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Uncertainties: 
Representation and Propagation 

& 
Line Extraction from Range data

Lecture 7 - Perception 
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Uncertainty Representation

Section 4.1.3 of the book

 Sensing in the real world is always uncertain

 How can uncertainty be represented or quantified?

 How does uncertainty propagate? 

fusing uncertain inputs into a system, what is the resulting uncertainty?

 What is the merit of all this for mobile robotics?

Lec. 7
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Uncertainty Representation (2)
Lec. 7

43

 Use a Probability Density Function (PDF) to characterize the statistical 
properties of a variable X:

 Expected value of variable X:  Variance of variable X
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Gaussian Distribution

68.26%

95.44%

99.72%

Lec. 7
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 Most common PDF for characterizing uncertainties: Gaussian
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The Error Propagation Law

 Imagine extracting a line based 
on point measurements with 
uncertainties.

Model parameters in polar coordinates

[ (r, a) uniquely identifies a line ]

 The question:

 What is the uncertainty of the extracted line knowing the uncertainties of the 
measurement points that contribute to it ?

Lec. 7
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The Error Propagation Law

Error propagation in a multiple-input multi-output system with n
inputs and m outputs.

X1

Xi

Xn

System

…
…

Y1

Yi

Ym

…
…

)...( 1 njj XXfY 
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The Error Propagation Law

 1D case of a nonlinear error 
propagation problem

 It can be shown that the output 
covariance matrix CY is given by 
the error propagation law:

 where

 CX: covariance matrix representing the input uncertainties

 CY: covariance matrix representing the propagated uncertainties for the outputs.

 FX: is the Jacobian matrix defined as:

 which is the transpose of the gradient of f(X).

Lec. 7
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Example: line extraction from laser scans
Lec. 7
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Line Extraction (1)
Lec. 7

49

 Point-Line distance

 If each measurement is equally
uncertain then sum of sq. errors:

 Goal: minimize S when selecting (r, a) 

 solve the system

 “Unweighted Least Squares”

r

a

xi (ri, qi)

di
ri

qi



© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

Lecture 7 - Perception 

Line Extraction (2)

 Point-Line distance

 Each sensor measurement, may have its
own, unique uncertainty

Weighted Least Squares

Lec. 7
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r

a

xi (ri, qi)

di
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Line Extraction (2)

Weighted least squares and solving 
the system:

 Gives the line parameters:

 If                           what is the uncertainty in the line (r, a) ?

Lec. 7
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The uncertainty si of each
measurement is proportional 
to the measured distance ri
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Error Propagation: Line extraction

The uncertainty of each measurement 
xi (ri, qi) is described by the covariance matrix:

The uncertainty in the line (r, a) is 

described by the covariance matrix:

Define:

Jacobian:
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Autonomous Mobile Robots

Autonomous Systems LabZürich

Feature Extraction from Range Data:

Line extraction

Split and merge 

Linear regression

RANSAC

Hough-Transform
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Extracting Features from Range Data

photograph of corridor at ASL raw 3D scan

extracted planes for every cubeplane segmentation result

Lec. 7
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Extracting Features from Range Data

 goal: extract planar features from a dense point cloud

 example:

example scene showing a part of a corridor of 

the lab 
same scene represented as dense point cloud 

generated by a rotating laser scanner 

left wall

ceiling

right wall

floor

back wall

Lecture 7 - Perception 

Lec. 7
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Extracting Features from Range Data

Map of the ASL hallway built using line segments

Lec. 7
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Extracting Features from Range Data

Map of the ASL hallway built using orthogonal planes constructed from line 
segments

Lec. 7
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Features from Range Data: Motivation
Lec. 7

58

 Point Cloud  extract Lines / Planes

Why Features:

 Raw data: huge amount of data to be stored

 Compact features require less storage 

 Provide rich and accurate information

 Basis for high level features (e.g. more abstract features, objects)

 Here, we will study line segments

 The simplest geometric structure

 Suitable for most office-like environments
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Line Extraction: The Problem

Extract lines from a Range scan (i.e. a point cloud)

 Three main problems:

 How many lines are there?

 Segmentation: Which points belong to which line ?

 Line Fitting/Extraction: Given points that belong to a line, how to estimate 
the line parameters ? 

 Algorithms we will see:

1. Split and merge 

2. Linear regression

3. RANSAC

4. Hough-Transform

Lec. 7
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http://www.youtube.com/watch?v=wV8frjLqtIA&feature=related
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Algorithm 1: Split-and-Merge (standard)

 The most popular algorithm which is originated from computer vision.

 A recursive procedure of fitting and splitting.

 A slightly different version, called Iterative-End-Point-Fit, simply connects 
the end points for line fitting.

Lec. 7
60

Initialise set S to contain all points

Split

• Fit a line to points in current set S

• Find the most distant point to the line

• If distance > threshold  split & repeat with left 
and right point sets

Merge

• If two consecutive segments are close/collinear 
enough, obtain the common line and find the most 
distant point

• If distance <= threshold, merge both segments
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 A recursive procedure of fitting and splitting.
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the end points for line fitting.
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Initialise set S to contain all points

Split

• Fit a line to points in current set S

• Find the most distant point to the line

• If distance > threshold  split & repeat with left 
and right point sets

Merge

• If two consecutive segments are close/collinear 
enough, obtain the common line and find the most 
distant point

• If distance <= threshold, merge both segments
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Algorithm 1: Split-and-Merge (standard)
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the end points for line fitting.

Lec. 7
62

Initialise set S to contain all points

Split

• Fit a line to points in current set S

• Find the most distant point to the line

• If distance > threshold  split & repeat with left 
and right point sets

Merge

• If two consecutive segments are close/collinear 
enough, obtain the common line and find the most 
distant point

• If distance <= threshold, merge both segments
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Algorithm 1: Split-and-Merge (standard)

 The most popular algorithm which is originated from computer vision.

 A recursive procedure of fitting and splitting.

 A slightly different version, called Iterative-End-Point-Fit, simply connects 
the end points for line fitting.
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Initialise set S to contain all points

Split

• Fit a line to points in current set S

• Find the most distant point to the line

• If distance > threshold  split & repeat with left 
and right point sets

Merge

• If two consecutive segments are close/collinear 
enough, obtain the common line and find the most 
distant point

• If distance <= threshold, merge both segments
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Algorithm 1: Split-and-Merge (Iterative-End-Point-Fit)
Lec. 7
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Algorithm 1: Split-and-Merge
Lec. 7
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Algorithm 2: Line-Regression

 Uses a “sliding window” of size Nf

 The points within each “sliding window” are fitted by a segment

 Then adjacent segments are merged if their line parameters are close

Nf = 3

Lecture 7 - Perception 
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Line-Regression

• Initialize sliding window size Nf

• Fit a line to every Nf consecutive points (i.e. in each 
window)

• Compute a Line Fidelity Array: each element 
contains the sum of Mahalanobis distances between 3 
consecutive windows 
(Mahalanobis distance used as a measure of similarity)

• Scan Fidelity array for consecutive elements < 
threshold (using a clustering algorithm).

• For every Fidelity Array element < Threshold, 
construct a new line segment

• Merge overlapping line segments + recompute line 
parameters for each segment
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Line-Regression

• Initialize sliding window size Nf

• Fit a line to every Nf consecutive points (i.e. in each 
window)

• Compute a Line Fidelity Array: each element 
contains the sum of Mahalanobis distances between 3 
consecutive windows 
(Mahalanobis distance used as a measure of similarity)

• Scan Fidelity array for consecutive elements < 
threshold (using a clustering algorithm).

• For every Fidelity Array element < Threshold, 
construct a new line segment

• Merge overlapping line segments + recompute line 
parameters for each segment
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Line-Regression

• Initialize sliding window size Nf

• Fit a line to every Nf consecutive points (i.e. in each 
window)

• Compute a Line Fidelity Array: each element 
contains the sum of Mahalanobis distances between 3 
consecutive windows 
(Mahalanobis distance used as a measure of similarity)

• Scan Fidelity array for consecutive elements < 
threshold (using a clustering algorithm).

• For every Fidelity Array element < Threshold, 
construct a new line segment

• Merge overlapping line segments + recompute line 
parameters for each segment
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Line-Regression

• Initialize sliding window size Nf

• Fit a line to every Nf consecutive points (i.e. in each 
window)
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contains the sum of Mahalanobis distances between 3 
consecutive windows 
(Mahalanobis distance used as a measure of similarity)

• Scan Fidelity array for consecutive elements < 
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• For every Fidelity Array element < Threshold, 
construct a new line segment

• Merge overlapping line segments + recompute line 
parameters for each segment
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Line-Regression

• Initialize sliding window size Nf

• Fit a line to every Nf consecutive points (i.e. in each 
window)

• Compute a Line Fidelity Array: each element 
contains the sum of Mahalanobis distances between 3 
consecutive windows 
(Mahalanobis distance used as a measure of similarity)

• Scan Fidelity array for consecutive elements < 
threshold (using a clustering algorithm).

• For every Fidelity Array element < Threshold, 
construct a new line segment

• Merge overlapping line segments + recompute line 
parameters for each segment
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Algorithm 2: Line-Regression

 Uses a “sliding window” of size Nf

 The points within each “sliding window” are fitted by a segment

 Then adjacent segments are merged if their line parameters are close

Nf = 3

Lecture 7 - Perception 

Lec. 7
71

Line-Regression

• Initialize sliding window size Nf

• Fit a line to every Nf consecutive points (i.e. in each 
window)

• Compute a Line Fidelity Array: each element 
contains the sum of Mahalanobis distances between 3 
consecutive windows 
(Mahalanobis distance used as a measure of similarity)

• Scan Fidelity array for consecutive elements < 
threshold (using a clustering algorithm).

• For every Fidelity Array element < Threshold, 
construct a new line segment

• Merge overlapping line segments + recompute line 
parameters for each segment
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Algorithm 3: RANSAC

 RANSAC = RANdom SAmple Consensus.

 It is a generic and robust fitting algorithm of models in the presence of outliers 
(i.e. points which do not satisfy a model)

 Generally applicable algorithm to any problem where the goal is to 
identify the inliers which satisfy a predefined model.

 Typical applications in robotics are: line extraction from 2D range data, plane 
extraction from 3D range data, feature matching, structure from motion, …

 RANSAC is an iterative method and is non-deterministic in that the probability 
to find a set free of outliers increases as more iterations are used

 Drawback: A nondeterministic method, results are different between runs.

Lecture 7 - Perception 
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Algorithm 3: RANSAC

Lecture 7 - Perception 
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Algorithm 3: RANSAC

• Select sample of 2 
points at random

Lecture 7 - Perception 
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Algorithm 3: RANSAC

• Select sample of 2 
points at random

• Calculate model 
parameters that fit 
the data in the 
sample

Lecture 7 - Perception 
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RANSAC

• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each 
data point

Lecture 7 - Perception 
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Algorithm 3: RANSAC

• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

Lecture 7 - Perception 
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Algorithm 3: RANSAC

• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

• Repeat sampling

Lecture 7 - Perception 
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Algorithm 3: RANSAC

• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

• Repeat sampling
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Algorithm 3: RANSAC

Set with the maximum 
number of inliers obtained 

within k iterations

Lecture 7 - Perception 
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Algorithm 3: RANSAC

Lecture 7 - Perception 
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( for line extraction from 2D range data )
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How many iterations does RANSAC need? 

 We cannot know in advance if the observed set contains the max. no. inliers
 ideally: check all possible combinations of 2 points in a dataset of N points. 

 No. all pairwise combinations: N(N-1)/2 
 computationally infeasible if N is too large. 
example: laser scan of 360 points  need to check all 360*359/2= 64,620 possibilities!

 Do we really need to check all possibilities or can we stop RANSAC after 
iterations? 
Checking a subset of combinations is enough if we have a rough estimate of the 
percentage of inliers in our dataset

 This can be done in a probabilistic way

Algorithm 3: RANSAC

Lecture 7 - Perception 
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How many iterations does RANSAC need?

 w = number of inliers / N 

where N : tot. no. data points 

 w : fraction of inliers in the dataset = probability of selecting an inlier-point

 Let p : probability of finding a set of points free of outliers

 Assumption: the 2 points necessary to estimate a line are selected independently

 w 2 = prob. that both points are inliers

1-w 2 = prob. that at least one of these two points is an outlier

 Let k : no. RANSAC iterations executed so far

 ( 1-w 2 ) k = prob. that RANSAC never selects two points that are both inliers. 

 1-p = ( 1-w 2 ) k and therefore :

Algorithm 3: RANSAC

)1log(

)1log(
2w

p
k





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Algorithm 3: RANSAC

How many iterations does RANSAC need?

 The number of iterations k is

 knowing the fraction of inliers w, after k RANSAC iterations we will have a 

prob. p of finding a set of points free of outliers. 

 Example: if we want a probability of success p=99% and we know that w=50% 

 k=16 iterations, which is much less than the number of all possible 

combinations! 

 In practice we need only a rough estimate of w. More advanced 

implementations of RANSAC estimate the fraction of inliers & adaptively set it 
on every iteration.

)1log(

)1log(
2w

p
k





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Algorithm 4: Hough-Transform

 Hough Transform uses a voting scheme

Lecture 7 - Perception 
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 A line in the image corresponds to a point in Hough space

Algorithm 4: Hough-Transform

m0

b0

Lecture 7 - Perception 
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What does a point (x0, y0) in the image space map to in the Hough space?

Algorithm 4: Hough-Transform

Lecture 7 - Perception 
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What does a point (x0, y0) in the image space map to in the Hough space?

Algorithm 4: Hough-Transform

Lecture 7 - Perception 
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Where is the line that contains both (x0, y0) and (x1, y1)?

 It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

Algorithm 4: Hough-Transform

Lecture 7 - Perception 

Lec. 7
89



© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

Algorithm 4: Hough-Transform

 Each point in image space, votes for line-parameters in Hough parameter space

Lecture 7 - Perception 

Lec. 7
90



© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

 Problems with the (m,b) space:

 Unbounded parameter domain

 Vertical lines require infinite m

 Alternative: polar representation

Each point in image space will map to a 
sinusoid in the (θ,ρ) parameter space

Algorithm 4: Hough-Transform

Lecture 7 - Perception 

Lec. 7
91



© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL

1. Initialize accumulator H to all zeros

2. for each edge point (x,y) in the image

 for all θ in [0,180]

• Compute ρ = x cos θ + y sin θ

• H(θ, ρ) = H(θ, ρ) + 1

 end

end

3. Find the values of (θ, ρ) where H(θ, ρ) is a local maximum

4. The detected line in the image is given by ρ = x cos θ + y sin θ

Algorithm 4: Hough-Transform

Lecture 7 - Perception 
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Algorithm 4: Hough-Transform
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Algorithm 4: Hough-Transform
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Algorithm 4: Hough-Transform
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Algorithm 4: Hough-Transform

Effect of Noise
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Algorithm 4: Hough-Transform

Application: Lane detection 
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Example – Door detection using Hough Transform 
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Comparison of Line Extraction Algorithms

Complexity Speed (Hz) False positives Precision

Split-and-Merge N logN 1500 10% +++

Incremental S N 600 6% +++

Line-Regression N Nf
400 10% +++

RANSAC S N k 30 30% ++++

Hough-Transform S N NC + S NR NC
10 30% ++++

Expectation 
Maximization

S N1 N2 N 1 50% ++++
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 Split-and-merge, Incremental and Line-Regression: fastest

 Deterministic & make use of the sequential ordering of raw scan points
(: points captured according to the rotation direction of the laser beam)

 If applied on randomly captured points only last 3 algorithms would segment all 
lines.

 RANSAC, HT and EM: produce greater precision  more robust to outliers




