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Localization, Where am I? 

?

• Odometry, Dead Reckoning 
• Localization base on external sensors,  

beacons or landmarks 
• Probabilistic Map Based Localization 
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Challenges of Localization 

• Knowing the absolute position (e.g. GPS) is not sufficient 
 

• Localization in human-scale in relation with environment 
 

• Planning in the Cognition step requires more than only position as input 
 

• Perception and motion plays an important role 
 Sensor noise 
 Sensor aliasing 
 Effector noise 
 Odometric position estimation 

 
 

5.2 
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Sensor Noise 

 
• Sensor noise is mainly influenced by environment  

e.g. surface, illumination … 
 

• or by the measurement principle itself 
e.g. interference between ultrasonic sensors 
 

• Sensor noise drastically reduces the useful information of sensor 
readings. The solution is: 
 to take multiple reading into account 
 employ temporal and/or multi-sensor fusion  

 

5.2.1 
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Sensor Aliasing 

• In robots, non-uniqueness  of sensors readings is the norm 
 

• Even with multiple sensors, there is a many-to-one mapping from 
environmental states to robot’s perceptual inputs 
 

• Therefore the amount of information perceived by the sensors is 
generally insufficient to identify the robot’s position from a single 
reading 
 Robot’s localization is usually based on a series of readings 
 Sufficient information is recovered by the robot over time 

5.2.2 
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Effector Noise: Odometry, Dead Reckoning 

 
• Odometry and dead reckoning:  

Position update is based on proprioceptive sensors 
 Odometry: wheel sensors only 
 Dead reckoning: also heading sensors 

• The movement of the robot, sensed with wheel encoders and/or 
heading sensors is integrated to the position. 
 Pros: Straight forward, easy 
 Cons: Errors are integrated -> unbounded 

• Using additional heading sensors (e.g. gyroscope) might help to reduce 
the accumulated errors, but the main problems remain the same. 

5.2.3 
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Odometry: Error sources 

  deterministic    non-deterministic  
  (systematic)    (non-systematic)  

 
 deterministic errors can be eliminated by proper calibration of the system.  
 non-deterministic errors have to be described by error models and will always 

lead to uncertain position estimate. 
 

• Major Error Sources: 
 Limited resolution during integration (time increments, measurement resolution 

…) 
 Misalignment of the wheels (deterministic) 
 Unequal wheel diameter (deterministic) 
 Variation in the contact point of the wheel 
 Unequal floor contact (slipping, non-planar …) 
 … 

5.2.3 
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Odometry: Classification of Integration Errors  

• Range error: integrated path length (distance) of the robots movement 
 sum of the wheel movements 

• Turn error: similar to range error, but for turns 
 difference of the wheel motions 

• Drift error: difference in the error of the wheels leads to an error in the 
robot’s angular orientation 

Over long periods of time, turn and drift errors  
far outweigh range errors! 

 Consider moving forward on a straight line along the x axis. The error 
in the y-position introduced by a move of d meters will have a component 
of dsin∆θ, which can be quite large as the angular error ∆θ grows. 

5.2.3 
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Odometry: The Differential Drive Robot (1) 
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Odometry: The Differential Drive Robot (2) 

• Kinematics 

5.2.4 
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Odometry: The Differential Drive Robot (3) 
• Error model (details are beyond the scope of our class; just know that 

we can build an error model…) 

5.2.4 
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Odometry: Growth of Pose uncertainty for Straight Line Movement 

• Note: Errors perpendicular to the direction of movement are growing much faster! 

5.2.4 

(ellipses 
represent 
uncertainty in 
position) 
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Odometry: Growth of Pose uncertainty for Movement on a Circle 

• Note: Error ellipse does not remain perpendicular to the direction of movement! 

5.2.4 
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To localize or not? 

• How to navigate between A and B 
 navigation without hitting obstacles 
 detection of goal location 

• Possible by following always the left wall 
 However, how to detect that the goal is reached 

5.3 
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Belief Representation 

• a) Continuous map 
with single hypothesis 
 

• b) Continuous map 
with multiple hypotheses 
 
 

• d) Discretized map 
with probability distribution 
 
 

• d) Discretized topological 
map with probability 
distribution 

5.4 
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Belief Representation: Characteristics 

• Continuous 
Precision bound by sensor 

data 
Typically single hypothesis 

pose estimate 
Lost when diverging (for 

single hypothesis) 
Compact representation and 

typically reasonable in 
processing power. 

• Discrete 
Precision bound by 

resolution of discretization 
Typically multiple hypothesis 

pose estimate 
Never lost (when diverges 

from one cell, it converges to 
another cell) 

 Important memory and 
processing power needed. 
(not the case for topological 
maps) 
 

5.4 
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Single-hypothesis Belief – Continuous Line-Map 

5.4.1 
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Single-hypothesis Belief – Grid and Topological Map 

5.4.1 



Autonomous Mobile Robots, Chapter 5 

© R. Siegwart, I. Nourbakhsh 

Grid-based Representation – Multi-Hypothesis 

• Grid size around 20 cm2.  
• Clouds represent possible robot locations 
• Darker coloring means higher probability 

5.4.2 

Courtesy of W.  Burgard 
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Map Representation 

1. Map precision vs. application 
• The precision of the map must match the precision with which the robot needs 

to achieve its goals. 
 

2. Features precision vs. map precision 
• The precision of the map and the type of features represented must match the 

precision and data types returned by the robot’s sensors. 
 

3. Precision vs. computational complexity 
• The complexity of the map representation has a direct impact on the 

computational complexity of reasoning about mapping, localization, and 
navigation 

 
Two primary map choices: 
• Continuous Representation 
• Decomposition (Discretization) 

5.5 
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Representation of the Environment 

• Environment Representation 
 Continuous Metric  → x,y,θ 
 Discrete Metric  → metric grid 
 Discrete Topological → topological grid 

• Environment Modeling 
 Raw sensor data, e.g. laser range data, grayscale images 

o large volume of data, low distinctiveness on the level of individual values 
o makes use of all acquired information 

 Low level features, e.g. line other geometric features 
o  medium volume of data, average distinctiveness 
o filters out the useful information, still ambiguities 

 High level features, e.g. doors, a car, the Eiffel tower 
o  low volume of data, high distinctiveness 
o filters out the useful information, few/no ambiguities, not enough information 

5.5 
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Map Representation: Continuous Line-Based 

a) Architecture map 
b) Representation with set of infinite lines 

5.5.1 
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Map Representation: Decomposition (1) 

• Exact cell decomposition 

5.5.2 



Autonomous Mobile Robots, Chapter 5 

© R. Siegwart, I. Nourbakhsh 

Map Representation: Decomposition (2) 

• Fixed cell decomposition 
 Narrow passages can disappear 

5.5.2 
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Map Representation: Decomposition (3) 

• Adaptive cell decomposition (i.e., quadtree) 

5.5.2 
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Map Representation: Decomposition (4) 

• Fixed cell decomposition – Example with very small cells 

5.5.2 

Courtesy of S. Thrun 



Autonomous Mobile Robots, Chapter 5 

© R. Siegwart, I. Nourbakhsh 

Map Representation: Decomposition (5) 

• Topological Decomposition 

5.5.2 
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Map Representation: Decomposition (6) 

• Topological Decomposition 

node 

Connectivity 
(arch) 

5.5.2 
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Map Representation: Decomposition (7) 

• Topological Decomposition 

~ 400 m

~ 1 km

~ 200 m

~ 50 m

~ 10 m

5.5.2 
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State-of-the-Art: Current Challenges in Map Representation 

• Real world is dynamic 
 

• Perception is still a major challenge 
 Error prone  
 Extraction of useful information difficult 

 
• Traversal of open space 

 
• How to build up topology (boundaries of nodes) 

 
• Sensor fusion 

 
• … 

5.5.3 
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Probabilistic, Map-Based Localization (1) 

• Consider a mobile robot moving in a known environment. 
 

• As it starts to move, say from a precisely known location, it might 
keep track of its location using odometry.  
 

• However, after a certain movement the robot will get very uncertain 
about its position.  
 update using an observation of its environment.  

 
• Odometric information leads to an estimate of the robot’s position, 

which can then be fused with the sensor observations to get the best 
possible update of the robot’s actual position.  

5.6.1 
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Probabilistic, Map-Based Localization (2) 

• Action update: 
 action model Act: 

 
 
where ot : Encoder Measurement,     st-1 : prior belief state 

 increases uncertainty 
 

• Perception update: 
 perception model See: 

 
 
 where it : exteroceptive sensor inputs,     s′t : updated belief state 

 decreases uncertainty 

5.6.1 

1( , )t t ts Act o s −′ =

( , )t t ts See i s′=
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The Five Steps for Map-Based Localization 
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on-board sensors 
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data base 
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Position  (odometry) 
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position 
estimate 

matched predictions 
and observations 

YES 

Encoder 

1. Prediction based on previous estimate and odometry 
2. Measurement prediction based on prediction and map 
3. Observation with on-board sensors 
4. Matching of observation and map 
5. Estimation -> position update (posteriori position) 

5.6.1 
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Two general approaches: 
 Markov and Kalman Filter Localization 

• Markov localization  
 Maintains multiple estimates of 

robot position 
 Localization can start from any 

unknown position  
 Can recover from ambiguous 

situations  
 However, to update the probability 

of all positions within the state 
space requires a discrete 
representation of the space (grid); 
if a fine grid is used (or many 
estimates are maintained), the 
computational and memory 
requirements can be large. 

• Kalman filter localization  
 Single estimate of robot position 
 Requires known starting position 

of robot 
 Tracks the robot and can be very 

precise and efficient 
 However, if the uncertainty of the 

robot becomes too large (e.g. due 
collision with an object) the 
Kalman filter will fail and the 
robot becomes “lost”.  

5.6.1 
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Three types of localization problems 

• “Global” localization – figure out where the robot is, but we don’t know 
where the robot started 

 
• “Position tracking” – figure out where the robot is, given that we know 

where the robot started 
 

• “Kidnapped robot” – robot is moved by external agent 
 
 
 

  The Markov / Monte Carlo Localization approach of Fox, et al (which is 
in Player/Stage) can address all 3 problems 
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Markov Localization 

• Markov localization uses an explicit, discrete representation for the 
probability of all positions in the state space.  
 Later, we’ll talk about a more efficient version (called Monte Carlo 

localization) that randomly samples possible positions, instead of 
maintaining information about all positions 

 
• This is usually done by representing the environment by a grid or a 

topological graph with a finite number of possible states (positions).  
 

• During each update, the probability for each state (element) of the 
entire space is updated. 

5.6.2 
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Markov Localization 
• Key idea:  compute a probability distribution over all possible positions 

in the environment.   
 This probability distribution represents the likelihood that the robot is in a 

particular location. 

P(Robot Location) 

X 

Y 

State space = 2D, infinite #states 

Slide adapted from Dellaert presentation “19-Particles.ppt” 
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Markov Localization makes use of Bayes Rule 

• P(A): Probability that A is true. 
 e.g. p(rt = l):  probability that the robot r is at position l at time t 

 
• We wish to compute the probability of each individual robot position 

given actions and sensor measures. 
• P(A|B): Conditional probability of A given that we know B. 
 e.g. p(rt = l| it): probability that the robot is at position l given the 

sensors input it. 
• Product rule: 

 
 

• Bayes rule: 

5.6.2 
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The “See” update step 
• Bayes rule: 

 
 
 “See” operation:  Maps from a belief state and a sensor input to a refined 

belief state: 
 

                                                                      (5.21) 
 

 p(l): belief state before perceptual update process 
 p(i |l):  probability we get measurement i when being at position l 

o To obtain this info:  consult robot’s map and identify the probability of a certain sensor 
reading if the robot were at position l 

 p(i): normalization factor so that sum over all l equals 1.  
 

• We apply this operation to all possible robot positions, l 

5.6.2 

( , )t t ts See i s′=
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The “Act” update step 

 
 “Act” operation:  Maps from a belief state (i.e., belief in robot being in 

some prior position) and an action (represented by ot, which is the encoder 
measurement corresponding to an action) to a new belief state: 
 

                                                                                                                   (5.22) 
 

 This operation sums over all possible ways in which the robot may have 
reached position l at time t, from any possible prior position at time t-1.  
(Note that there can be more than 1 way to reach a given position, due to 
uncertainty in encoder measurement.) 

5.6.2 

1( , )t t ts Act o s −′ =

1 1 1( | ) ( | , ) ( )t t t t t t tp l o p l l o p l dl− − −′ ′ ′= ∫
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The Markov Property 

•    These two updates (from prior 2 slides): 
 
“See”:                                                                                               (5.21) 

 
 
“Act”:                                                                                               (5.22) 

 
  constitute the Markov assumption.  That is, the current update only depends 

on the previous state (lt) and its most recent action (ot) and perception (it). 
 
 The Markov assumption may not be true, but it greatly simplifies tracking, 

reasoning, and planning, so it is a common approximation in robotics/AI. 

5.6.2 

1 1 1( | ) ( | , ) ( )t t t t t t tp l o p l l o p l dl− − −′ ′ ′= ∫
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Markov Localization: Case Study  – Grid Map 

• Fine fixed decomposition grid (x, y, θ), 15 cm x 15 cm x 1° 
• Action update: 
 Sum over previous possible positions 

and motion model: 
 
 

 (this is discrete version of eqn. 5.22) 
 

• Perception update: 
 Given perception i, what is the 

probability of being in location l: 

5.6.2 

Courtesy of  
W. Burgard 
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Perception update details 

• The critical challenge is the calculation of p(i|l) 
 p(i|l) is computed using a model of the robot’s sensor behavior, its position l, and the 

local environment metric map around l.  
 Assumptions: 

o Measurement error can be described by a distribution with a mean at the correct reading 
o Non-zero chance for any measurement 
o Local peak  at maximal reading of range sensor (due to absorption/reflection) 

 

5.6.2 

Courtesy of  
W. Burgard 
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Markov Localization: General idea for maintaining 
multiple estimates of robot position 
• The 1D case 

1. Start 
No knowledge at start, thus we have  

a uniform probability distribution. 

2. Robot perceives first pillar 
Seeing only one pillar, the probability 

being at pillar 1, 2 or 3 is equal. 
 

3. Robot moves 
Action model enables estimation of the  

new probability distribution based  
on the previous one and the motion. 

4. Robot perceives second pillar 
Based on all prior knowledge, the  

probability of being at pillar 2  
  becomes dominant 

5.6.2 
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Markov Localization: Example 

• Example 1: Office Building 

5.6.2 

Position 3 
Position 4 

Position 5 

Courtesy of  
W. Burgard 



Autonomous Mobile Robots, Chapter 5 

© R. Siegwart, I. Nourbakhsh 

Markov Localization: Example #2 

• Example 2: Museum 
 Laser scan 1 

5.6.2 

Courtesy of  
W. Burgard 
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Markov Localization: Example #2 

• Example 2: Museum 
 Laser scan 2 

5.6.2 

Courtesy of  
W. Burgard 
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Markov Localization: Example #2 

• Example 2: Museum 
 Laser scan 3 

5.6.2 

Courtesy of  
W. Burgard 
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Markov Localization: Example #2 

• Example 2: Museum 
 Laser scan 13 

5.6.2 

Courtesy of  
W. Burgard 
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Markov Localization: Example #2 

• Example 2: Museum 
 Laser scan 21 

5.6.2 

Courtesy of  
W. Burgard 
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Markov Localization: Using Randomized Sampling to 
Reduce Complexity  “Particle filters”, “Monte Carlo algorithms”  

• Fine fixed decomposition grid results in a huge state space 
• Reducing complexity: 
 The main goal is to reduce the number of states that are updated in each 

step 
• Randomized Sampling / Particle Filters 
 Approximated belief state by representing only a ‘representative’ subset 

of all states (possible locations) 
 E.g., update only 10% of all possible locations 
 The sampling process is typically weighted, e.g., put more samples 

around the local peaks in the probability density function 
 However, you have to ensure some less likely locations are still tracked, 

otherwise the robot might get lost 

5.6.2 
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Updating beliefs using Monte Carlo Localization (MCL) 
• As before, 2 models:   Action Model, Perception Model 
• Robot Action Model: 
 When robot moves, MCL generates N new samples that approximate robot’s 

position after motion command. 
 Each sample is generated by randomly drawing from previous sample set, with 

likelihood determined by p values. 
 For sample drawn with position l′,  new sample l  is generated from P(l | l′, a), for 

action a 
 p value of new sample is 1/N 

(From Fox, et al, AAAI-99) 

Sampling-based 
approximation  

of position belief for 
non-sensing robot 
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• Robot Perception Model: 
 Re-weight sample set according to the likelihood that robot’s current 

sensors match what would be seen at a given location 
 

 
 

• After applying Motion model and Perception model: 
 Resample, according to latest weights 
 Add a few uniformly distributed, random samples 

o Very helpful in case robot completely loses track of its location 
 Go to next iteration 

 

Updating beliefs using Monte Carlo Localization (MCL), con’t. 
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Example Results 
Initially, robot doesn’t know where it is 

(see particles representing possible robot locations 
distributed throughout the environment) 

After robot moves some, it gets better estimate 
(see particles clustered an a few areas, with a 

few random particles also distributed around for 
robustness) 
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Adapting the Size of the Sample Set 

• Number of samples needed to achieve a desired level of accuracy varies 
dramatically depending on the situation 
 During global localization:  robot is ignorant of where it is  need lots of 

samples 
 During position tracking: robot’s uncertainty is small  don’t need as 

many samples 
 

• MCL determines sample size “on the fly” 
 Compare P(l) and P(l | s) (i.e., belief before and after sensing) to 

determine sample size 
 The more divergence, the more samples that are kept 
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Player/Stage Localization Approach: 
Monte Carlo Localization  

• Based on techniques developed by Fox, Burgard, Dellaert, Thrun  
(AAAI’99) 

(Movie illustrating approach) 
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More movies 

• Dieter Fox movie:  MCL using Sonar 
 
 
 
 
 

• Dieter Fox movie:  MCL using Laser 
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Summarizing the process:  Particle Filtering 

weighted S′
t 

 
St S′

t St-1 

Predict ReWeight Resample 
Slide adapted from Dellaert presentation “19-Particles.ppt” 
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What sensor to use for localization? 

• Can work with: 
 Sonar  
 Laser  
 Vision  
 Radio signal strength 
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