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Introduction to Kalman Filter 

• Developed by Rudolf E. Kalman 
 Born in 1930 in Hungary 
 Education:  B.S., M.S. from MIT; Ph.D. (1957)  

from Columbia 
 Developed Kalman Filter in 1960-61 

 
 

• Filter:  just a fancy word for an algorithm that 
takes an input (typically, a sensor signal) and 
calculates a function of that input 
 

• Kalman Filter:  an efficient, recursive filter that 
estimates the state of a dynamic system from a 
series of noisy measurements 2008 
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What is a Kalman Filter used for? 

Broadly, it’s useful for any type of tracking application, such as: 
 Tracking missiles 
 Estimating position of aircraft 
 Surveillance of highway traffic 
 GPS-based motion estimation 
 Economics applications (e.g., estimating demand for international 

reserves) 
 Mobile robot localization! 
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We’ll derive Kalman Filter update equations 

• First, look at measurement updates without motion 
 

• Then, see how motion affects estimation updates 
 

• Then, put all into form of Kalman Filter update equations 
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Basic idea:  Combining observation estimates  
              (no motion for now) 

• Let’s say we make an observation 
measurement.  This measurement 
is assumed to obey a Gaussian 
(i.e., Normal) distribution, 
defined by 2 parameters (mean 
and variance): 
 
 

• So, our first estimate of the 
location of the measurement is 
given as: 
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Fusing in 2nd observation measurement 

• Now, we make a 2nd measurement, 
which is described by a second 
Gaussian, with parameters: 
 
 
 

• How do we generate our new 
position estimate? 
 
 
 

• We need to combine (i.e., fuse) 
this new information with our 
previous information 
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Combining estimates 

• Remember, our first measurement was 
described by: 
 

 which led to estimate:  
 
 

• Our second measurement is described by: 
 

• So, we combine new measurement with 
prior estimate to obtain updated estimate: 
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• Then we combine 
variances to get: 
 
 

  which simplifies to: 
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In more general notation for going from step k to k+1 

 Says that our best estimate of 
the new state at time k+1 equals 
the best prediction of the state 
before the new measurement 
(zk+1) is taken, plus a correction 
term, which is an optimal 
weighting of the difference 
between the new measurement 
and the prior best estimate 

5.6.3 

where: 
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But, for robot localization, the robot is typically moving 

• Means that not all the difference is due to observation error 
• Some of the difference is due to robot motion 
• Thus, we make use of our motion model  
• For a differential drive robot, we have: 
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Motion Model for Differential Drive Robot 
• Kinematics 

5.2.4 

 travel distance of right wheel (measured by odometry)
 travel distance of left wheel (measured by odometry)
distance between 2 wheels

r

l

s
s
b

∆ =
∆ =

=

Eqn. (5.7) 

(Note:  The following slides use     instead of     (or p′) to represent estimated position) x̂ p̂
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What we know… 
What we don’t know… 
• We know what the control inputs of our process are 

 We know what we’ve told the system to do and have a model for what the expected 
output should be if everything works right 
 

• We don’t know what the noise in the system truly is 
 We can only estimate what the noise might be and try to put some sort of upper bound 

on it 
 

• When estimating the state of a system, we try to find a set of values that comes as 
close to the truth as possible 
 There will always be some mismatch between our estimate of the system and the true 

state of the system itself.  We just try to figure out how much mismatch there is and try to 
get the best estimate possible 
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How to incorporate dynamic motion 

• Dynamic Prediction (robot 

moving):  the amount of robot 
motion between times k and   
k+1 is described by: 

     
 
    u = velocity;      w = noise 

• Starting at time k, if we know 
the variance of robot position 
(   ) and of motion (    ), we 
get: 
 
 
 

5.6.3 

2
kσ

2
wσ

This is the estimated position 
and variance just as the new 
measurement is taken at time 

k+1.  It describes the growth of 
position error until a new 

measurement is taken. 
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Substituting into our previous equations… 

• Previously, we had derived the following (without motion): 
 
 
 

• Now, adding in dynamic prediction of motion, we get: 

5.6.3 
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estimated change in position due to motion 

variance of the motion 
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Putting this all together into a Kalman Filter for robot 
localization! 

• General Idea:  Predict  Correct  
 

• Kalman Filter operates by iteratively: 
 Predicting the new state and its uncertainty (from the motion model) 
 Correcting with the new observation measurement 

predict 

correct 
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Key differences between Kalman filter for localization and 
Markov localization 
• Main difference:  perception update process 
• In Markov localization: 
 Entire set of sensor measurements (at a point in time) is used to update 

each possible robot position, using Bayes formula 
• In Kalman filter: 
 Perception update is a multi-step process. 
 Robot’s total sensory input is not treated as a monolithic whole 
 Instead, given a set of features, the KF is used to fuse the distance 

estimate from each feature to a matching object in the map 
 Instead of carrying out this matching process for many possible 

locations (as in Markov approach), the KF does this for one belief state 
(which is represented by a Gaussian) 
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Some more background:  Minimum Mean Square Error 

Reminder: the expected value, or mean value, of a 
Continuous random variable x is defined as: 

∫
∞

∞−
= dxxxpxE )(][

Minimum Mean Square Error 
)|( ZxPWhat is the mean of this distribution? 

This is difficult to obtain exactly.  With our approximations, 
we can get the estimate x̂

]|)ˆ[( 2
tZxxE −…such that is minimized. 

According to the Fundamental Theorem of Estimation Theory 
this estimate is: 

∫
∞

∞−
== dxZxxpZxExMMSE )|(]|[ˆ

Remember: Z represents our 
sensor measurements 
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Fundamental Theorem of Estimation Theory 

• The minimum mean square error estimator equals the expected 
(mean) value of x conditioned on the observations Z 
 

• The minimum mean square error term is quadratic:   
 
 
 Its minimum can be found by taking the derivative of the function 

w.r.t.  x and setting that value to 0. 
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Kalman Filter Components 
(also known as: Way Too Many Variables…) 

Motion model (Linear discrete time dynamic system): 

ttttttt wGuBxFx ++=+1

Sensor model (Measurement equation): 

1111 ++++ += tttt nxHz

State transition 
function 

Control input 
function 

Noise input 
function with covariance Q 

State Control input Process noise 

State Sensor reading Sensor noise with covariance R 

Sensor function 
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Computing the MMSE Estimate of the State and Covariance 

Given a set of measurements: }1,{1 +≤=+ tizZ it

According to the Fundamental Theorem of Estimation, the state 
and covariance will be: 
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Computing the MMSE Estimate of the State and Covariance 

What is the minimum mean square error estimate 
of the system state and covariance? 

ttttttt uBxFx +=+ ||1 ˆˆ Estimate of the state variables 

ttttt xHz |11|1 ˆˆ +++ = Estimate of the sensor reading 

T
ttt

T
tttttt GQGFPFP +=+ ||1 Covariance matrix for the state 

11|11|1 +++++ += t
T

tttttt RHPHS   Covariance matrix for the sensors 
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ttttttt wGuBxFx ++=+1

1111 ++++ += tttt nxHz

Remember: 
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At last!  The Kalman Filter… 

Propagation (motion model): 
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- (1) Robot position prediction:  State estimate is updated from  
      system dynamics 
-     Uncertainty associated with this prediction  
      (note that the estimate GROWS) 

- (3)  Compute expected value of sensor reading, using map  
        (H transforms from world frame to sensor frame) 
- (4)  Match:  Compute the difference between expected and  
       “true” observations 
-      Compute covariance (noise) of sensor reading 

- (5) Estimation:  apply Kalman filter;  Compute the Kalman  
      Gain (how much to correct estimate) 
-     Multiply residual times gain to correct state estimate 

-     Uncertainty estimate SHRINKS 

- (2) Observe (no equation here!) 
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Kalman Filter Block Diagram 
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Kalman Filter for Mobile Robot Localization 

1.  Robot Position Prediction 

• In a first step, the robot’s position at time step t+1 is predicted based 
on its old location (time step t) and its movement due to the control 
input ut: 

Odometry 

T
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Kalman Filter for Mobile Robot Localization 

2.  Observation  

• The second step is to obtain the observation Zt+1 (measurements)  from the 
robot’s sensors at the new location at time t+1 
 

• The observation usually consists of a set of single observations extracted 
from the different sensor’s signals. It can represent raw data scans as well 
as features like lines, doors or any kind of landmarks. 
 

• The parameters of the targets are usually observed in the sensor frame {S}.  
 Therefore the observations have to be transformed to the world frame {W} or  
 The measurement prediction has to be transformed to the sensor frame {S}.  
 This transformation is specified in the update equation 

5.6.3 
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Kalman Filter for Mobile Robot Localization 

2.  Observation:  Example 

αj

r j

line j

Raw Data of  
Laser Scanner 

Extracted Lines Extracted Lines 
in Model Space 

Sensor  
(robot)  
frame 

5.6.3 
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Kalman Filter for Mobile Robot Localization 

3.  Measurement Prediction 

• In the next step we use the predicted robot 
position and the map to generate the predicted 
observations, which are transformed into the 
sensor frame 
 
 
 

5.6.3 

1 1 1/ˆˆt t t tz H x+ + +=
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Kalman Filter for Mobile Robot Localization 

4.  Matching: Example 

5.6.3 

To find correspondence between predicted and 
observed features, use a distance metric (such as 
Mahalanobis distance) 
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Kalman Filter for Mobile Robot Localization 

5.  Estimation: Applying the Kalman Filter 

• Calculate Kalman filter gain: 
 
 

• Update robot’s position estimate: 
 
 

• Calculate the associated variance 

5.6.3 
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Kalman Filter for Mobile Robot Localization 

Estimation: Example 

• Kalman filter estimation of the new robot 
position:  
 By fusing the prediction of robot position 

(magenta) with the innovation gained by 
the measurements (green) we get the 
updated estimate of the robot position 
(red) 

5.6.3 
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Example 1: Simple 1D Linear System 

Given: F=G=H=1, u=0 
Initial state estimate = 0 
Linear system: 
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State Estimate 
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Autonomous Map Building 

Starting from an arbitrary initial point,  
a mobile robot should be able to autonomously explore the 

environment with its on board sensors,  
gain knowledge about it,  

interpret the scene,  
build an appropriate map  

and localize itself relative to this map. 
 

SLAM 
The Simultaneous Localization and Mapping Problem 

5.8 
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Map Building: 
How to Establish a Map 

1. By Hand 
 
 
 
 
 
 
2. Automatically: Map Building 
 
The robot learns its environment 
 
Motivation: 
- by hand: hard and costly 
- dynamically changing environment 
- different look due to different perception 

3. Basic Requirements of a Map:  
 a way to incorporate newly sensed 

information into the existing world model 
 information and procedures for estimating 

the robot’s position 
 information to do path planning and other 

navigation task (e.g. obstacle avoidance) 
 

• Measure of Quality of a map 
 topological correctness 
 metrical correctness 

 
• But: Most environments are a mixture of 

predictable and unpredictable features 
→ hybrid approach 

 model-based vs. behavior-based 
 

12 3.5

predictability 

5.8 
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Map Building: 
The Problems 

1. Map Maintaining: Keeping track of 
changes in the environment 

 
e.g. disappearing 

cupboard 
 
 
 
 
 
 
 
 
 
- e.g. measure of belief of each 

environment feature 

2. Representation and  
Reduction of Uncertainty 

 
position of robot -> position of wall 
 
 
 
 
 
 
 
 

position of wall -> position of robot 
 

• probability densities for feature positions 
• additional exploration strategies 

 

?

5.8 
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General Map Building Schematics 

 

5.8.1 
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Map Representation 

• M is a set n of probabilistic feature locations 
• Each feature is represented by the covariance matrix Σt and an 

associated credibility factor ct  
 
 

• ct is between 0 and 1 and quantifies the belief in the existence of the 
feature in the environment 
 
 

• a and b define the learning and forgetting rate and ns and nu are the 
number of matched and unobserved predictions up to time k, 
respectively. 

5.8.1 
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Cyclic Environments 

• Small local error accumulate to arbitrary large global errors! 
• This is usually irrelevant for navigation 
• However, when closing loops, global error does matter 

5.8.2 

Courtesy of Sebastian Thrun 
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Dynamic Environments 

• Dynamical changes require continuous mapping 
 

• If extraction of high-level features would be 
possible, the mapping in dynamic 
environments would become  
significantly more straightforward. 
 e.g. difference between human and wall 
 Environment modeling is a key factor  

for robustness 
?

5.8.2 
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