristics: that (gnew — 7o) changes its sign compared @ginal — o)

« Convergence to the gogl is guaranteed (for bounded the resulu_ng general|za.t|on is mirrored. As an example from
our experiments, a placing movement on a table has start and

weights) sincef(#) vanishes at the end of a movement. I it ith about th heiaht: thus. the oridinal
e The weightsw; can be learned to generate any desire oal positions with about the same height, thus, the origina
MP formulation is not suitable for this kind of movement

smooth trajectory. .

e The equations are spatial and temporal invariant, i. z'a,daptatlon.
movements are self-similar for a change in goal, start
point, and temporal scaling without a need to change tt
weightsw;.

e The formulation generates movements which are robu
against perturbation due to the inherent attractor dynar”
ics of the equations.

To learn a movement from demonstration, first, a move ; ,
menty(¢) is recorded and its derivativeg¢) and ¢(¢) are Y i
computed for each time step = 0,...,7. Second, the e
canonical system is integrated, i.é(t) is computed for
an appropriately adjusted temporal scaling tau. Using the
arrays, frarge(#) is computed based on (1) according to
—K(g—y)+Dy+ 71y
ftarget(e): (g y) Y Y ) (5)
g —Zo

where 2o and g are set toy(0) and y(T), respectively. " N

indi i i inimi Fig. 2.  Comparison of goal-changing results between old t{Lahd
Thus, finding the weights; in (3) that minimizes the error new (Right) DMP formulation in operational spa¢®i,Y2) with one

o 2. . .
criterion J = >, (ftargel(o) - f(@)) is a linear regression transformation system for each dimension. The same original movement
problem, which can be solved efficiently. (solid line) and goals are used for both formulations. The dashed lines show

A movement plan is generated by reusing the Wei@hts ;i;(e)vreersntgatof(Bcgggg]i;]g the goal before movement onset (Top) and during the
specifying a desired start, and goalg, settingfd = 1,

B. Generalization to New Goals

Yy

o
>

start o+ soal Mg

1We use a different notation as in [3], [4] to high-light the spring-like Here, we present a mOdified form _Of the _DMPS that
character of these equations. cures these problems (see Fig. 2), while keeping the same



favorable properties, as mentioned above. We replace t Motor Moton Librry Visual
. . . Ouput Movement Input
transformation system by the following equations [8]: st
Action Primitive 2 ‘ Perception
" Movement o -
0 = K(g—1)—Dv—K(g—0)0+Kf(0) (6) P | |
. eneration <
T = v Y (7) ﬁ Move.mem } @ @
lw Movement of Teacher
. . . - Movement ;
where the non-linear functiofi(9) is defined as before. We T Primidven 1 SR
use the same canonical system as in (4). An important di\_ | 'f\{ J] 4
ference to (1) is that the non-linear function is not multipliec ;- ~
anymore by(g — o). The third termK (g — )6 is required e’ [ N
to avoid jumps at the beginning of a movement. Learning ar\_ ) Y,
propagating DMPs is achieved with the same procedure Performance

Evaluation

before, except that the target functig@.ge(#) is computed

according to Fig. 3. Conceptual sketch of an imitation learning systenaiféet! from

[1]). The components of perception (yellow) transform visual information
Tij—Dy into spatial and object information. The components of action (red) generate
frargel9) = e —(9—y)+(g—20)0 . (8) motoroutput. Interaction between them is achieved using a common motion
library (blue). Learning (green) improves the mapping between perceived

The trajectories generated by this new formulation fogctions and primitives contained in the motion library for movement
. . . . . __recognition and selection of the most appropriate primitive for movement
different g values are shown in Fig. 2. In our S|mulat|ongeneration_
and robot experiments we use this new formulation.

C. Obstacle Avoidance On_t.he other side, such a mpnop library can be employed to
facilitate movement recognition in that observed movements

A major feature of using dynamic systems for movement,, e compared to the pre-learned ones [3]. If no existing

representation is robustness against perturbation [3]. Helf:?n'mitive is a good match for the demonstrated behavior,

we exploit this property for obstacle avoidance [9], [10] by, new one is created (leared) and added to the system'’s

adding a coupling term(x, v) to the differential equations ,yement repertoire (see Fig. 3). This makes the presented
of motion formulation suited for imitation learning.

v =K(g—x)-Dv-K(g—x0)0+Kf(0)+p(x,v) . (9) g Attaching Semantic

We describe obstacle avoidance in 3D end-effector space,As for imitation learning with DMPs a low-level approach,
therefore the scalar, v, ¥ turn into vectorsx, v, v and the namely imitation of trajectories [2], was chosen, additional
scalarsK, D became positive definite matricds, D. For information is needed by the system to successfully perform
the experiment in this paper we used the coupling term object manipulation tasks. For a pick-and-place operation
for example the system has to select a proper sequence of
p(x,v) =7Rvpexp—cy) , (10) movemer?t primitiv}elzs, that is, first a graspirilg,pthen gplacing
whereR is a rotational matrix with axis = (x—o) x v and and finally a releasing primitive. Therefore, it is necessary
angle of rotation ofr/2; the vectoro is the position of the to attach additional information to each primitive movement
obstacle;y and ¢ are constant, an¢ is the angle between Which facilitates this selection. Moreover, once a library of
the direction of the end-effector towards the obstacle and tfi@ovement primitives is acquired, it is desirable to have the
end-effector’s velocity vectov relative to the obstacle. The System able to search sequences of primitive movements that
expression (10) is derived from [11] and empirically matchegccomplish further tasks. Traditional artificial intelligence

human obstacle avoidance. planning algorithms tackle this problem by formalizing the
domain scenario. In particular, they define a set of operators
Il. BUILDING A LIBRARY OF MOVEMENTS with pre- and post-conditions and search for a sequence

This section briefly motivates the concept of a libraryof them which transfers the world from its initial state
of movements and their application in object manipulation

tasks. . . _ .
Action Perspective Object Perspective
A. Motion Library Generation ACtion,_ Opject) (Action) —20lect_
Learning DMPs only requires the user to demonstrate Atiribuges Abutes pisioned
characteristic movements. These DMPs form a set of basi

units of action [1]. For movement reproduction only a simple Success 7 Success ?

high level command - to choose a primitive (or a sequence World World
of them) and set its task SpeCIfIC parameters - IS reqwreﬂg 4. Objects are defined through actions that can be peefbion them

Moreover, adaption to new situations is accomplished by ad-eft), e.g. a cup is represented as a thing which can be used to drink water
justing the starko, the goalg, and the movement duratien  from. On the other side, actions are defined through objects (Right), e.g. the

Thus. a collection of primitives referred to amtion Iibrary way c;]f grasping an object depends on the object - a can requires a different
i X grip than a pen.
enables a system to generate a wide range of movements.



to the goal state. The post-conditions provides informatioA. Robot Setup

about the change in the world, whereas the preconditions g experimental platform we used a seven DOF anthropo-

ensure that the plan is executable. Thus, such algorithrfhcorphiC robot arm (see Fig. 6) equipped with a three DOF
are based on discrete symbolic representations of object aggy-efrector.

action, rather than the low-level continuous details of action
execution. Thumb Vertical (TV)
A link between the low-level continuous control repre-

sentation (as typical in robotic applications) and high-level
formal description of actions and their impact on objects (a: Zr
necessary for planning) has been, for example, formalized by ﬂl[
Object-Action Complexes [12], [13]. This concept proposes s e
that objects and actions are inseparably intertwined (see

Fig. 4).

C. Combination of Movement Primitives

The ability to combine movement primitives to generate
more complex movements is a prerequisite for the concepfumb Lateral (TL)
of a motion library. Here, we show how the presentegig. 6. Sketch of the Sarcos Slave arm, a seven DOF anthropinor
framework provides this abi|ity_ robot arm with a three DOF end-effector.

It is straight forward to start executing a DMP after the

preceding DMP has been executed completely, since tie Learning DMPs from Demonstration

boundary conditions of any DMP are zero velocity and . L .
y y y H_earnlng DMPs from demonstration is achieved by regard-

each DOF separately and employing for each of them an
Qdividual transformation system. Thus, each DMP is setup
ith a total of ten transformation systems to encode each
'Elematic variable. In particular, the involved variables are
end-effector’'s positionz(y, z) in Cartesian space, the
nd-effector’s orientationgf, q1, g2, ¢3) in quaternion space,
nd finger position 6+, v, 0raa) in joint space. Each of
them serve as separated learning signal, regardless of the
underlying physical interpretation. However, to ensure the
unit length of the quaternion, a post-normalization step
is incorporated. The setup is illustrated in Fig. 7, note, a

Learned Task Specific
Weights w Parameters x,, g

that complete stops of the movement system are avoid
(see Fig. 5). This is achieved by starting the execution of tH
successive DMP before the preceding DMP has finished.
this case, the velocities and accelerations of the movem
system between two successive DMPs are not zero. Ju
in the acceleration signal are avoided by properly initializin
the succeeding DMP with the velocities and positions of it
predecessorviyred — Vsuce 8N Xpred — Xsuco-

v
]
N = -
> % g j:l‘ Trag}slgtt);maltlon Lly ( X, %, X )
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Fig. 5. Chaining of a single minimum jerk movement primitivengralized 25| ‘;;:J ¥ System 5‘
to four goals (black dots) resulting in a square like movement (a). Th 2 8 & 0 Trag;g?ggagm H (g, 4,,4,)
movement generated by the DMPs are drawn alternating with blue solid al ™ ﬁ F—— o
red dashed lines to indicate the transition between two successive DM Fyoremy 1 (4 @, )
The movement direction is indicated by the arcs. The remaining movemer ;
(b) result from using different switching times (lighter color indicates earlie Y
switching time). . s Tra;}slg?éﬁagion s (0, 0, )
= Transformati S
IV EXPERIMENT E é raél}slstt)érrgagmn [ <9/v,91v,9‘1v)
. . . . Transformation | | h A
The following Section describes how we applied thé System 10 || (Oraa, Oras, Oru)

presented framework of DMPs on the Sarcos Slave arm 1o

accomplish object manipulation tasks, such as grasping apg. 7. Sketch of the 10 dimensional DMP used to generate mewem
placing. plans for the Sarcos Slave arm.



single DMP encodes movements in three different coordina
frames simultaneously.

To record a set of movements, we used a 10 DO
exoskeleton robot arm, as shown in Fig. 8. Visual observ:
tion and appropriate processing to obtain the task variabl
would be possible, too, but was avoided as this perceptu
component is currently not the focus of our research.

Fig. 9. Snapshots of th&L Simulator showing a simulation of the Sarcos
Slave arm performing a grasping (Top) and a placing movement (Bottom).

Fig. 8. Sarcos Master arm used to record a human trajectonndn e o
effector space. Here, the subject demonstrates a pouring movement wt=

— 0.05|

after learning the DMP enabled a robot to pour water into several cups (¢«
Fig. 12).

024

The end-effector position and orientation are recorded = "\ !
480Hz. The corresponding trajectories for the finger mow: 034355 x [m] "
ments are generated afterwards accordingly: for a graspiny _ S _
movement, for example, a trajectory was composed out 5fd: 10. The desired trajectories (blue lines) from the mases shown
.. . . . in Fig. 9 adapted to new goals (red lines) indicated by the grid.
two minimum jerk movements for opening and closing the
gripper. The corresponding velocities and accelerations for

all DOF were computed numerically by differentiating theplacing are show in Fig. 9. The generalization of these
position signal.

> . . . .movements to new targets is shown in Fig. 10.
These signals served as input into the supervised learning 9 9

procedure described in II-A. For each demonstrated move-
ment a separate DMP was learned and added to the motign Task Space Control

library. To execute DMPs on the simulated and on the real
robot we used a velocity based inverse kinematics controller
as described in [14], [7]. Thus, the task space reference

To generate a movement plan, a DMP is setup with the tasklocities, are transformed into the reference joint space
specific parameters, i.e., the stag and the goal. In our  velocitiesf, (see Fig. 11). The reference joint positién
DMP setup (see Fig. 7), this are the end-effector positiomnd acceleratiord), are obtained by numerical integration
end-effector orientation, and the finger joint configurationand differentiation of the reference joint velocitigs. The
The startxo of a movement is set to the current state otiesired orientation, given by the DMP as unit quaternions,
the robot arm. The goad is set according to the context of is controlled using quaternion feedback as described in [15],
the movement. For a grasping movement, the goal positiqm].
(z,y, z) is set to the position of the grasped object and the
grasping width is set according to the object’s size. However,  Task specific
finding appropriate goal orientation is not straight forward, P"“Tete's
as the end-effector orientation needs to be adapted to the [Movement|s,  +
characteristic approach curve of the movement. Approaching | LPrimitive
the object from the front results in a different final posture as
approaching it from the side. In case of a grasping movement;;f;ﬁ’i‘n“;'
we developed a method to automatically determine the final
orientation by propagating the DMP to generate the Cartesi@y. 11. DMP control diagram: the desired task space positiand
space trajectory and averaging over the velocity vectors #glocities arexy, &4, the reference task space velocity commanekiis
compute the approach direction at the end of the movemeHt lz’aerzgrgnce joint positions, joint velocities and joint acceleration®are
For other movements, like placing and releasing, we set’ h
the end-effector orientation to the orientation recorded from
human demonstration. Finally, we useto determine the  The reference joint position, velocities and acceleration
duration of a each movement. are transformed into appropriate torque commandssing

In simulation we demonstrate the reproduction and gera feed-forward and a feedback component. The feed-forward
eralization of the demonstrated movements. Our simulatedmponent estimates the corresponding nominal torques to
robot arm has the same kinematic and dynamic propertieesmpensate for all interactions between the joints, while the
as the Sarcos Slave arm. The reproduction of grasping afeedback component realizes a PD controller.

x [m]

C. Movement Generation

Inverse
Kinematic
Controller




Fig. 12. Movement reproduction and generalization to new gath the Sarcos Slave Arm. The top row shows the reproduction of a demonstrated
pouring movement in Fig. 8, and the bottom row shows the result of changing the goal variable.

E. Robot Experiment V. CONCLUSIONS AND FUTURE WORK

We demonstrate the utility of our framework in a robotA. Conclusions

demonstration of serving water (see Fig. 12). First, a human This paper extended the framework of dynamic movement
demonstrator performed a grasping, pouring, retreating bqirimitives to action sequences that allow object manipu-
tle, and releasing movement as illustrated in Fig. 8. Seconition. We suggested several improvements of the original
the robot learned these movements and added them to #@vement primitive framework, and added semantic infor-
motion library. Third, a bottle of water and three cups werenation to movement primitives, such that they can code
placed on the table. Fourth, an appropriate sequence @hject oriented action. We demonstrated the feasibility of
movement primitives were chosen. Fifth, each DMP wergyr approach in an imitation learning setting, where a robot
setup with corresponding goal Finally, the robot executed |earned a serving water and a pick-and-place task from
the sequence of movements and generalized to different cHgman demonstration, and could generalize this task to novel
position simply through changing the gaalof the pouring sjtuations.
movement. The approach is not restricted to the presented exper-
To demonstrate the framework's ability to online adaptmental platform. Any type of motion capturing system
to new goals as well as avoiding obstacles, we extendeght is capable of extracting the end-effector’s position and
the experimental setup with a stereo camera system. Weientation can substitute the Sarcos Master arm and any
used a color based vision system to visually extract the goalanipulator that is able to track a reference trajectory in
position as well as the position of the obstacle. The task wagsk space can substitute the Sarcos Slave arm.
to grasp a red cup and place it on a green coaster, which
changes its position after movement onset, while avoiding. Future Work
a blue ball-like obstacle (see Fig. 13). To accomplish this Future work will significantly extend the movement library
task a similar procedure was used as before. Except, tliach that a rich movement repertoire can be represented. Fur-
time, the Cartesian goal of the grasping movement wakermore, work will focus on associating objects with actions
set to the position of the red cup and the goal of thésimilar to [13]) to enable planning of action sequences. We
placing movement was set to the green coaster. The gaatend to use reinforcement learning to learn the high level
orientation for the grasping movement were set automaticalfyarameters, such as switching time between two successive
as described in Section IV-C, whereas the orientation ahovement primitives, to generate smooth transitions which
the placing and releasing were adopted from demonstratiastill accomplish a given task. Finally, we will apply this
This setup allows us to demonstrate the framework’s abilitgxtended framework on a humanoid robot.
to generalize the grasping movement by placing the red
cup on different initial positions. Our robot could adapt VI. ACKNOWLEDGMENTS
movements to goals which change their position during the This research was supported in part by National Sci-
robot’s movement. Additionally, movement trajectories werence Foundation grants ECS-0325383, 11S-0312802, IIS-
automatically adapted to avoid moving obstacles (see Fig. I®82995, ECS-0326095, ANI-0224419, the DARPA program
and video supplement). on Learning Locomotion, a NASA grant AC98-516, an



Fig. 13.
resulting movement as the goal changes (white dashed arc) after movement onset. The third row shows the resulting movement as a blue ball-like obstacle
interferes the placing movement.

Sarcos Slave arm placing a red cup on a green coaseefirst row shows the placing movement on a fixed goal. The second row shows the
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