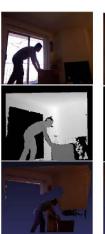

Overview of Kinect for Robotics

Nov. 4, 2014



(c) Waving

(d) Pushing

Kinect – inexpensive media interface

- Made by Microsoft
- Available as product since late 2010
- Kinect is a part of Microsoft Xbox game platform but it can be bought separately
- Costs ~ \$100

Kinect applications

Games and interactive playing (sports, dancing)

More applications: exercising, rehbilitation, child development

Control of devices by voice, gestures

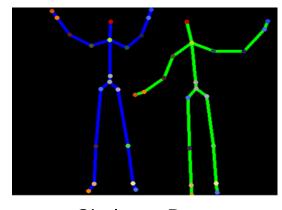
Automation, robotics

More....

Kinect – Why use it?

- Powerful
 - Capable of acquiring color, depth, and audio
- Inexpensive
- Accessible
 - Easily available at game stores, computer stores, on Amazon.com
- Easy to set up and use

Kinect Hardware


Kinect Sensor Data

RGB Camera

Depth

Skeleton Data

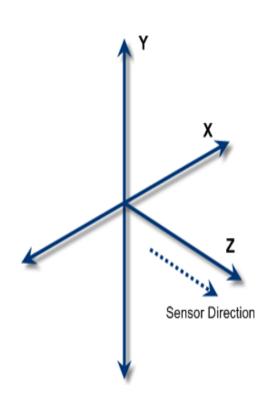
Demos

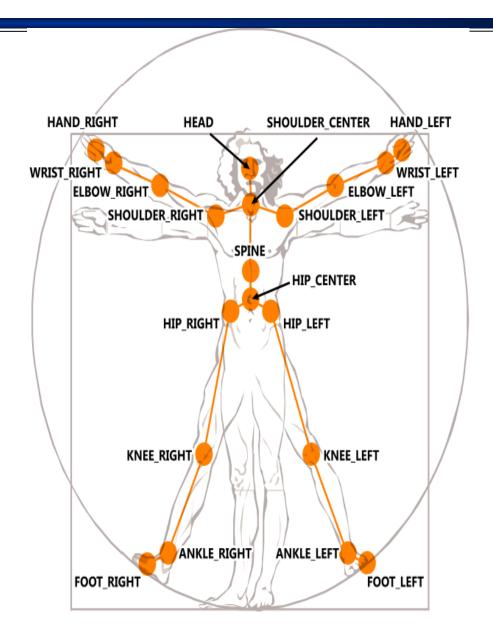
- Humanoid Robot Control and Interaction
 https://www.youtube.com/watch?v=GdepIXZTJsw
- Human Tracking and Following
 https://www.youtube.com/watch?v=3Z56JV9g6y4
- Simultaneous Localization and Mapping
 https://www.youtube.com/watch?v=XejNctt2Fcs

How does Kinect sense depth?

- The IR emitter projects an irregular pattern of IR dots of varying intensities
- The Depth Camera reconstructs a depth image by recognizing the distortion in this pattern.

What is the accuracy of a Kinect sensor?

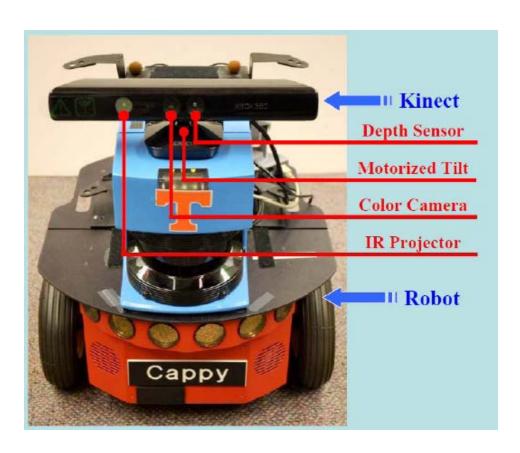

Data Stream:


- -640x480, 320x320 in Linux and Mac
- 1024 x 768, 640x480, 320x240 in Windows 7
- 30 frames/second

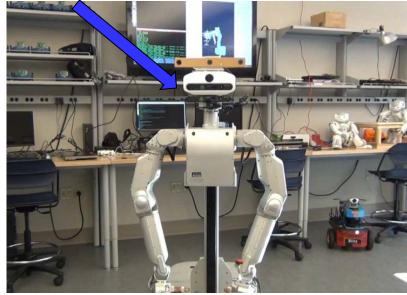
Depth Camera:

- Field of View:
 - Horizontal: 58°, Vertical: 45°, Diagonal: 70°
 - Spatial x/y resolution: 3mm
 - Depth z resolution: 1 cm
 - Operational range: 0.8m 3.5 m
- Physical Tilt Range: ± 27 degrees

Skeleton Data

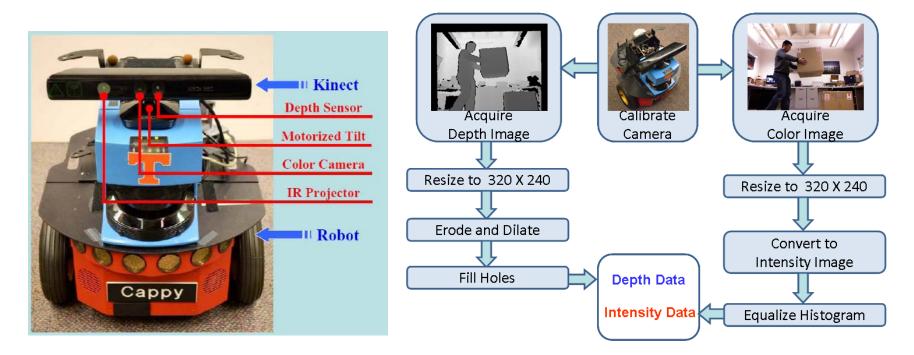

Kinect Audio

- Four-microphone array with hardware-based audio processing
 - Multichannel echo cancellation (MEC)
 - Sound position tracking


Other digital signal processing (noise suppression and reduction)

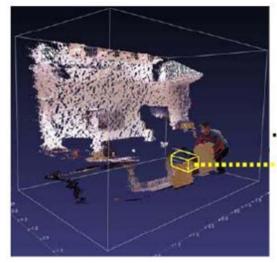
Our UTK (DILab) Research: Human Activity Recognition

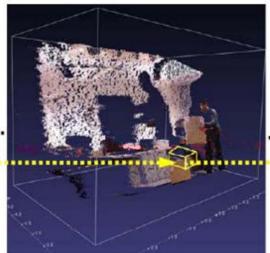
First: Install on robots:

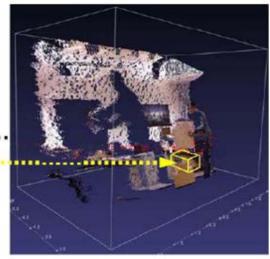


Feature Extraction: Data Acquisition and Processing

- Data Acquisition:
 - Use Microsoft Kinect installed on a Pioneer robot
 - Collect both color and depth information
- Image processing:
 - Compute intensity image from raw color image
 - Make the data cleaner and ready for feature extraction

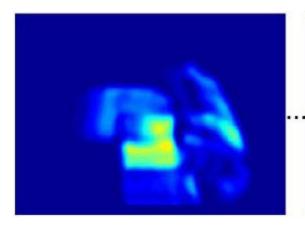

Feature Extraction: Feature Detection

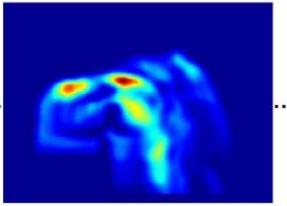

1. Apply Gaussian filter along spatial dimension

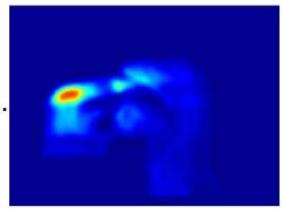

$$D_s(\boldsymbol{x}_o,t) = \left. \left(D(\boldsymbol{x},t) \circ f(\boldsymbol{x},t|\delta) \right) * p(\boldsymbol{x}|\sigma) \right|_{\boldsymbol{x}=\boldsymbol{x}_o}$$
 where
$$f(\boldsymbol{x},t) = \mathbf{1}(\left| D(\boldsymbol{x},t) - D(\boldsymbol{x}_o,t) \right| \leqslant \delta)$$
 and
$$p(\boldsymbol{x}|\sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{\|\boldsymbol{x}\|^2}{2\sigma^2}}$$

2. Apply Gabor filter along temporal dimension

$$D_{st}(\boldsymbol{x}_o, t) = D_s(\boldsymbol{x}_o, t) * g(t|\tau, \omega) \big|_{t=t_o}$$
where $g(t|\tau, \omega) = \frac{1}{\sqrt{2\pi}\tau} \cdot e^{-\frac{t^2}{2\tau^2}} \cdot e^{i(2\pi\omega t)}$

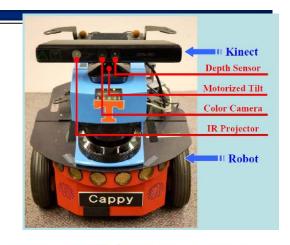






Feature Detection

$$R(\boldsymbol{x}_o) = \alpha \cdot ||I_{st}(\boldsymbol{x}_o)||^2 + (1 - \alpha) \cdot ||D_{st}(\boldsymbol{x}_o)||^2$$



Evaluation: Activity Dataset

Activity Dataset

- -6 types of human activities
- -33 samples for each activity
- −2 ~ 4 seconds of each sample
- Office and home environments

Video Demonstrating Results

(video)

For more information on our Kinect-based research:

- H. Zhang, W. Zhou, and L. E. Parker, "Fuzzy segmentation and recognition of continuous human activities," in *ICRA*, 2014.
- H. Zhang, C. Reardon, and L. E. Parker, "Real-Time Multiple Human Perception with Color-Depth Cameras on a Mobile Robot," *IEEE Trans. Cybernetics*, vol. 43, no. 5, pp. 1429–1441, Oct. 2013.
- H. Zhang and L. E. Parker, "4-dimensional local spatio-temporal features for human activity recognition," in *IROS*, 2011.

How to Get Started Using Kinect?

- Install a driver for Kinect sensor and related dependencies
 - Kinect for Windows SDK

- OpenKinect
 - OpenNI Kinect
 - Libfreenect
 - Supports Windows, Mac, and Linux
 - Also combined with ROS

