Uncertainties: Representation and Propagation

Line Extraction from Range data

Uncertainty Representation

Section 4.1.3 of the book

- Sensing in the real world is always uncertain
- How can uncertainty be represented or quantified?
- How does uncertainty propagate?
fusing uncertain inputs into a system, what is the resulting uncertainty?
- What is the merit of all this for mobile robotics?

Uncertainty Representation (2)

- Use a Probability Density Function (PDF) to characterize the statistical properties of a variable X :

- Expected value of variable X:
$\mu=E[X]=\int_{-\infty}^{\infty} x f(x) d x$
- Variance of variable X

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

44
 Gaussian Distribution

- Most common PDF for characterizing uncertainties: Gaussian

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

The Error Propagation Law

- Imagine extracting a line based on point measurements with uncertainties.
- Model parameters in polar coordinates [(r, α) uniquely identifies a line]

- The question:
- What is the uncertainty of the extracted line knowing the uncertainties of the measurement points that contribute to it ?

Error propagation in a multiple-input multi-output system with n inputs and m outputs.

$$
Y_{j}=f_{j}\left(X_{1} \ldots X_{n}\right)
$$

47
 The Error Propagation Law

- 1D case of a nonlinear error propagation problem
- It can be shown that the output covariance matrix C_{Y} is given by the error propagation law:

$$
C_{Y}=F_{X} C_{X} F_{X}^{T}
$$

- where

- C_{X} : covariance matrix representing the input uncertainties
- C_{Y} : covariance matrix representing the propagated uncertainties for the outputs.
- F_{x} : is the Jacobian matrix defined as:

$$
F_{X}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial X_{1}} & \cdots & \frac{\partial f_{1}}{\partial X_{n}} \\
\vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial X_{1}} & \cdots & \frac{\partial f_{m}}{\partial X_{n}}
\end{array}\right]
$$

- which is the transpose of the gradient of $f(X)$.

Line Extraction (1)

- Point-Line distance

$$
\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r=d_{i}
$$

- If each measurement is equally uncertain then sum of sq. errors:

$$
S=\sum_{i} d_{i}^{2}=\sum_{i}\left(\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r\right)^{2}
$$

- Goal: minimize S when selecting (r, α)
 \Rightarrow solve the system

$$
\frac{\partial S}{\partial \alpha}=0 \quad \frac{\partial S}{\partial r}=0
$$

- "Unweighted Least Squares"

Line Extraction (2)

- Point-Line distance

$$
\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r=d_{i}
$$

- Each sensor measurement, may have its own, unique uncertainty

$$
\begin{aligned}
& S=\sum w_{i} d_{i}^{2}=\sum w_{i}\left(\rho_{i} \cos \left(\theta_{i}-\alpha\right)-r\right)^{2} \\
& w_{i}=1 / \sigma_{i}^{2}
\end{aligned}
$$

- Weighted Least Squares

Line Extraction (2)

- Weighted least squares and solving the system:

$$
\frac{\partial S}{\partial \alpha}=0 \quad \frac{\partial S}{\partial r}=0
$$

- Gives the line parameters:

$$
\alpha=\frac{1}{2} \operatorname{atan}\left(\frac{\sum w_{i} \rho_{i}^{2} \sin 2 \theta_{i}-\frac{2}{\sum_{w_{i}}} \sum \sum w_{i} w_{j} \rho_{i} \rho_{j} \cos \theta_{i} \sin \theta_{j}}{\sum w_{i} \rho_{i}^{2} \cos 2 \theta_{i}-\frac{1}{\sum_{w_{i}}} \sum \sum w_{i} w_{j} \rho_{i} \rho_{j} \cos \left(\theta_{i}+\theta_{j}\right)}\right)
$$

$$
r=\frac{\sum w_{i} \rho_{i} \cos \left(\theta_{i}-\alpha\right)}{\sum w_{i}}
$$

- If

$$
\rho_{i} \sim N\left(\hat{\rho}_{i}, \sigma_{\rho_{i}}{ }^{2}\right)
$$

what is the uncertainty in the line (r, α) ?

$$
\theta_{i} \sim N\left(\hat{\theta}_{i}, \sigma_{\theta_{i}}{ }^{2}\right)
$$

Error Propagation: Line extraction

The uncertainty of each measurement
$x_{i}=\left(\rho_{i}, \theta_{i}\right)$ is described by the covariance matrix:

$$
C_{x_{i}}=\left[\begin{array}{cc}
\sigma_{\rho_{i}}{ }^{2} & 0 \\
0 & \sigma_{\theta_{i}}{ }^{2}
\end{array}\right]
$$

$\begin{aligned} & \text { The uncertainty in the line }(\boldsymbol{r}, \boldsymbol{\alpha}) \text { is } \\ & \text { described by the covariance matrix: }\end{aligned} \quad C_{\alpha r}=\left[\begin{array}{cc}\sigma_{\alpha}{ }^{2} & \sigma_{\alpha r} \\ \sigma_{r \alpha} & \sigma_{r}{ }^{2}\end{array}\right]=?$

Define:
$C_{x}=\left[\begin{array}{cc}\operatorname{diag}\left(\sigma_{\rho}{ }^{2}\right) & 0 \\ 0 & \operatorname{diag}\left(\sigma_{\theta}{ }^{2}\right)\end{array}\right]=$

Jacobian:

$$
=\left[\begin{array}{ccccccc}
\cdots & 0 & 0 & \cdot & 0 & 0 & \cdot \\
\cdot & \sigma_{\rho_{i}}{ }^{2} & 0 & \cdot & 0 & 0 & \cdot \\
\cdot & 0 & \sigma_{\rho_{i+1}}{ }^{2} & \cdot & 0 & 0 & \cdot \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \\
\cdot & 0 & 0 & \cdot & \sigma_{\theta_{i}}{ }^{2} & 0 & \cdot \\
\cdot & 0 & 0 & \cdot & 0 & \sigma_{\theta_{i}+1}{ }^{2} & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ldots
\end{array}\right]_{2 n \times 2 n}
$$

$$
F_{\rho \theta}=\left[\begin{array}{ccccccc}
\cdots & \frac{\partial \alpha}{\partial \rho_{i}} & \frac{\partial \alpha}{\partial \rho_{i+1}} & \cdots & \frac{\partial \alpha}{\partial \theta_{i}} & \frac{\partial \alpha}{\partial \theta_{i+1}} & \ldots \\
\cdots & \frac{\partial r}{\partial \rho_{i}} & \frac{\partial r}{\partial \rho_{i+1}} & \cdots & \frac{\partial r}{\partial \theta_{i}} & \frac{\partial r}{\partial \theta_{i+1}} & \cdots
\end{array}\right] \stackrel{\begin{array}{c}
\text { From Error } \\
\text { Propagation Law }
\end{array}}{C_{\alpha r}=F_{\rho \theta} C_{x} F_{\rho \theta}^{T}}
$$

Autonomous Mobile Robots

Feature Extraction from Range Data: Line extraction

Split and merge Linear regression
RANSAC
Hough-Transform

Extracting Features from Range Data

photograph of corridor at ASL

plane segmentation result

raw 3D scan

© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

${ }^{55}$ Extracting Features from Range Data

- goal: extract planar features from a dense point cloud
- example:

example scene showing a part of a corridor of the lab

same scene represented as dense point cloud generated by a rotating laser scanner
${ }^{56}$ Extracting Features from Range Data
- Map of the ASL hallway built using line segments

57
 Extracting Features from Range Data

- Map of the ASL hallway built using orthogonal planes constructed from line segments

© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

Features from Range Data: Motivation

- Point Cloud \Rightarrow extract Lines / Planes
- Why Features:
- Raw data: huge amount of data to be stored
- Compact features require less storage
- Provide rich and accurate information
- Basis for high level features (e.g. more abstract features, objects)
- Here, we will study line segments
- The simplest geometric structure
- Suitable for most office-like environments

[^0]
Line Extraction: The Problem

Extract lines from a Range scan (i.e. a point cloud)

- Three main problems:
- How many lines are there?
- Segmentation: Which points belong to which line ?
- Line Fitting/Extraction: Given points that belong to a line, how to estimate the line parameters ?
- Algorithms we will see:

1. Split and merge
2. Linear regression
3. RANSAC
4. Hough-Transform

© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

60
 Algorithm 1: Split-and-Merge (standard)

- The most popular algorithm which is originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-Point-Fit, simply connects the end points for line fitting.

Initialise set \mathbf{S} to contain all points

Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance $>$ threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point

- If distance <= threshold, merge both segments

61
 Algorithm 1: Split-and-Merge (standard)

- The most popular algorithm which is originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-Point-Fit, simply connects the end points for line fitting.

Initialise set \mathbf{S} to contain all points

Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance $>$ threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments

62
 Algorithm 1: Split-and-Merge (standard)

- The most popular algorithm which is originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-Point-Fit, simply connects the end points for line fitting.

Initialise set S to contain all points

Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance > threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear
 enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments

63
 Algorithm 1: Split-and-Merge (standard)

- The most popular algorithm which is originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-Point-Fit, simply connects the end points for line fitting.

Initialise set \mathbf{S} to contain all points

Split

- Fit a line to points in current set \mathbf{S}
- Find the most distant point to the line
- If distance $>$ threshold \Rightarrow split \& repeat with left and right point sets

Merge

- If two consecutive segments are close/collinear enough, obtain the common line and find the most distant point
- If distance <= threshold, merge both segments

Algorithm 1: Split-and-Merge (Iterative-End-Point-Fit)

Algorithm 1: Split-and-Merge

Algorithm 1: Split-and-Merge

1. Initial: set s_{1} consists of N points. Put s_{1} in a list L
2. Fit a line to the next set s_{i} in L
3. Detect point P with maximum distance d_{P} to the line
4. If d_{P} is less than a threshold, continue (go to step 2)
5. Otherwise, split s_{i} at P into $s_{i 1}$ and $s_{i 2}$, replace s_{i} in L by $s_{i 1}$ and $s_{i 2}$, continue (go to 2)
6. When all sets (segments) in L have been checked, merge collinear segments.

66
 Algorithm 2: Line-Regression

- Uses a "sliding window" of size N_{f}
- The points within each "sliding window" are fitted by a segment

Line-Regression

- Initialize sliding window size N_{f}
- Fit a line to every N_{f} consecutive points (i.e. in each window)
- Compute a Line Fidelity Array: each element contains the sum of Mahalanobis distances between 3 consecutive windows (Mahalanobis distance used as a measure of similarity)
- Scan Fidelity array for consecutive elements < threshold (using a clustering algorithm).
- For every Fidelity Array element < Threshold, construct a new line segment
- Merge overlapping line segments + recompute line parameters for each segment

67
 Algorithm 2: Line-Regression

- Uses a "sliding window" of size N_{f}
- The points within each "sliding window" are fitted by a segment

Line-Regression

- Initialize sliding window size N_{f}
- Fit a line to every N_{f} consecutive points (i.e. in each window)
- Compute a Line Fidelity Array: each element contains the sum of Mahalanobis distances between 3 consecutive windows (Mahalanobis distance used as a measure of similarity)
- Scan Fidelity array for consecutive elements < threshold (using a clustering algorithm).
- For every Fidelity Array element < Threshold, construct a new line segment
- Merge overlapping line segments + recompute line parameters for each segment

Algorithm 2: Line-Regression

- Uses a "sliding window" of size N_{f}
- The points within each "sliding window" are fitted by a segment

Line-Regression

$$
N_{f}=3
$$

- Initialize sliding window size N_{f}
- Fit a line to every N_{f} consecutive points (i.e. in each window)
- Compute a Line Fidelity Array: each element contains the sum of Mahalanobis distances between 3 consecutive windows (Mahalanobis distance used as a measure of similarity)
- Scan Fidelity array for consecutive elements < threshold (using a clustering algorithm).
- For every Fidelity Array element < Threshold, construct a new line segment
- Merge overlapping line segments + recompute line parameters for each segment

Algorithm 2: Line-Regression

- Uses a "sliding window" of size N_{f}
- The points within each "sliding window" are fitted by a segment
- Then adjacent segments are merged if their line parameters are close

Line-Regression

$$
N_{f}=3
$$

- Initialize sliding window size N_{f}
- Fit a line to every N_{f} consecutive points (i.e. in each window)
- Compute a Line Fidelity Array: each element contains the sum of Mahalanobis distances between 3 consecutive windows (Mahalanobis distance used as a measure of similarity)
- Scan Fidelity array for consecutive elements < threshold (using a clustering algorithm).
- For every Fidelity Array element < Threshold, construct a new line segment
- Merge overlapping line segments + recompute line parameters for each segment

70
 Algorithm 2: Line-Regression

- Uses a "sliding window" of size N_{f}
- The points within each "sliding window" are fitted by a segment
- Then adjacent segments are merged if their line parameters are close

Line-Regression

$$
N_{f}=3
$$

- Initialize sliding window size N_{f}
- Fit a line to every N_{f} consecutive points (i.e. in each window)
- Compute a Line Fidelity Array: each element contains the sum of Mahalanobis distances between 3 consecutive windows (Mahalanobis distance used as a measure of similarity)
- Scan Fidelity array for consecutive elements < threshold (using a clustering algorithm).
- For every Fidelity Array element < Threshold, construct a new line segment
- Merge overlapping line segments + recompute line parameters for each segment

Algorithm 2: Line-Regression

- Uses a "sliding window" of size N_{f}
- The points within each "sliding window" are fitted by a segment
- Then adjacent segments are merged if their line parameters are close

Line-Regression

$$
N_{f}=3
$$

- Initialize sliding window size N_{f}
- Fit a line to every N_{f} consecutive points (i.e. in each window)
- Compute a Line Fidelity Array: each element contains the sum of Mahalanobis distances between 3 consecutive windows (Mahalanobis distance used as a measure of similarity)
- Scan Fidelity array for consecutive elements < threshold (using a clustering algorithm).
- For every Fidelity Array element < Threshold, construct a new line segment
- Merge overlapping line segments + recompute line parameters for each segment
- RANSAC = RANdom SAmple Consensus.
- It is a generic and robust fitting algorithm of models in the presence of outliers (i.e. points which do not satisfy a model)
- Generally applicable algorithm to any problem where the goal is to identify the inliers which satisfy a predefined model.
- Typical applications in robotics are: line extraction from 2D range data, plane extraction from 3D range data, feature matching, structure from motion, ...
- RANSAC is an iterative method and is non-deterministic in that the probability to find a set free of outliers increases as more iterations are used
- Drawback: A nondeterministic method, results are different between runs.

73
 Algorithm 3: RANSAC

Algorithm 3: RANSAC

Algorithm 3: RANSAC

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling
- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling

Algorithm 3: RANSAC

Set with the maximum number of inliers obtained within \boldsymbol{k} iterations

Algorithm 3: RANSAC

Algorithm 4: RANSAC (for line extraction from 2D range data)

1. Initial: let A be a set of N points
2. repeat
3. Randomly select a sample of 2 points from A
4. Fit a line through the 2 points
5. Compute the distances of all other points to this line
6. Construct the inlier set (i.e. count the number of points with distance to the line $<d$)
7. Store these inliers
8. until Maximum number of iterations k reached
9. The set with the maximum number of inliers is chosen as a solution to the problem

Algorithm 3: RANSAC

How many iterations does RANSAC need?

- We cannot know in advance if the observed set contains the max. no. inliers \Rightarrow ideally: check all possible combinations of 2 points in a dataset of \mathbf{N} points.
- No. all pairwise combinations: $\mathbf{N (N - 1) / 2}$
\Rightarrow computationally infeasible if \mathbf{N} is too large.
example: laser scan of $\mathbf{3 6 0}$ points \Rightarrow need to check all $360 * 359 / 2=\mathbf{6 4 , 6 2 0}$ possibilities!
- Do we really need to check all possibilities or can we stop RANSAC after iterations?
Checking a subset of combinations is enough if we have a rough estimate of the percentage of inliers in our dataset
- This can be done in a probabilistic way

Algorithm 3: RANSAC

How many iterations does RANSAC need?

- $\boldsymbol{w}=$ number of inliers / \boldsymbol{N}
where N : tot. no. data points
$\Rightarrow \boldsymbol{w}$: fraction of inliers in the dataset = probability of selecting an inlier-point
- Let \boldsymbol{p} : probability of finding a set of points free of outliers
- Assumption: the 2 points necessary to estimate a line are selected independently $\Rightarrow \boldsymbol{w}^{2}=$ prob. that both points are inliers
$\Rightarrow \mathbf{1 - \boldsymbol { w } ^ { 2 }}=$ prob. that at least one of these two points is an outlier
- Let \boldsymbol{k} : no. RANSAC iterations executed so far
$\Rightarrow\left(\boldsymbol{1}-\boldsymbol{w}^{\mathbf{2}}\right)^{k}=$ prob. that RANSAC never selects two points that are both inliers. $\Rightarrow \boldsymbol{1}-\boldsymbol{p}=\left(\mathbf{1}-\boldsymbol{w}^{2}\right)^{k}$ and therefore :

$$
k=\frac{\log (1-p)}{\log \left(1-w^{2}\right)}
$$

Algorithm 3: RANSAC

How many iterations does RANSAC need?

- The number of iterations \boldsymbol{k} is

$$
k=\frac{\log (1-p)}{\log \left(1-w^{2}\right)}
$$

\Rightarrow knowing the fraction of inliers \boldsymbol{w}, after \boldsymbol{k} RANSAC iterations we will have a prob. \boldsymbol{p} of finding a set of points free of outliers.

- Example: if we want a probability of success $\boldsymbol{p}=99 \%$ and we know that $\boldsymbol{w}=50 \%$ $\Rightarrow \boldsymbol{k}=16$ iterations, which is much less than the number of all possible combinations!
- In practice we need only a rough estimate of \boldsymbol{w}. More advanced implementations of RANSAC estimate the fraction of inliers \& adaptively set it on every iteration.

Algorithm 4: Hough-Transform

- Hough Transform uses a voting scheme

Image space

Hough parameter space

Algorithm 4: Hough-Transform

- A line in the image corresponds to a point in Hough space

Image space

Hough parameter space

Algorithm 4: Hough-Transform

- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to in the Hough space?

Image space

Hough parameter space

Algorithm 4: Hough-Transform

- What does a point $\left(x_{0}, y_{0}\right)$ in the image space map to in the Hough space?

Image space

Hough parameter space

- Where is the line that contains both $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$?
- It is the intersection of the lines $b=-x_{0} m+y_{0}$ and $b=-x_{1} m+y_{1}$

Image space

Hough parameter space

Algorithm 4: Hough-Transform

Image space

Hough parameter space

- Each point in image space, votes for line-parameters in Hough parameter space

Image space

Hough parameter space

91 Algorithm 4: Hough-Transform

- Problems with the (m,b) space:
- Unbounded parameter domain
- Vertical lines require infinite m
- Alternative: polar representation

Each point in image space will map to a sinusoid in the (θ, ρ) parameter space

Algorithm 4: Hough-Transform

1. Initialize accumulator H to all zeros
2. for each edge point (x, y) in the image

- for all θ in $[0,180]$
- Compute $\rho=x \cos \theta+y \sin \theta$
- $H(\theta, \rho)=H(\theta, \rho)+1$
- end

end

3. Find the values of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
4. The detected line in the image is given by $\rho=x \cos \theta+y \sin \theta$

features

Square

Algorithm 4: Hough-Transform
Effect of Noise

features

votes

- Peak gets fuzzy and hard to locate

97 Algorithm 4: Hough-Transform
Application: Lane detection

Inner city traffic

Tunnel exit

Ground signs

Obscured windscreen

Country-side lane

High curvature

Example - Door detection using Hough Transform

Comparison of Line Extraction Algorithms

	Complexity	Speed (Hz)	False positives	Precision
Split-and-Merge	$\boldsymbol{N} \boldsymbol{\operatorname { l o g }} \boldsymbol{N}$	$\mathbf{1 5 0 0}$	$\mathbf{1 0 \%}$	$+\mathbf{+ +}$
Incremental	$S N$	600	6%	+++
Line-Regression	$\boldsymbol{N} \boldsymbol{N}_{\boldsymbol{f}}$	$\mathbf{4 0 0}$	$\mathbf{1 0 \%}$	$+\mathbf{+ +}$
RANSAC	$\boldsymbol{S} \boldsymbol{N} \boldsymbol{k}$	$\mathbf{3 0}$	$\mathbf{3 0 \%}$	$+\boldsymbol{+ + +}$
Hough-Transform	$\boldsymbol{S} \boldsymbol{N} \boldsymbol{N}_{\boldsymbol{C}}+\boldsymbol{S} \boldsymbol{N}_{\boldsymbol{R}} \boldsymbol{N}_{\boldsymbol{C}}$	$\mathbf{1 0}$	$\mathbf{3 0 \%}$	+++++
Expectation Maximization	$S N_{l} N_{2} N$	1	50%	++++

- Split-and-merge, Incremental and Line-Regression: fastest
- Deterministic \& make use of the sequential ordering of raw scan points (: points captured according to the rotation direction of the laser beam)
- If applied on randomly captured points only last 3 algorithms would segment all lines.
- RANSAC, HT and EM: produce greater precision \Rightarrow more robust to outliers

[^0]: © R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

