KNOXVILLE

Multi-Robot Path Planning and Motion Coordination

Dr. Lynne E. Parker Professor and Associate Head

Dept. of Electrical Engineering & Computer Science University of Tennessee, Knoxville USA

> leparker@utk.edu http://web.eecs.utk.edu/~parker

Multi-Robot Motion Coordination

Objective: enable robots to navigate collaboratively to achieve spatial positioning goals

KNOXVILLE

- Issues studied:
 - Multi-robot path planning
 - Traffic control
 - Formation generation
 - Formation keeping

THE UNIVERSITY of TENNESSEE 📒

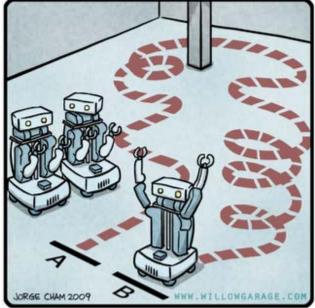
- Target tracking
- Target search
- Multi-robot docking

Kumar (UPenn), Formations

Murphy (USF), Docking

Multi-Robot Path Planning – Problem Definition

 Given: *m* robots in *k*-dimensional workspace, each with starting and goal poses


KNOXVILLE

- Determine path each robot should take reach its goal, while avoiding collisions other robots and obstacles
- Typical optimization criteria:

THE UNIVERSITY of TENNESSEE 녁

- Minimized total path lengths
- Minimized time to reach goals
- Minimized energy to reach goals
- Unfortunately, this problem is PSPACE
 - Instead, opt for locally optimal portions of path planning problem

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Taxonomy of Path Planning Techniques

1) Coupled, centralized approaches:

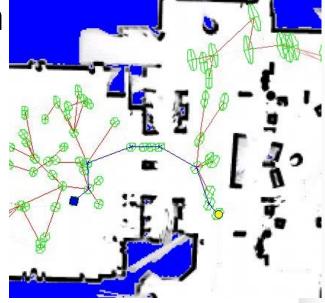
KNOXVILLE

- Plan directly in the combined configuration space of the entire robot team
- Requires computational time exponential in the dimension of the configuration space
- Thus, only applicable for small problems
- 2) Decoupled approaches:

THE UNIVERSITY of TENNESSEE

- Can be centralized or distributed
- Divide problem into parts
 - E.g., plan each robot path separately, then coordinate
 - Or, separate path planning and velocity planning

Coupled, Centralized Approaches


• Consider team a composite robot system

KNOXVILLE

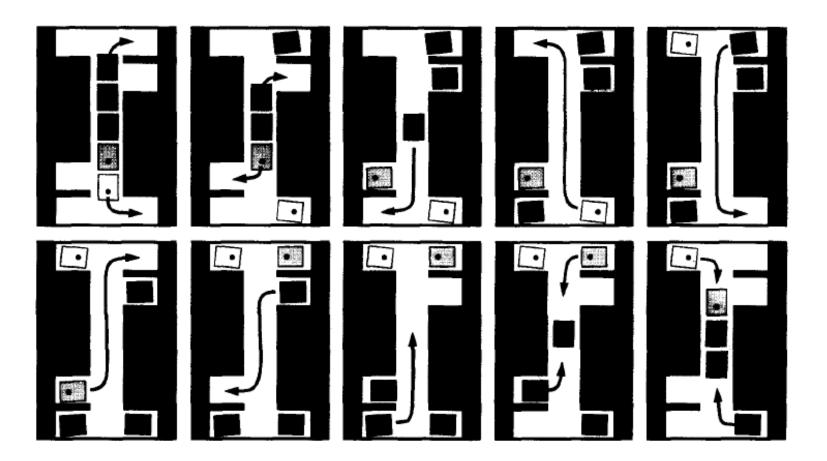
- Apply classical single-robot path planning algorithms, e.g.:
 - Sample-based planning

THE UNIVERSITY of TENNESSEE 5

- Potential-field techniques
- Combinatorial methods
- Single-robot path planning:
 - In stationary environments: techniques such as graph searching are guaranteed to return optimal paths in polynomial time
 - In dynamic environments: Problem is PSPACE-hard, and not solvable in polynomial time

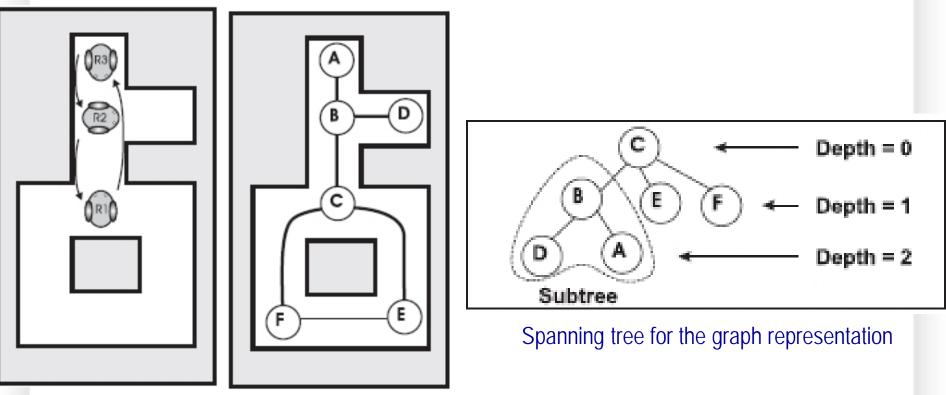
(from Prentice and Roy, MIT)

Extending Problem to Multiple Robots

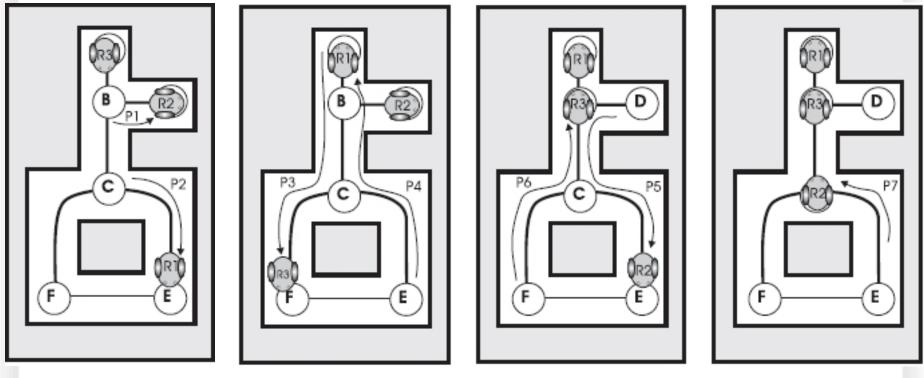

- Techniques become exponential in the number of robots
- Thus, centralized techniques are impractical except for small problems
- Better: reduce size of search space

KNOXVILLE

THE UNIVERSITY of TENNESSEE


 Common technique: limit motion of robots to lie on *roadmaps* in the environment

Example Roadmap Method #1: Super-graph Method (Svestka and Overmars, 1998)


Ur

Example Roadmap Method #2: Spanning Tree Method (Peasgood, et al., 2008)

Original planning problem Graph-based map

Example Roadmap Method #2: Spanning Tree Method (con't.) (Peasgood, et al., 2008)

Phase 1

Phase 2a

Phase 2b

Phase 3

Decoupled Approaches

- Trade off solution quality for efficiency by solving parts of the problem independently
- Most common:
 - Plan individual paths for robots
 - Then, plan to avoid collisions
- Decoupled techniques lose completeness:

KNOXVILLE

Initial pose	Goal pose
(\mathcal{A}^{1}) (\mathcal{A}^{2})	(\mathcal{A}^2) (\mathcal{A}^1)

Situation that is hard for decoupled approaches to solve

Two Types of Decoupled Approaches

• Prioritized planning

THE UNIVERSITY of TENNESSEE

- Consider robots one at a time, in priority order

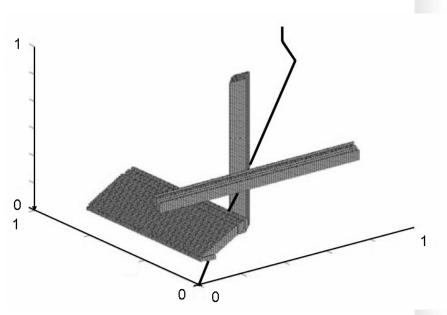
- Plan for robot *i* by considering previous *i* –1 robots as moving obstacles
- Path coordination
 - Plan independent paths for each robot
 - Plan velocities to avoid collisions

Prioritized Planning Approach

• Priorities assigned to robots

KNOXVILLE

- Randomly


THE UNIVERSITY of TENNESSEE

- Determined from motion constraints (i.e., more constrained robots have higher priority)
- Extend configuration space to account for time
- Plan path for first robot using any single-robot path planning approach
- Path for successive robots treats higher-priority robots as moving obstacles

Path Coordination Approach

 Decouples problem into (1) path planning and (2) velocity planning

- First, generate individual robot paths independently, using any single-robot path planner
- Then, generate velocity profiles for each robot to ensure collisions avoided

(from Guo, Parker, 2002)

Multi-Robot Motion Coordination

- Lots of types of motion coordination:
 - Relative to other robots:

THE UNIVERSITY of TENNESSEE

- E.g., formations, flocking, aggregation, dispersion...
- Relative to the environment:
 - E.g., search, foraging, coverage, exploration ...

- Relative to external agents:
 - E.g., pursuit, predator-prey, target tracking ...
- Relative to other robots and the environment:
 - E.g., containment, perimeter search ...
- Relative to other robots, external agents, and the environment:
 - E.g., evasion, soccer ...

Multi-Robot Motion Coordination

- Lots of types of motion coordination:
 - Relative to other robots:

THE UNIVERSITY of TENNESSEE

- E.g., formations, flocking, aggregation, dispersion...
- Relative to the environment:
 - E.g., search, foraging, coverage, exploration ...

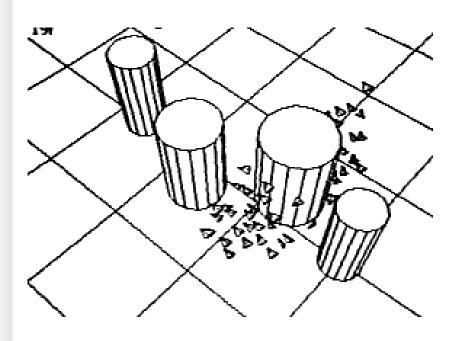
- Relative to external agents:
 - E.g., pursuit, predator-prey, target tracking ...
- Relative to other robots and the environment:
 - E.g., containment, perimeter search ...
- Relative to other robots, external agents, and the environment:
 - E.g., evasion, soccer ...

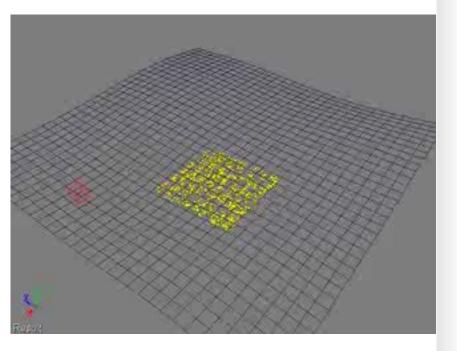
Following / Swarming / Flocking / Schooling

 Natural flocks consist of two balanced, opposing behaviors:

THE UNIVERSITY of TENNESSEE 📒

- Desire to stay close to flock
- Desire to avoid collisions with flock

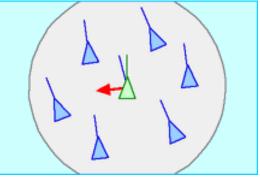

- Why desire to stay close to flock?
 - In natural systems:
 - Protection from predators
 - Statistically improving survival of gene pool from predator attacks
 - Profit from a larger effective search pattern for food
 - Advantages for social and mating activities

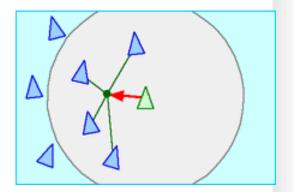


Craig Reynolds (1987) Developed Boids

 "Flocks, Herds, and Schools: A Distributed Behavioral Model", Craig Reynolds, *Computer Graphics*, 21(4), July 1987, pgs. 25-34.

KNOXVILLE


Simulated boid flock avoiding cylindrical obstacles


How do Boids work?

KNOXVILLE

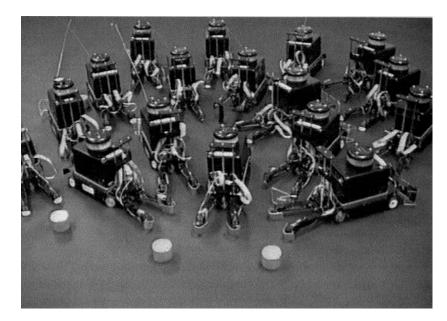
Separation: steer to avoid crowding local flockmates

Alignment: steer towards average heading of local flockmates

Cohesion: steer to move Toward the average position of local flockmates

Boids Movie "Stanley and Stella in Breaking the Ice"

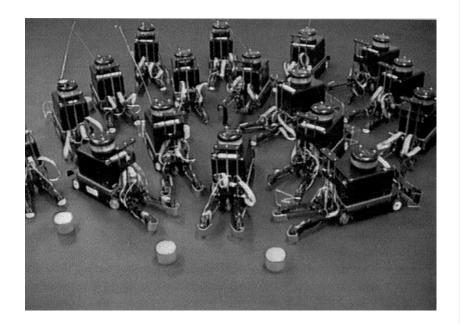
KNOXVILLE



http://odyssey3d.stores.yahoo.net/comanclascli2.html

Translating these Behaviors to Code on Robots

- Work of Mataric, 1994
- General Idea:
 - Use "local" control laws to generate desired "global" behavior
 - The Robots:
 - 12" long
 - 4 wheels
 - Bump sensors around body
 - Radio system for:
 - Localization
 - Communication
 - Data collection
 - "Kin" recognition



The Nerd Herd: Mataric, MIT, 1994

KNOXVILLE

The Nerd Herd Approach

- Fundamental principle: Define *basis behaviors* as general building blocks for synthesizing group behavior
- Set of basis behaviors proposed:
 - Avoidance
 - Save-wandering
 - Following
 - Aggregation
 - Dispersion
 - Homing
- Combine basis behaviors into higher-level group behaviors:
 - Flocking
 - Foraging

Safe-Wandering Algorithm

- Avoid-Kin:
 - Whenever an agent is within d_avoid
 - If the nearest agent is on the left
 - Turn right
 - Otherwise, turn left

- Avoid-Everything-Else
 - Whenever an obstacle is within d_avoid
 - If obstacle is on right only, turn left
 - If obstacle is on left only, turn right
 - After 3 consecutive identical turns, backup and turn
 - If an obstacle is on both sides, stop and wait.
 - If an obstacle persists on both sides, turn randomly and back up
- Move-Around:
 - Otherwise move forward by d_forward, turn randomly

Following Algorithm

KNOXVILLE

- Follow:
 - Whenever an agent is within d_follow
 - If an agent is on the right only, turn right
 - If an agent is on the left only, turn left

If sufficient robot density, safe_wandering + follow yield more complex behaviors:

• e.g., osmotropotaxic behavior of ants: unidirectional lanes

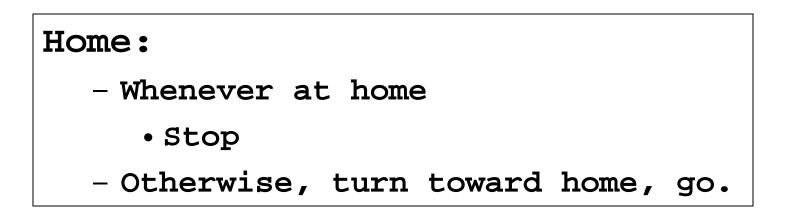
Dispersion Algorithm

KNOXVILLE

Dispersion:

- Whenever one or more agents are within d_disperse
 - Move away from Centroid_disperse

Aggregation Algorithm


Aggregate:

- Whenever nearest agent is outside
 - d_aggregate
 - Turn toward the local centroid_aggregate, go.

KNOXVILLE

- Otherwise, stop.

Homing Algorithm



Generating Flocking Through Behavior Combinations

KNOXVILLE

- Flock:
 - Sum weighted outputs from Safe-Wander, Disperse, Aggregate, and Home

Movie of Nerd Herd (~1994)

More recent "swarm" robotics (2004)

• James McLurkin, MIT and iRobot

THE UNIVERSITY of TENNESSEE 📒

• Developed libraries of "swarm" behaviors, such as:

KNOXVILLE

- avoidManyRobots
- disperseFromSource
- disperseFromLeaves
- disperseUniformly
- computeAverageBearing
- followTheLeader
- navigateGradient
- clusterIntoGroups

- ..
- For more information: "Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Library for Programming Swarms of Robots, James McLurkin, Master's thesis, M.I.T., 2004.

http://people.csail.mit.edu/jamesm/McLurkin-SM-MIT-2004(72dpi).pdf

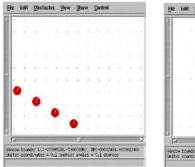
McLurkin's Robot Swarms

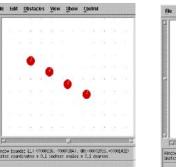
- Approach to generating behaviors is similar to Mataric's, in principle
- Primary differences:
 - Algorithms more tuned to the SwarmBot

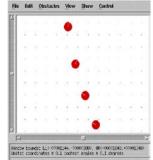
- More exhaustively tested
- Parameters explored,
- More kinds of behaviors,

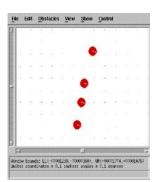
SwarmBots in Action

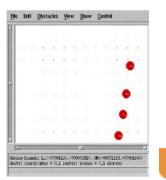
Motion Coordination: Formation-Keeping


- Objective:
 - Robots maintain specific formation while collectively moving along path
- Examples:
 - Column formation:


THE UNIVERSITY of TENNESSEE


KNOXVILLE




- Line formation:

Formations

Key Issues:

- What is desired formation?
- How do robots determine their desired position in the formation?

- How do robots determine their actual position in the formation?
- How do robots move to ensure that formation is maintained?
- What should robots do if there are obstacles?
- How do we evaluate robot formation performance?

Issue in Formation Keeping: Local vs. Global Control

• Local control laws:

THE UNIVERSITY of TENNESSEE

– No robot has all pertinent information

- Appealing because of their simplicity and potential to generate globally emergent functionality
- But, may be difficult to design to achieve desired group behavior

- Global control laws:
 - Centralized controller (or all robots) possess all pertinent information
 - Generally allow more coherent cooperation
 - But, usually increases inter-agent communication

Descriptions: Global Goals, Global Knowledge, Local Control

• Global Goals:

THE UNIVERSITY of TENNESSEE 🛃

- Specify overall mission the team must accomplish
- Typically imposed by centralized controller

- May be known at compile time, or only at run-time
- Global Knowledge:
 - Additional information needed to achieve global goals
 - E.g., information on capabilities of other robots, on environment, etc.
- Local Control:
 - Based upon proximate environment of robot
 - Derived from sensory feedback
 - Enables reactive response to dynamic environmental changes

Tradeoffs between Global and Local Control

• Questions to be addressed:

THE UNIVERSITY of TENNESSEE


– How static is global knowledge?

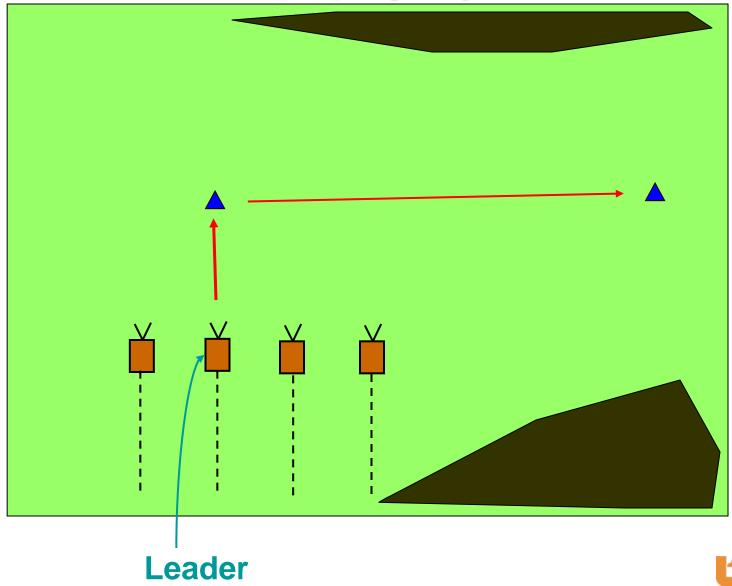
- How difficult is it to obtain reliable global knowledge?
- How badly will performance degrade without use of global knowledge?
- How difficult is it to use global knowledge?
- How costly is it to violate global goals?
- In general:
 - The more unknown the global information is, the more dependence on local control

Demonstration of Tradeoffs in Formation-Keeping

• Measure of performance: Cumulative formation error:

THE UNIVERSITY of TENNESSEE 🗾

KNOXVILLE


 $\sum_{i=1}^{n_{\text{max}}} \sum_{i=1}^{n_{\text{max}}} d_i(t) \text{ where } d_i(t) = \text{distance robot } i \text{ is from ideal}$ formation position at time t

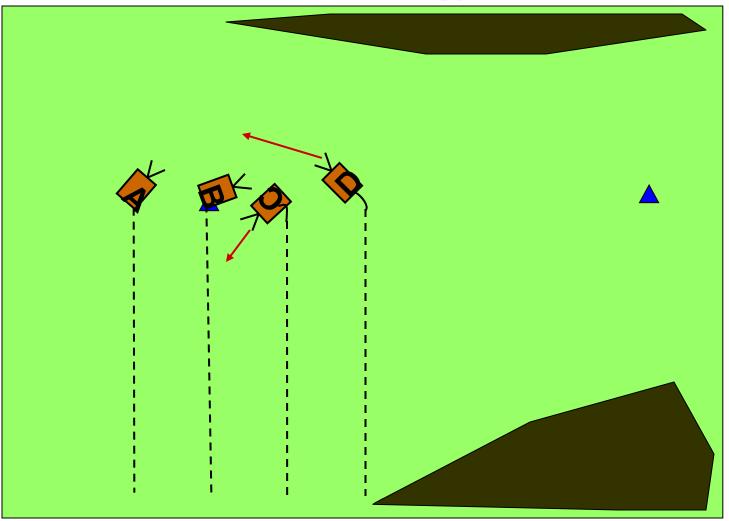
- Strategies to investigate:
 - Local control alone
 - Local control + global goal
 - Local control + global goal + partial global knowledge
 - Local control + global goal + more complete global knowledge

THE UNIVERSITY of TENNESSEE

KNOXVILLE

Formation Keeping Objective

Strategy I: Local Control


• Group leader knows path waypoints

- Each robot assigned local leader + position offset from local leader
- As group leader moves, individual robots maintain relative position to local leaders

THE UNIVERSITY of TENNESSEE

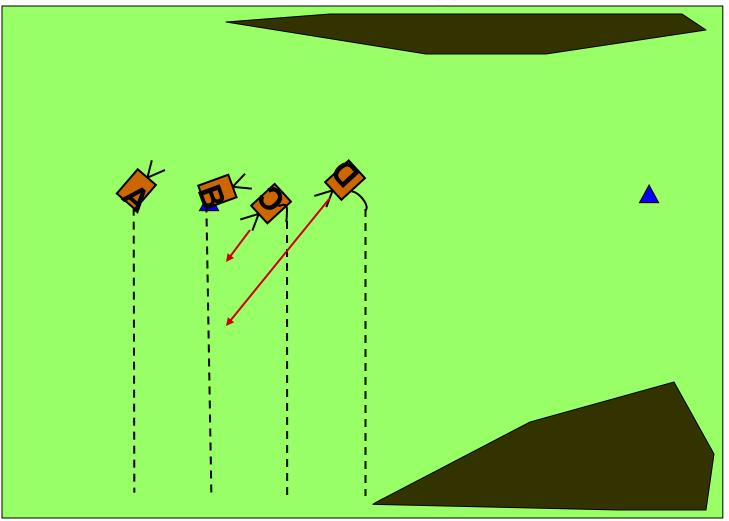
KNOXVILLE

Results of Strategy I

Strategy II: Local Control + Global Goal

• Group leader knows path waypoints

KNOXVILLE


THE UNIVERSITY OF TENNESSEE 5

- Each robot assigned global leader + position offset from global leader
- As group leader moves, individual robots maintain relative position to global leader

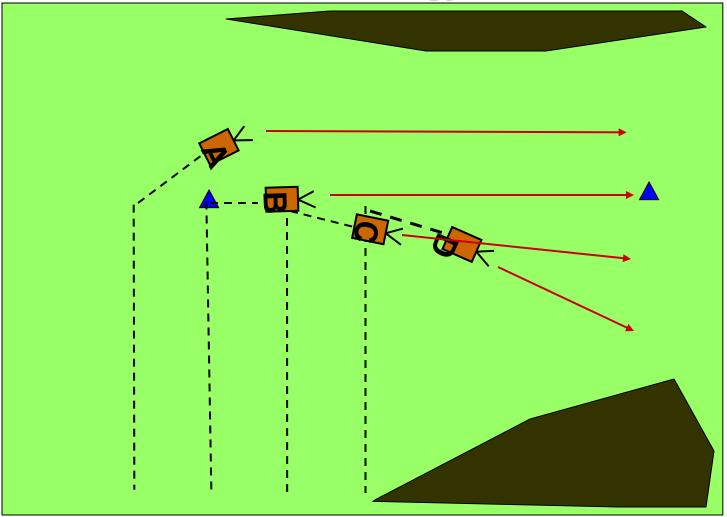
THE UNIVERSITY of TENNESSEE

KNOXVILLE

Results of Strategy II

Strategy III: Local Control + Global Goal + Partial Global Knowledge

• Group leader knows path waypoints


THE UNIVERSITY of TENNESSEE 🕒

- Each robot assigned global leader + position offset from global leader
- Each robot knows next waypoint
- As group leader moves, individual robots maintain relative position to global leader

THE UNIVERSITY of TENNESSEE

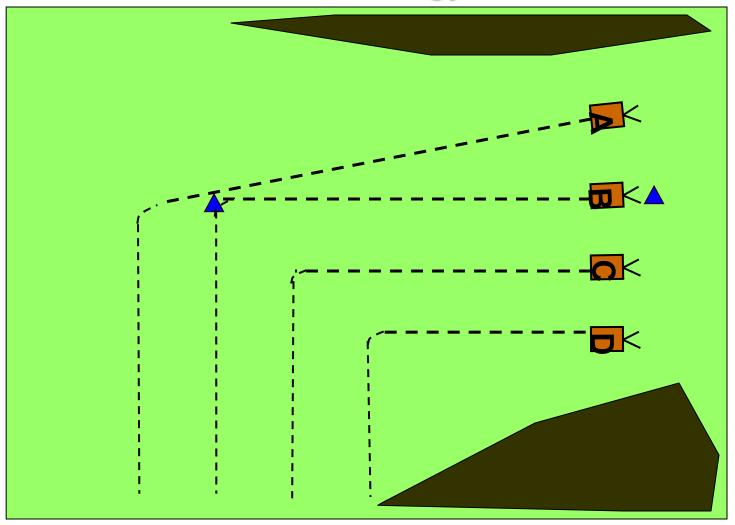
KNOXVILLE

Results of Strategy III

Strategy IV: Local Control + Global Goal + More Complete Global Knowledge

• Group leader knows path waypoints

KNOXVII


THE UNIVERSITY of TENNESSEE 🧧

- Each robot assigned global leader + position offset from global leader
- Each robot knows current and next waypoints
- As group leader moves, individual robots maintain relative position to global leader

THE UNIVERSITY of TENNESSEE

KNOXVILLE

Results of Strategy IV

THE UNIVERSITY of TENNESSEE

Time and Cumulative Formation Error Results

Time Required to Complete Mission

	ategy I\ ategy III		*				
Str	ategy II			****	******* ****		
517 0	ategy I	20	20	40	50	Time	
U	10	20	30	40	50	Time	

Normalized Cumulative Formation Error										
St	trateg	y IV		***						
S	Strategy III				***					
S	Strategy II				****** **					
Strategy I				** *** ** *** ***						
0	50	100	150	200	250	300	Error			

KNOXVILLE

Summary of this Formation-Keeping Control Case Study

- Important to achieve proper balance between local and global knowledge and goals
- Static global knowledge ==> easy to use as global control law
- Local knowledge ==> appropriate when can approximate global knowledge
- Local control information should be used to ground global knowledge in the current situation.

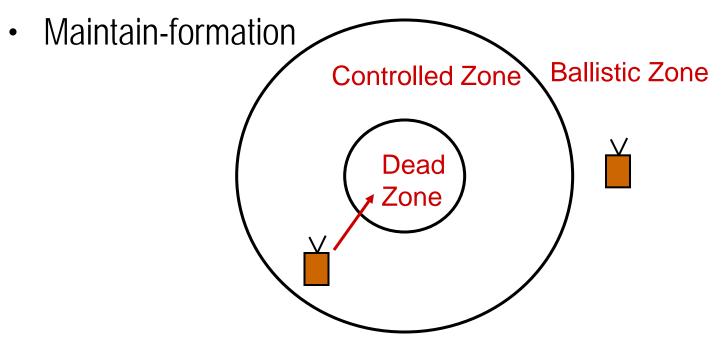
Another Case Study for Formation-Keeping: Balch & Arkin's Behavior-Based Control

• Applications:

THE UNIVERSITY of TENNESSEE

- Automated scouting (military)

- Search and rescue
- Agricultural coverge
- Security patrols
- Approach:
 - Motor schemas
 - Fully integrated obstacle avoidance


Motor Schemas Used for Formation-Keeping

- Move-to-goal
- Avoid-static-obstacle

THE UNIVERSITY of TENNESSEE

KNOXVILLE

• Avoid-robot

Formation and Obstacle Avoidance

• Barriers -- choices for handling include:

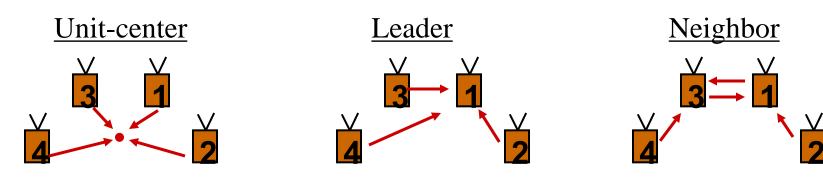
KNOXVILLE

- Move as a unit around barrier
- Divide into subgroupcs

THE UNIVERSITY of TENNESSEE

• Choice depends upon relative strengths of behaviors

KNOXVILLE


Balch's Formation Types and Position Determination

Formations:

<u>Column</u> <u>Wedge</u> Diamond Line 3 3

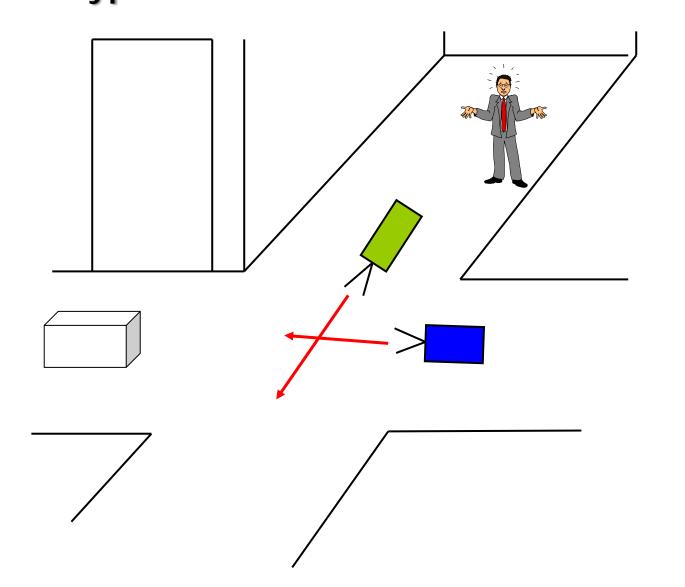
V

Position Determination:

Balch's Formation Results

- For 90 degree turns:
 - **Diamond** formation best with unit-center-reference
 - Wedge, line formations best with leader-reference

- For obstacle-rich environments:
 - Column formation best with either unit-center or leader-reference
- Most cases:
 - Unit-center better than leader-center
 - Except:
 - If using human leader, not reasonable to expect to use unit-center
 - Unit-center requires transmitter and receiver for all robots, whereas leader-center only requires transmitter at leader plus receivers for all robots
 - Passive sensors are difficult to use for unit-center


Coordinating Multiple Robots Through Traffic Rules (Kato et al, Japan)

- Issues:
 - Collisions
 - Deadlocks
 - Congestion
- Possible approaches:
 - Communication
 - Local collision avoidance
 - Traffic rules

Typical Problem Situation for Traffic Rules

KNOXVILLE

THE UNIVERSITY of TENNESSEE

Ur

Traffic Rule Application System (TRAS)

- "Traffic Rule": imposes a certain level of order on mobile objects, such as mobile robots and people, and work environments
- Rules constructed by considering:

KNOXVILLE

- Work environment

THE UNIVERSITY of TENNESSEE

- Performance of mobile objects
- Quantity of mobile objects
- Robots must know:
 - Current position
 - Current sensory information
 - Global map information

THE UNIVERSITY of TENNESSEE 🧾

Traffic Rules

• Keep sufficient space in front

- Keep sufficient side space
- Maintain passage zone
- Intersection crossing:
 - Preference to right turn
 - Preference toward a right-side mobile object
 - Collision avoidance
- Deadlock avoidance:
 - Preference at intersections
 - Replan if route blocked

Control of Robots in Traffic Management

1. Plan shortest route to goal

VERSITY0fTENNESSEE 녁

- 2. Extract local maps from global map for route and intersections
- 3. Move along planned path
- 4. Determine sensor-detecting range re: traffic rules

- 5. Observe workspace, using sensors
- 6. Detect obstacles
- 7. Judge, according to traffic rules, whether collision will occur
- 8. Decide how to act
- 9. Move or stop
- 10. Return to step 2

Multi-Robot Motion Coordination

- Lots of types of motion coordination:
 - Relative to other robots:

THE UNIVERSITY of TENNESSEE

- E.g., formations, flocking, aggregation, dispersion...
- Relative to the environment:
 - E.g., search, foraging, coverage, exploration ...

- Relative to external agents:
 - E.g., pursuit, predator-prey, target tracking ...
- Relative to other robots and the environment:
 - E.g., containment, perimeter search ...
- Relative to other robots, external agents, and the environment:
 - E.g., evasion, soccer ...

THE UNIVERSITY of TENNESSEE 🛃

KNOXVILLE

Cooperative Tracking (CMOMMT)

Cooperative Multi-robot Observation of Multiple Moving Targets Definition:

Given: S: 2-D bounded, enclosed spatial region V: team of *m* robot vehicles, v_i , i = 1, 2, ..., m, with 360° FOV sensors O(t): set of *n* targets, $o_i(t)$, j = 1, 2, ..., n, such that target $o_i(t)$ is in S at *t*

Define *m* x *n* matrix
$$B(t)$$
:
 $B(t) = [b_{ij}(t)]_{mxn}$ such that $b_{ij}(t) = \begin{cases} 1 \text{ if robot } v_i \text{ is observing target} \\ o_j(t) \text{ in } S \text{ at time } t \end{cases}$
 0 otherwise
Goal:
Maximize: $A = \sum_{t=1}^{T} \sum_{j=1}^{n} \frac{g(B(t),j)}{T}$
where $g(B(t),j) = \begin{cases} 1 \text{ if there exists an } i \text{ such that } b_{ij}(t) = 1 \\ 0 \text{ otherwise} \end{cases}$

Motivation for Studying Cooperative Observation

- Automatic location/tracking of:
 - Other mobile robots

THE UNIVERSITY of TENNESSEE 녁

- Items in a warehouse or factory that might move during search
- People in a search/rescue effort
- Adversarial targets in surveillance and reconnaissance
- Monitoring automated processes:
 - In assembly workcell
 - Verifying parts or subassembly configurations
- Medical applications:
 - Moving cameras to keep designated areas (e.g. particular tissue) in continuous view

Cooperative Observation Research Issues

Physical, sensor-based tracking

KNOXVILLE

- Prediction of object movements
- Sensor fusion across robots
- Multi-robot communication
- Selection of object to track
- Distributed navigation

THE UNIVERSITY of TENNESSEE 📒

Achieving adequate terrain coverage

Many possible problem variations:

- Relative numbers and speeds of robots
- Limited FOV sensors
- Availability of communication
- Robots heterogeneous in sensing and movement capabilities

Cooperative Observation Approaches

Art Gallery Theorems -- O'Rourke, 1987; Briggs, 1995
 Works for static sensor placements

KNOXVILLE

THE UNIVERSITY of TENNESSEE 📒

 Searchlight Scheduling and Polygon Search -- Sugihara *et al.*, 1990; Suzuki and Yamashita, 1992; Crass *et al.*, 1995

Addresses fixed sensor placements; often assume one searcher

• Visibility-Based Motion Planning -- Lavalle *et al.*, 1997

Focuses on single robots and targest

Multi-target tracking and/or weapons assignment -- Bar-Shalom, 1978, 1990;
 Blackman, 1986; Fox *et al.*, 1994

Focuses on target trajectory derivation

- Multi-Robot Surveillance -- Everett *et al.*, 1993;
 Durfee *et al.*, 1987; Wesson *et al.*, 1981
 Works for static sensor placements
- CMOMMT Parker, 1999
 Uses weighted local force vectors

Summary of Motion Coordination Research

• Many issues studied by the field:

KNOXVILLE

- Multi-robot path planning
- Traffic control

JNIVERSITY of TENNESSEE 🗐

- Formation generation
- Formation keeping
- Target tracking
- Target search
- Multi-robot docking
- Approaches are usually specific to given application

Open Issues in Multi-Robot Path Planning and Motion Coordination

- Scaling to larger numbers of robots (i.e., thousands)
- Extensions to 3 dimensions (i.e., for aerial robots)
- Handling highly stochastic environments

KNOXVII

- Dealing with dynamic, online replanning
- Creating provably correct interaction strategies
- Incorporating practical motion and sensing constraints
- Integrating onto physical robots

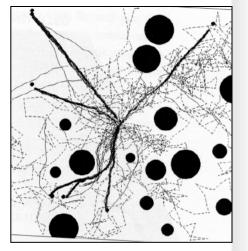
ERSITY@TENNESSEE 녁

For more information on multi-robot path planning and motion coordination

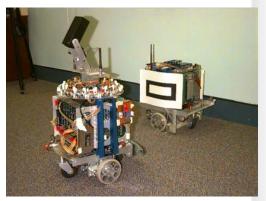
THE UNIVERSITY of TENNESSEE

KNOXVILLE

 Lynne E. Parker, "Path planning and motion coordination in multiple mobile robot teams", in *Encyclopedia of Complexity and System Science*, Robert A. Meyers, Editor-in-Chief, Springer, 2009.


Multi-Robot Communication

Objective of communication: Enable robots to exchange state and environmental information with a minimum bandwidth requirement


KNOXVILLE

Issues of particular importance:

- Information content
- Explicit vs. Implicit
- Local vs. Global
- Impact of bandwidth restrictions
- "Awareness"
- Medium: radio, IR, chemical scents, "breadcrumbs", etc.
- Symbol grounding

Balch and Arkin

Jung and Zelinsky

The Nature of Communication

One definition of communication:

- "An interaction whereby a signal is generated by an *emitter* and 'interpreted' by a *receiver*"
- Emission and reception may be separated in space and/or time.
 - Signaling and interpretation may innate or learned (usually combination of both)
- Cooperative communication examples:
 - Pheromones laid by ants foraging food
 - Time delayed, innate
 - Posturing by animals during conflicts/mating etc.
 - Separated in space, learnt with innate biases
 - Writing
 - Possibly separated in space & time, mostly learned with innate support and scaffolding

THE UNIVERSITY of TENNESSEE

Multi-Robot Communication Taxonomy

Put forth by Dudek (1993) (this is part of larger multi-robot taxonomy):

- Communication range:
 - None
 - Near
 - Infinite
- Communication topology:
 - Broadcast
 - Addressed
 - Tree
 - Graph
 - Communication bandwidth
 - High (i.e., communication is essentially "free")
 - Motion-related (i.e., motion and communication costs are about the same)
 - Low (i.e., communication costs are very high
 - Zero (i.e., no communication is available)

Explicit Communication

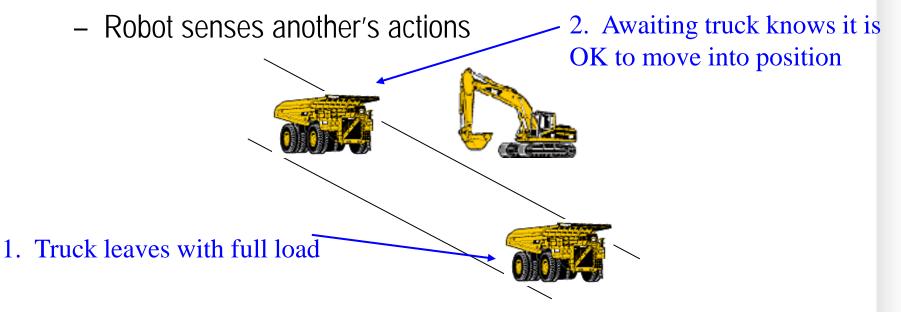
- Defined as those actions that have the express goal of transferring information from one robot to another
- Usually involves:
 - Intermittent requests
 - Status information
 - Updates of sensory or model information

KNOXVILLE

- Need to determine:
 - What to communicate
 - When to communicate
 - How to communicate
 - To whom to communicate
- Communications medium has significant impact
 - Range
 - Bandwidth
 - Rate of failure

"Help, I'm stuck"

Implicit Communication


• Defined as communication "through the world"

KNOXVILLE

• Two primary types:

THE UNIVERSITY of TENNESSEE

 Robot senses aspect of world that is a side-effect of another's actions

Three Key Considerations in Multi-Robot Communication

• Is communication needed at all?

KNOXVILL

THE UNIVERSITY of TENNESSEE

- Over what range should communication be permitted?
- What should the information content be?

Is Communication Needed At All?

• Keep in mind:

THE UNIVERSITY of TENNESSEE 🛃

- Communication is not free, and can be unreliable

- In hostile environments, electronic countermeasures may be in effect
- Major roles of communication:
 - Synchronization of action: ensuring coordination in task ordering
 - Information exchange: sharing different information gained from different perspectives
 - Negotiations: who does what?
- Many studies have shown:
 - Significantly higher group performance using communication
 - However, communication does not always need to be explicit

Over What Range Should Communication Be Permitted?

• Tacit assumption: wider range is better

KNOXVILLE

• But, not necessarily the case

THE UNIVERSITY of TENNESSEE

- Studies have shown: higher communication range can lead to decreased societal performance
- One approach for balancing communication range and cost (Yoshida '95):
 - Probabilistic approach that minimizes communication delay time between robots
 - Balance out communication flow (input, processing capacity, and output) to obtain optimal range

What Should the Information Content Be?

• Research studies have shown:

KNOXVILLE

THE UNIVERSITY of TENNESSEE 5

- Explicit communication improves performance significantly in tasks involving little implicit communication
- Communication is not essential in tasks that include implicit communication
- More complex communication strategies (e.g., goals) often offer little benefit over basic (state) information → "display" behavior is a rich communication method

THE UNIVERSITY of TENNESSEE 🥑

KNOXVILLE

Summary of Multi-Robot Communication

• Many types:

- Implicit vs. explicit
- Local vs. global
- Iconic vs. symbolic
- General "awareness"
- Proper approach to communication dependent upon application:
 - Communication availability
 - Range of communication
 - Bandwidth limitations
 - Language of robots
 - Etc.