Obstacle Avoidance (Local Path Planning)

- The goal of the obstacle avoidance algorithms is to avoid collisions with obstacles
- It is usually based on local map
- Often implemented as a more or less independent task
- However, efficient obstacle avoidance should be optimal with respect to
$>$ the overall goal
$>$ the actual speed and kinematics of the robot
$>$ the on board sensors
> the actual and future risk of collision

Obstacle Avoidance: Bug1

- Follow along the obstacle to avoid it
- Each encountered obstacle is one fully circled before it is left at the point closest to the goal
- Move toward the goal and repeat for any future encountered obstacle
- Advantages:
$>$ No global map required
> Completeness guaranteed
- Disadvantages:
> Solutions are often highly suboptimal

Obstacle Avoidance: Bug2

$>$ Follow the obstacle always on the left or right side
$>$ Leave the obstacle if the direct connection between start and goal is crossed

Practical Implementation of Bug2

- Two states of robot motion:
$>$ (1) moving toward goal (GOALSEEK)
$>$ (2) moving around contour of obstacle (WALLFOLLOW)
- Describe robot motion as function of sensor values and relative direction to goal
- Decide how to switch between these two states

```
while (!atGoal)
    { if (goalDist < goalThreshold)
        We're at the goal! Halt.
    else
            { forwardVel = ComputeTranslation(&sonars)
            if (robotState == GOALSEEK)
                            { rotationVel = ComputeGoalSeekRot(goalAngle)
                        if (ObstaclesInWay())
                        robotState <- WALLFOLLOW
            if (robotState == WALLFOLLOW)
                            { rotationVel = ComputeRightWallFollowRot(&sonars)
                        if (!ObstaclesInWay())
                        robotState <- GOALSEEK)
            }
        }
    robotSetVelocity(forwardVel, rotationVel)
    }
```


Practical Implementation of Bug2 (con't.)

- ObstaclesInWay(): is true whenever any sonar range reading in the direction of the goal (i.e., within 45° of the goal) is too short
- ComputeTranslation(): proportional to largest range reading in robot's approximate forward direction
> // Note similarity to potential field approach!
> If minSonarFront (i.e., within 45° of the goal) < min_dist
o return 0
> Else return min (max_velocity, minSonarFront - min_dist)

Practical Implementation of Bug2 (con't.)

- For computing rotation direction and speed, popular method is:
$>$ Subtract left and right range readings
$>$ The larger the difference, the faster the robot will turn in the direction of the longer range readings
-ComputeGoalSeekRot(): // returns rotational velocity
> if (abs(angle_to_goal)) < PI/10
o return 0
> else return (angle_to_goal * k) // k is a gain
-ComputeRightWallFollowRot(): // returns rotational velocity
> if max(minRightSonar, minLeftSonar) < min_dist
o return hard_left_turn_value // this is for a right wall follower
>else
o desiredTurn = (hard_left_turn_value - minRightSonar) * 2
o translate desiredTurn into proper range
o return desiredTurn

Pros/Cons of Bug2

- Pros:
$>$ Simple
$>$ Easy to understand
> Popularly used
- Cons:
$>$ Does not take into account robot kinematics
$>$ Since it only uses most recent sensor values, it can be negatively impacted by noise
- More complex algorithms (in the following) attempt to overcome these shortcomings

Obstacle Avoidance: Vector Field Histogram (VFH)

Koren \& Borenstein, ICRA 1990

- Overcomes Bug2's limitation of only using most recent sensor data by creating local map of the environment around the robot
- Local map is a small occupancy grid
$>$ Grid cell values equal to the probability that there is an obstacle in that cell
- This grid is populated only by relatively recent sensor data

How to calculate probability that cell is occupied?

- Need sensor model to deal with uncertainty
- Let's look at the approach for a sonar sensor ...

Modeling Common Sonar Sensor (from Murphy)

How to Convert to Numerical Values?

- Need to translate model (previous slide) to specific numerical values for each occupancy grid cell
$>$ These values represent the probability that a cell is occupied (or empty), given a sensor scan (i.e., P(occupied | sensing))
- Three methods:
$>$ Bayesian
$>$ Dempster-Shafer Theory
$>$ HIMM (Histogrammic in Motion Mapping)
- We'll cover:
>Bayesian
- We won't cover:
$>$ Dempster-Shafer
$>$ HIMM

Bayesian: Most popular evidential method

- Approach:
$>$ Convert sensor readings into probabilities
>Combine probabilities using Bayes' rule:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$>$ That is,

$$
\text { Posterior }=\frac{\text { Likelihood } \times \text { Prior }}{\text { Normalizing constant }}
$$

- Pioneers of approach:
$>$ Elfes and Moravec at CMU in 1980s

Review: Basic Probability Theory

- Probability function:
$>$ Gives values from 0 to 1 indicating whether a particular event, H (Hypothesis), has occurred
- For sonar sensing:
$>$ Experiment: Sending out acoustic wave and measuring time of flight
>Outcome: Range reading reporting whether the region being sensed is Occupied or Empty
- Hypotheses $(\mathrm{H})=$ \{Occupied, Empty)
- Probability that H has really occurred:

$$
0<P(H)<1
$$

- Probability that H has not occurred:

$$
1-P(H)
$$

Unconditional and Conditional Probabilities

- Unconditional probability: $P(H)$
> "Probability of H"
$>$ Only provides a priori information
$>$ For example, could give the known distribution of rocks in the environment, e.g., " $x \%$ of environment is covered by rocks"
$>$ For robotics, unconditional probabilities are not based on sensor readings
- For robotics, we want: Conditional probability: $P(H \mid s)$
$>$ "Probability of H, given s" (e.g., $P($ Occupied $\mid s)$, or $P($ Empty $\mid s)$)
$>$ These are based on sensor readings, s
- Note: $P(H \mid s)+P(\operatorname{not} H \mid s)=1.0$

Probabilities for Occupancy Grids

- For each grid[i][j] covered by sensor scan:
> Compute $\mathrm{P}($ Occupied $\mid \mathrm{s})$ and $\mathrm{P}($ Empty $\mid \mathrm{s})$
- For each grid element, grid[i][j], store tuple of the two probabilities:

```
typedef struct {
    double occupied; // i.e., P(occupied | s)
    double empty; // i.e., P(empty | s)
    } P;
```

P occupancy_grid[ROWS][COLUMNS];

Recall: Modeling Common Sonar Sensor to get P(s | H)

Converting Sonar Reading to Probability: Region I

The nearer the grid element to

- Region I:

where r is distance to grid element that is being updated α is angle to grid element that is being updated Max $_{\text {occupied }}=$ highest probability possible (e.g., 0.98)

Converting Sonar Reading to Probability: Region II

- Region II:

The nearer the grid element to
$\mathrm{P}($ Empty $)=\frac{\frac{R-r}{R}+\frac{\beta-\alpha}{\beta}}{2} \quad \begin{aligned} & \text { higher the belief } \\ & \begin{array}{l}\text { The closer to the } \\ \text { acoustic axis, the } \\ \text { higher the belief }\end{array}\end{aligned}$
$\mathrm{P}($ Occupied $)=1.0-\mathrm{P}($ Empty $)$
where r is distance to grid element being updated,
α is angle to grid element being updated
Note that here, we allow probability of being empty to equal 1.0

Sonar Tolerance

- Sonar range readings have resolution error
- Thus, specific reading might actually indicate range of possible values
- E.g., reading of 0.87 meters actually means within $(0.82,0.92)$ meters
$>$ Therefore, tolerance in this case is 0.05 meters.
- Tolerance gives width of Region I

Tolerance in Sonar Model

Example: What is value of grid cell

? (assume tolerance $=0.5$)

But, not yet there - need $\mathbf{P}(\mathbf{H} \mid \mathrm{s})$, not $\mathrm{P}(\mathrm{s} \mid \mathrm{H})$

- Note that previous calculations gave: $P(s \mid H), \operatorname{not} P(H \mid s)$
- Thus, use Bayes Rule:

$$
\begin{aligned}
& P(\mathrm{H} \mid \mathrm{s})=\frac{P(s \mid H) P(H)}{P(s \mid H) P(H)+P(s \mid \text { not } H) P(\text { not } H)} \\
& P(\mathrm{H} \mid \mathrm{s})=\frac{P(s \mid \text { Empty }) P(\text { Empty })}{P(s \mid \text { Empty }) P(\text { Empty })+P(s \mid \text { Occupied }) P(\text { Occupied })}
\end{aligned}
$$

- $P(s \mid$ Occupied $)$ and $P(s \mid$ Empty $)$ are known from sensor model
- $P($ Occupied $)$ and $P($ Empty) are unconditional, prior probabilities (which may or may not be known)
$>$ If not known, okay to assume $\mathrm{P}($ Occupied $)=\mathrm{P}($ Empty $)=0.5$

Returning to Example

- Let's assume we're on Mars, and we know that $P($ Occupied $)=0.75$
- Continuing same example for cell \square
- $P($ Empty $\mid s=6)=P(s \mid$ Empty $) P($ Empty $)$ $P(S \mid$ Empty $) P($ Empty $)+P($ s \mid Occupied $) P($ Occupied $)$

$$
=\quad 0.83 \times 0.25
$$

$$
0.83 \times 0.25+0.17 \times 0.75
$$

$$
=0.62
$$

- $P($ Occupied $\mid s=6)=1-P($ Empty $\mid s=6)=0.38$
- These are the values we store in our grid cell representation

Updating with Bayes Rule

- How to fuse multiple readings obtained over time?
- First time:
$>$ Each element of grid initialized with a priori probability of being occupied or empty
- Subsequently:
> Use Bayes' rule iteratively
$>$ Probability at time $\mathrm{t}_{\mathrm{n}-1}$ becomes prior and is combined with current observation at t_{n} using recursive version of Bayes rule:
$P\left(H \mid s_{n}\right)=\frac{P\left(s_{n} \mid H\right) P\left(H \mid s_{n-1}\right)}{P\left(s_{n} \mid H\right) P\left(H \mid s_{n-1}\right)+P\left(s_{n} \mid \text { not } H\right) P\left(\text { not } H \mid s_{n-1}\right)}$

Now, back to: Vector Field Histogram (VFH)

- Environment represented in a grid (2 DOF)

Koren \& Borenstein, ICRA 1990
> cell values are equivalent to the probability that there is an obstacle

- Generate polar histogram:

Now, back to: Vector Field Histogram (VFH)

- From histogram, calculate steering direction:
$>$ Find all openings large enough for the robot to pass through
$>$ Apply cost function G to each opening
$G=a \cdot$ target_direction $+b \cdot$ wheel_orientation $+c \cdot$ previous_direction where:
o target_direction = alignment of robot path with goal
o wheel_orientation = difference between new direction and current wheel orientation
o previous_direction = difference between previously selected direction and new direction
$>$ Choose the opening with lowest cost function value

VFH Limitations

- Limitation if narrow areas (e.g. doors) have to be passed
- Local minimum might not be avoided
- Reaching of the goal cannot be guaranteed
- Dynamics of the robot not really considered

Movie
.
\qquad -
-
-

Obstacle Avoidance: Vector Field Histogram ${ }^{+}$(VFH+)

- Accounts also in a very simplified way for the moving trajectories
$>$ robot can move on arcs
$>$ arcs take into account kinematics
$>$ obstacles blocking a given direction also block all the trajectories (arcs) going through this direction -

Caprari et al. 2002

Obstacle Avoidance: Basic Curvature Velocity Methods (cvm)

Simmons et al.

- Adding physical constraints from the robot and the environment on the velocity space (v, ω) of the robot
$>$ Assumption that robot is traveling on arcs ($c=\omega / v$)
$>$ Constraints: $-v_{\max }<v<v_{\max } \quad-\omega_{\max }<\omega<\omega_{\max }$
$>$ Obstacle constraints: Obstacles are transformed in velocity space
$>$ Objective function used to select the optimal speed

Obstacle Avoidance: Dynamic Window Approach

Fox and Burgard, Brock and Khatib

- The kinematics of the robot is considered by searching a well chosen velocity space
> velocity space -> some sort of configuration space
$>$ robot is assumed to move on arcs
$>$ ensures that the robot comes to stop before hitting an obstacle
$>$ objective function is chosen to select the optimal velocity
$O=a \cdot \operatorname{heading}(v, \omega)+b \cdot \operatorname{velocity}(v, \omega)+c \cdot \operatorname{dist}(v, \omega)$

- $\underline{\text { heading }}=$ progress toward goal
- velocity = forward velocity of robot (encourages fast movements)
- dist = distance to closest obstacle in trajectory

Obstacle Avoidance: Globall Dynamic Window Approach

- Global approach:
$>$ This is done by adding a minima-free function named NF1 (wavepropagation) to the objective function O presented above.
$>$ Occupancy grid is updated from range measurements

10	9	8	7	8
11	10		6	7
			5	6
1	2		4	5
G_{0}	1	2	3	4

