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Abstract

In order to re-use existing models of the environment mobile
robots must be able to estimate their position and oriantati

in such models. Most of the existing methods for position
estimation are based on special purpose sensors or aim at
tracking the robot’s position relative to the known stagtin
point. This paper describes the position probability gpe a
proach to estimating the robot’s absolute position ancherie
tation in a metric model of the environment. Our method is
designed to work with standard sensors and is independent
of any knowledge about the starting point. It is a Bayesian
approach based on certainty grids. In each cell of such a
grid we store the probability that this cell refers to the-cur
rent position of the robot. These probabilities are obthine
by integrating the likelihoods of sensor readings over time
Results described in this paper show that our technique is
able to reliably estimate the position of a robot in complex
environments. Our approach has proven to be robust with
respect to inaccurate environmental models, noisy sensors
and ambiguous situations.

Introduction

In order to make use of environmental models mo-
bile robots always must know their current position and
orientatior in their environment. Therefore, the ability of
estimating their position is one of the basic preconditions
for the autonomy of mobile robots. The methods for po-
sition estimation can be roughly divided into two classes:
relativeandabsoluteposition estimation techniques (Feng,
Borenstein, & Everett 1994). Members of the first class
track the robot’s relative position according to a known
starting point. The problem solved by these methods is
the correction of accumulated dead reckoning errors com-
ing from the inherent inaccuracy of the wheel encoders and
other factors such as slipping. Absolute position estimation
techniques attempt to determine the robot’s position with-
out a priori information about the starting position. These

approaches of the second class can be used to initialize the

tracking techniques belonging to the first class.

!In the remainder of this paper we use the notion “position” to
refer to “position and orientation” if not stated otherwise

This paper addresses the problem of estimating the ab-
solute position of a mobile robot operating in a known en-
vironment. There are two reasons why we consider this
problem as relevant:

1. Whenever the robot is switched on, it should be able to
re-use its model of the environment. For this purpose, it
first has to localize itself in this model.

2. If the position tracking has failed, i.e. the robot has lost
its position in the environment, it should be able to per-
form a repositioning.

To avoid modifications of the environment and expensive
special purpose sensors we are interested in map-matching
techniques, which match measurements of standard sensors
against the given model of the environment. We have the
following requirements to such a method:

1. The method should be able to deal with uncertain in-
formation. This is important because sensors are gen-
erally imperfect. This concerns wheel encoders as well
as proximity sensors such as ultrasonic sensors or laser
range-finders. Moreover, models of the environment are
generally inaccurate. Possible reasons for deviations of
the map from the real world come from imperfect sen-
sors, measuring errors, simplifications, open or closed
doors, or even moving objects such as humans or other
mobile robots.

2. The method should be able to deal with ambiguities.
Typical office environments contain several places which
cannot be distinguished with a single measurement. As
example consider a long corridor, where changes of the
position due to the limited range of the sensors do not
necessarily result in changes of the measured values.
Thus, the set of possible positions of the robot is a re-
gion in that corridor.

3. The method should allow the integration of sensor
readings from different types of sensors over time.

Sensor fusion improves reliability while the integration



over time compensates noise and is necessary to resolveration of the environment or by an appropriate CAD-tool.
ambiguities. The local map is matched against the global map to pro-
N N o duce a position and orientation estimate. This estimate is
Position probability gridssimultaneously address all  ¢ompined with the previous estimate using a Kalman filter
these desiderata. They allow a mobile robot to determine its (Maybeck 1990), where the uncertainty is represented by
position in typical office environments within a shorttime.  ihe width of the Gaussian distribution. Compared to the ap-
Moreover, our method is able to deal with uncertain sensor proach of WeiRd et al., this technique allows an integration
information and ambiguous situations. of different measurements over time rather than taking the
The approach described in this paper is based on the CON- optimum match of the most recent sensing as a guess for
struction of certainty grid maps described in (Moravec & ne current position.
Elfes 1985). Certainty grid maps have been provento be  other researchers developed positioning techniques
a powerful means for the solution of different problems. pased on topological maps. (Nourbakhsh, Powers, & Birch-
Originally, they were designed to provide a probabilistic  fie|q 1995) apply Markov Models to determine the node of
model of the robot's environment. In the past such occu- the topological map which contains the current position of
pancy probability maps or variants of them have been suc- {he rohot. Different nodes of the topological map are dis-
cessfully used for collision avoiQance (Borenstein & Ko- tinguished by walls, doors or hallway openings. Such items
ren 1990; 1991) and path planning (Buhmatral. 1995; are detected using ultrasonic sensors, and the position of the
Moravec 1988). This paper issues a further application area ;gpot is determined by a “state-set progression technique”,
of this technique, namely the estimation of the absolute po- \here each state represents a node in the topological map.
sition of a robot. The principle of our approach is to accu-  Thjs technique is augmented by certainty factors which are
mulate in each cell of the position probability grid the pos-  computed out of the likelihoods that the items mentioned
terior probability of this cell referring to the current position  5p0ve will be detected by the ultrasonic sensors. (Sim-
of the robot. Because we have to consider a discrete set j1ons & Koenig 1995) describe a similar approach to po-
of possible orientations in addition to the discretization of  gjiion estimation. They additionally utilize metric informa-
the two-dimensional environment, position estimation is & tjon coming from the wheel encoders to compute state tran-
three-dimensional problem. This extension, however, does sjtion probabilities. This metric information puts additional
not result in any principle problems, because the certainty ¢onstraints on the robot's location and results in more reli-
grid concept can easily be extended to problems with higher 540 position estimates. (Kortenkamp & Weymouth 1994)

dimensionality (Moravec & Martin 1994). combine information obtained from sonar sensors and cam-
| K eras using a Bayesian network to detect gateways between
Related wor nodes of the topological map. The integration of sonar and

Various techniques for the estimation of the position of mo- vision information results in a much better place recogni-
bile vehicles by matching sensor readings against a given tion which reduces the number of necessary robot move-
model of the environment have been developed in the ments respectively transitions between different nodes of
past (Cox & Wilfong 1990; Feng, Borenstein, & Everett the topological map.
1994). Most of them address the problem of tracking the  Due to the separation of the environment into different
current position and orientation of the robot given its initial  nodes the methods based on topological maps, in contrastto
configuration. Recently, more and more probabilistic tech- the methods based on metric maps described above, allow
nigues are applied to position estimation problems. These to deal with ambiguous situations. Such ambiguities are
approaches can be distinguished by the type of maps they represented by different nodes having high position proba-
rely on. bilities. However, the techniques based on topological maps
Techniques based on metric or grid-based representa- provide a limited accuracy because of the low granularity
tions of the environment generally generate unimodal or of the discretization. This restricted precision is disadvan-
Gaussian distributions representing the estimation of the tageous if the robot has to navigate fast through its environ-
robot’s position. (Weil3, Wetzler, & von Puttkamer 1994) ment or even grasp for objects.
store angle histograms constructed out of range-finder scans The position probability grid method described here al-
taken at different locations of the environment. The po- lows to estimate the robot’s position up to a few centime-
sition and orientation of the robot is calculated by max- ters. Thisis achieved by approximating a position probabil-
imizing the correlation between histograms of new mea- ity function over a discrete metric space defining possible
surements and the stored histograms. (Schiele & Crowley positions in the environment. It therefore can be used to
1994) compare different strategies to track the robot’s posi- provide an initial estimate for the tracking techniques. But
tion based on occupancy grid maps. They use two different even the methods based on topological maps could be aug-
maps: a local grid computed using the most recent sensor mented by our approach. If the nodes of the topological
readings, and a global map built during a previous explo- map additionally contain metric information, our approach



could be used to position the robot within a node.

Building position probability grids
The certainty grid approach was originally designed by
Elfes and Moravec as a probabilistic grid model for the rep-

resentation of obstacles. The basic idea is to accumulate in

each cell of a rectangular grid field the probability that this
cellis occupied by an obstacle. Whereas Moravec and Elfes
construct a model of the environment given the position of

the robot and sensor readings, we go the opposite direction

estimating the position given the environmental model and
the sensor readings. For this purpose, we constrposa
tion probability grid P containing in each field the posterior
probability that this field includes the current position of the
robot. For a grid field: this certainty value is obtained by
repeatedly firing the robot’s sensors and accumulating in

the likelihoods of the sensed values supposed the center of

x currently is the position of the robot in the environment
modelm. Each time the robot’s sensors are fired, the fol-
lowing two steps are carried out:

1. UpdateP according to the movement of the robot since
the last update. This includes a processing’ab deal
with possible dead-reckoning errors.

. For each grid field: of P and each reading, compute
the likelihood ofs supposedr is the current position
of the robot inm, and combine this likelihood with the
probability stored in: to obtain a new probability far.

The basic assumptions for our approach are:

The robot must have a model of the world the sensor
readings can be matched againguch models can ei-
ther come from CAD-drawings of the environment or can

themselves be grid representations of occupancy proba-

bilities.
The robot does not leave the environmental modikis
assumption allows us to use the same size for the position

probability gridP as for the environmental moded, and
to set the probability for positions outside Bfto 0.

In the remainder of this section we describe how to inte-
grate different sensor readings into position probabilities.
Furthermore we show how to keep track of the robot’s
movements with explicit consideration of possible dead-
reckoning errors.

Integrating multiple sensor readings

In order to give reliable position estimates we have to inte-
grate the information of consecutive sensor readings. Sup-
posem is the model of the environment, apdz | s; A

...\ sp—1 A'm) is the (posterior) probability that refers

to the current position of the robot, givemand the sensor
readingssy, ..., s,—1. Then, to update the probability for

x given new sensory input, we use the following update
formula (Pearl 1988):

pl@]|s1A...ANSp1 Asp Am) =
(1)

The termp(s,, | = A m) is the likelihood of measuring the
sensory inpus,, given the world moden and assuming
thatz refers to the current position of the robot. The con-
stanta: simply normalizes the sum of the position probabil-
ities over allz up to1.

To initialize the grid we use the a priori probability

a-p(z]| st A...ANsp1 Am)-p(sy |z Am)

p(z | m) of x referring to the actual position of the robot

givenm. The estimation of(z | m) andp(s,, | x Am) de-
pends on the given world model and the type of the sensors
used for position estimation. Below we demonstrate how
to use occupancy probability maps for position estimation
and how sensor readings of ultrasonic sensors are matched
against such maps.

Integrating the movements of the robot

In order to update the grid according to the robot’s move-
ments and to deal with possible dead reckoning errors we
use a general formula coming from the domain of Markov
chains. We regard each cell iR as one possible state
of the robot, and determine a state transition probability

p(z | Z AT At) for each pairz, Z of cells in P, which

depends on the trajectorytaken by the robot and the time
t elapsed since the previous update. This transition prob-
ability should also model how the trajectoryfits into the
environment. For example, a trajectory leading the robot
through free space has a higher probability than a trajectory
blocked by an obstacle. Thus, the new probability of a grid
field after a movement of the robot is:
Plz] a-ZP[:E]-p(:U|5:/\T/\t)
zepP
wherea is a normalizing constant. At any time the field
of P with the highest probability represents the best es-
timation for the current position of the robot. The confi-
dence in this estimation depends on the absolute value of
the probability and on the difference to the probabilities in
the remaining fields of the grid. Thus, ambiguities are rep-
resented by different fields having a similar high probabil-

ity.

(2)

Position estimation with occupancy
probability maps as world model

In this section we describe the application of this ap-
proach by matching ultrasonic sensors against occupancy
grid maps.

Matching sonar sensor readings against
occupancy grids

To compute the likelihoog(s | Am) that a sensor reading
s is received given the position and an occupancy grid



mapm we use a similar approach as described in (Moravec
1988). We consider a discretizati®y, . . . , R, of possible
distances measured by the sensor. ConsequerifRy, |

x A m) is the likelihood that the sonar beam is reflected in
R;.
Supposep(r(Z) | = A m) is the likelihood that the cell

Z reflects a sonar beam, given the positionf the robot
and the mapn. Furthermore suppose thatbelongs to
R;. Assuming the reflection of the sonar beamiblgeing
conditionally independent of the reflection of the other cells
in R;, the likelihood thatR; reflects a sonar beam is

p(Ri|zAm)=1- [ A =p(r@E)|zAm)  (3)
ZTER;
Before the beam reachés, it traversesR,, ..., R; 1.

Supposed that the sonar readinig included by rangé;,
the likelihoodp(s | = A m) equals the likelihood thak;
reflects the sonar beam given that none of the raiiyes
reflects it. Thus, we have

p(s | @ Am) =
i—1

p(R: | @ Am)- [[ (1= p(R; | 2 Am)

j=1

(4)

Computing position estimates using occupancy
grids
It remains to estimate the initial probabilifz | m) that
the fieldz of m contains the current position of the robot.
We assume that this probability directly depends on the oc-
cupancy probabilityn(z) of the fieldz in m: the higher the
occupancy probability, the lower is the position probability
and vice versa. Therefore, the valp@: | m) is computed
as follows:

1—m(z)
Ysem (L —m(E))

Experiments

In this section we show the results from experiments car-
ried out with our roboRHINQIin real world environments
such as typical offices and the AAAI '94 mobile robot com-

p(z | m) (5)
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Figure 1: Outline and occupancy grid map of the office

12
table 3

To compute the transition probabilip(z | 2 A T A t)
we assume the dead reckoning errors to be normally dis-
tributed. Supposing frequent updates of the position in-
formation we simply approximate the probability of the
robot’s trajectoryr by p(y|m) wherey is the position cor-
responding ta:. Thus we have

p(l‘ | TATA t) wz,‘r,t(i.) p(y | m) (6)

wherew,, - is a Gaussian distribution.

Position estimation in a typical office

To evaluate the capabilities of our approach we used the
task of estimating the position in a typical office of our de-
partment. Figure 1 shows an outline of this office, which
has a size oft x 7m? and the occupancy grid map used
to compute the likelihoods of the sensor readings. For the
position estimation we used only 8 of the 24 ultrasonic sen-
sors our robot is equipped with. The size of one grid field is
15 x 15 cm?, while we consider 180 possible orientations.
For this grid and 8 sensor readings per step, the update of
the grid takes about 6 seconds on a Pentium 90 computer.
Figure 1 also shows the initial and final position of the
path taken by the robot. At the beginning the robot turned to

petition arena. For the position estimation we match sensor the |eft and moved between the bookcase and the desk. At
readings coming from ultrasonic sensors against occupancy the end of the trajectory the robot turned and started to leave

grid maps.

Implementation aspects
For the sake of efficiency we implemented a simplified

model of sonar sensors to compute the likelihood of a read-

ing: instead of considering all cells of the grid covered
by the sonar wedge as done in (Moravec 1988) we only

the corner. On this trajectory, which is illustrated by the
solid line, 12 sweeps of sonar readings were taken for the
position estimation. In addition to the real traject@ryjwo
alternative path8 andC are shown. Figure 2 shows plots
of the maximum probabilities for the first, second, fourth,
and twelfth reading sets for each position of the map. For
the sake of simplicity only the maximal probability over all

consider the cells on the acoustic axis of the sensor. This orientations at each position is shown. Note that the z-axes

rough simplification has already been applied successfully
in (Borenstein & Koren 1991) to realize a fast collision
avoidance technique for mobile robots.

of the four figures have different scales. The probabilities
of the corresponding points belonging to the trajectofies
B, andC are highlighted by vertical lines.
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Figure 2: Position probability distribution after 1, 2, 4, andst@ps

After the first reading we obtain a multi-modal distribu- Conclusions

tion with several small local maxima. At the correct posi- . . .
tion we observe only a small peak, which is dominated by We presented the position probability grid approach as a ro-

the starting position of trajectors. After interpreting the  PUStBayesian technique to estimate the position of a mobile
second set of readings the probabilities become more con- robot. Qur method allows the mtegratl_on of sensor readings
centrated. We observe four small peaks which now have from different types of sensors over time. We showed that
their maximum in position 2 of trajectorg. The third and this method is able to find the position of a robot even if
fourth reading sets support the initial position so that the po- NCISY Sensors such as ultrasonic sensors and approximative
sition on trajectoryA gets the maximum probability. There ~ €nvironmental models like occupancy grid maps are used.
are two peaks where the smaller one is a super-imposition Our approach has any-time characteristic, because it is able
of two different peaks for the trajectorié® and C. After to give an estimation for the current position of the robot
evaluating 12 sonar sweeps all ambiguities are resolved, &lréady after interpreting the first sensor reading. By in-

and the result is a significant and unique peak with prob- €OrPorating new input this estimation is continuously im-
ability 0.26 for the final point of trajecton. This position proved. Position probability grids allow to represent and
in fact refers to the real position of the robot. to deal with ambiguous situations. These ambiguities are

resolved if sufficient sensory information is provided. Our
technique has been implemented and tested in several com-
plex real-world experiments.

In the previous example ambiguities appeared as several The only precondition for the applicability of the position
peaks in the position probability distribution. In large en- probability grid approach is an environmental model which
vironments we have to expect that due to the limited range allows to determine the likelihood of a sensor reading at
of the proximity sensors ambiguities spread out over com- a certain position in the environment. In our implementa-
plete regions. In order to demonstrate the capability of our tion we used occupancy probability grids as world model
approach to deal with such complex situations we applied in combination with ultrasonic sensors. Alternatively one
it to the arena of the AAAI '94 mobile robot competition  could use a CAD-model of the environment and cameras
(Simmons 1995). The size of this arena amo@ats30m?2. for edge detection or integrate simple features like the color
Figure 3 shows the occupancy grid map of this arena con- of the floor.
structed with the map-building tool described in (Thrun  Using the currently implemented system our robot needs
1993). The sonar sensor measurements were recorded durabout one minute to determine its position in a typical of-
ing an exploration run in this arena. The trajectory of the fice. Although the computation time depends linearly on
robot and the 12 positions at which the sensors were fired the grid size, very large environments such as@bi@n?
are included in Figure 3. Again we only used 8 of the 24 \ide AAAI '94 robot competition arena do not impose any
sonar sensors and the same resolution for the position prob-principle limitations on the algorithm. We are convinced
ability grid as in the previous example. that different optimizations will make our approach appli-

Figures 4 and 5 show logarithmic density plots of the cable online even in such large environments. The most
maximum position probabilities for all directions after in-  important source for speed-up lies in the pre-analysis of the
terpreting 6 and 12 sets of sensor readings. Although the environmental model. This includes computing and storing
information obtained after the first 6 sensor readings does the likelihoods of all possible sensor readings for all posi-
not suffice to definitely determine the current position of tions. Additionally, in orthogonal environments the reduc-
the robot, it is obvious that the robot must be in a long cor- tion of possible orientations to the alignment of the walls
ridor. After 12 steps the position of the robot is uniquely drastically reduces the complexity of the overall problem.
determined. The corresponding grid cell has a probability Furthermore, the application of a map resolution hierar-
of 0.96 while the small peak at the bottom of Figure 5 has a chy as proposed in (Moravec 1988) can be used to produce
maximum of 8e-6. rough position estimates which are refined subsequently.

Dealing with large environments



Figure 3: Occupancy grid map of the
AAAI 94 mobile robot competition

Figure 4: Density plot after 6 steps

Figure 5: Density plot after &@st

Despite these encouraging results there are several war- Moravec, H. P., and Martin, M. C. 1994. Robot navigation

rants for future research. This concerns optimizations as de-

scribed above as well as active exploration strategies. Such

strategies will guide the robot to points in the environment,
which provide the maximum information gain with respect
to the current knowledge.
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