Autonomous Mobile Robots

Mobile Robot Kinematics

Autonomous Systems Lab

³2 Mobile Robot Kinematics: Overview

- Mobile robot and manipulator arm characteristics
 - Arm is fixed to the ground and usually comprised of a single chain of actuated links
 - Mobile robot motion is defined through rolling and sliding constraints taking effect at the wheel-ground contact points

C Willow Garage

C dexter123222222222, youtube.com

³ Mobile Robot Kinematics: Overview

- Definition and Origin
 - From kinein (Greek); to move
 - Kinematics is the subfield of Mechanics which deals with motions of bodies
- Manipulator- vs. Mobile Robot Kinematics
 - Both are concerned with forward and inverse kinematics
 - However, for mobile robots, encoder values don't map to unique robot poses
 - However, **mobile robots** can move unbound with respect to their environment
 - There is no direct (=instantaneous) way to measure the robot's position
 - Position must be integrated over time, depends on path taken
 - Leads to inaccuracies of the position (motion) estimate
 - Understanding mobile robot motion starts with understanding wheel constraints placed on the robot's mobility

⁷Forward and Inverse Kinematics

- Forward kinematics:
 - Transformation from joint- to physical space
- Inverse kinematics
 - Transformation from physical- to joint space
 - Required for motion control
- Due to nonholonomic constraints in mobile robotics, we deal with differential (inverse) kinematics
 - Transformation between velocities instead of positions
 - Such a differential kinematic model of a robot has the following form:

³ Differential Kinematics Model

- Due to a lack of alternatives:
 - establish the robot speed $\dot{\xi} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{\theta} \end{bmatrix}^T$ as a function of the wheel speeds $\dot{\phi}_i$, steering angles β_i , steering speeds $\dot{\beta}_i$ and the geometric parameters of the robot (*configuration coordinates*).
 - forward kinematics

$$\dot{\xi} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\dot{\varphi}_1, \dots \dot{\varphi}_n, \beta_1, \dots \beta_m, \dot{\beta}_1, \dots \dot{\beta}_m)$$

Inverse kinematics

$$\begin{bmatrix} \dot{\phi}_1 & \cdots & \dot{\phi}_n & \beta_1 & \dots & \beta_m & \dot{\beta}_1 & \dots & \dot{\beta}_m \end{bmatrix}^T = f(\dot{x}, \dot{y}, \dot{\theta})$$

But generally not integrable into

$$\begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = f(\varphi_1, \dots, \varphi_n, \beta_1, \dots, \beta_m)$$

³9 Representing Robot Pose

- Representing the robot within an arbitrary initial frame
 - Inertial frame: $\{X_I, Y_I\}$
 - Robot frame: $\{X_R, Y_R\}$
 - Robot pose: $\xi_I = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$
 - Mapping between the two frames

$$\dot{\xi}_R = R(\theta)\dot{\xi}_I = R(\theta)\cdot\begin{bmatrix}\dot{x} & \dot{y} & \dot{\theta}\end{bmatrix}^T$$

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

³ 10 Example: Robot aligned with Y₁

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\dot{\xi}_{R} = R(\frac{\pi}{2})\dot{\xi}_{I} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{y} \\ -\dot{x} \\ \dot{\theta} \end{bmatrix}$$

³ 11 Wheel Kinematic Constraints

- Assumptions
 - Movement on a horizontal plane
 - Point contact of the wheels
 - Wheels not deformable
 - Pure rolling (v_c = 0 at contact point)
 - No slipping, skidding or sliding
 - No friction for rotation around contact point
 - Steering axes orthogonal to the surface
 - Wheels connected by rigid frame (chassis)

3 - Mobile Robot Kinematics

³12 Kinematic Constraints: Fixed Standard Wheel

Robot chassis

α

 $-X_R$

14 Example

$$\left[\sin(\alpha+\beta) - \cos(\alpha+\beta) (-l)\cos\beta\right] R(\theta)\dot{\xi}_{I} - r\dot{\phi} = 0$$

$$\left[\cos(\alpha+\beta) \sin(\alpha+\beta) l\sin\beta\right] R(\theta)\dot{\xi}_{I} = 0$$

- Suppose that the wheel A is in position such that $\alpha = 0$ and $\beta = 0$
- This would place the contact point of the wheel on X_i with the plane of the wheel oriented parallel to Y_i . If $\theta = 0$, then the **sliding constraint** reduces to: Y_R

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{vmatrix} = 0$$

15 Kinematic Constraints: Steered Standard Wheel

³16 Kinematic Constraints: Castor Wheel

³17 Kinematic Constraints: Swedish Wheel

$$Y_{R} \qquad \left[\sin(\alpha + \beta + \gamma) - \cos(\alpha + \beta + \gamma) (-l)\cos(\beta + \gamma)\right] R(\theta)\dot{\xi}_{l} - r\dot{\phi}\cos\gamma = 0$$

$$\left[\cos(\alpha + \beta + \gamma) \sin(\alpha + \beta + \gamma) l\sin(\beta + \gamma)\right] R(\theta)\dot{\xi}_{l} - r\dot{\phi}\sin\gamma - r_{sw}\dot{\phi}_{sw} = 0$$

$$(\alpha + \beta + \gamma) \sin(\alpha + \beta + \gamma) l\sin(\beta + \gamma) R(\theta)\dot{\xi}_{l} - r\dot{\phi}\sin\gamma - r_{sw}\dot{\phi}_{sw} = 0$$

$$(\beta + \beta + \gamma) \sin(\alpha + \beta + \gamma) l\sin(\beta + \gamma) R(\theta)\dot{\xi}_{l} - r\dot{\phi}\sin\gamma - r_{sw}\dot{\phi}_{sw} = 0$$

³ 18 Kinematic Constraints: Spherical Wheel

19 Kinematic Constraints: Complete Robot

- Given a robot with M wheels
 - each wheel imposes zero or more constraints on the robot motion
 - only fixed and steerable standard wheels impose constraints
- What is the maneuverability of a robot considering a combination of different wheels?
- Suppose we have a total of $N=N_f + N_s$ standard wheels
 - We can develop the equations for the constraints in matrix forms:
 - Rolling

3

$$J_{1}(\beta_{s})R(\theta)\dot{\xi}_{I} + J_{2}\dot{\varphi} = 0 \qquad \varphi(t) = \begin{bmatrix} \varphi_{f}(t) \\ \varphi_{s}(t) \end{bmatrix} \qquad J_{1}(\beta_{s}) = \begin{bmatrix} J_{1f} \\ J_{1s}(\beta_{s}) \end{bmatrix} \qquad J_{2} = diag(r_{1}\cdots r_{N})$$

Lateral movement

$$C_1(\beta_s)R(\theta)\dot{\xi}_I=0$$

$$C_1(\beta_s) = \begin{bmatrix} C_{1f} \\ C_{1s}(\beta_s) \end{bmatrix}$$

$$(N_f + N_s) \times 3$$

20 Mobile Robot Maneuverability

- The maneuverability of a mobile robot is the combination
 - of the mobility available based on the sliding constraints
 - plus additional freedom contributed by the steering
- Three wheels is sufficient for static stability
 - additional wheels need to be synchronized
 - this is also the case for some arrangements with three wheels

 δ_m

 δ_{s}

- It can be derived using the equation seen before
 - Degree of mobility
 - Degree of steerability
 - Robots maneuverability $\delta_M = \delta_m + \delta_s$

21 Mobile Robot Maneuverability: Degree of Mobility

• To avoid any lateral slip the motion vector $R(\theta)\dot{\xi}_I$ has to satisfy the following constraints:

$$C_{1f}R(\theta)\dot{\xi}_{I} = 0 \qquad C_{1}(\beta_{s}) = \begin{bmatrix} C_{1f} \\ C_{1s}(\beta_{s})R(\theta)\dot{\xi}_{I} = 0 \end{bmatrix}$$

Mathematically:

- $R(\theta)\dot{\xi}_I$ must belong to the *null space* of the projection matrix $C_1(\beta_s)$
- Null space of $C_1(\beta_s)$ is the space N such that for any vector n in N $C_1(\beta_s) \cdot n = 0$
- Geometrically this can be shown by the Instantaneous Center of Rotation (ICR)

³22 Mobile Robot Maneuverability: ICR

Instantaneous center of rotation (ICR)

Ackermann Steering

Bicycle

23 Mobile Robot Maneuverability: More on Degree of Mobility

• Robot chassis kinematics is a function of the set of independent constraints $\int C_{1f} R(\theta) \dot{\xi}_{I} = 0$

$$rank\left[C_{1}(\beta_{s})\right] \qquad C_{1}(\beta_{s}) = \begin{bmatrix} C_{1f} \\ C_{1s}(\beta_{s}) \end{bmatrix} \qquad C_{1f}R(\theta)\xi_{I} = 0$$
$$C_{1s}(\beta_{s})R(\theta)\dot{\xi}_{I} = 0$$

• the greater the rank of $C_1(\beta_s)$ the more constrained is the mobility

Mathematically

$$\delta_m = \dim N\left[C_1(\beta_s)\right] = 3 - rank\left[C_1(\beta_s)\right] \qquad 0 \le rank\left[C_1(\beta_s)\right] \le 3$$

- no standard wheels
- all direction constrained

$$\operatorname{rank}\left[C_{1}(\beta_{s})\right] = 0$$

$$\operatorname{rank}\left[C_{1}(\beta_{s})\right] = 3$$

- Examples:
 - Unicycle: One single fixed standard wheel
 - Differential drive: Two fixed standard wheels
 - wheels on same axle
 - wheels on different axle

24 Mobile Robot Maneuverability: Degree of Steerability

Indirect degree of motion

 $\delta_{s} = rank \left[C_{1s}(\beta_{s}) \right]$

- The particular orientation at any instant imposes a kinematic constraint
- However, the ability to change that orientation can lead additional degree of maneuverability
- Range of δ_s : $0 \le \delta_s \le 2$
- Examples:

- one steered wheel: Tricycle
- two steered wheels: No fixed standard wheel
- car (Ackermann steering): $N_f = 2$, $N_s = 2$ -> common axle

25 Mobile Robot Maneuverability: Robot Maneuverability

Degree of Maneuverability

$$\delta_M = \delta_m + \delta_s$$

- Two robots with same δ_M are not necessary equal
- Example: Differential drive and Tricycle (next slide)
- For any robot with $\delta_M = 2$ the ICR is always constrained to *lie on a line*
- For any robot with $\delta_M = 3$ the ICR is not constrained and can be set to any point on the plane
- The Synchro Drive example: $\delta_M = \delta_m + \delta_s = 1 + 1 = 2$

3 - Mobile Robot Kinematics

³ 26 Mobile Robot Maneuverability: Wheel Configurations

Differential Drive
 Tricycle

3 - Mobile Robot Kinematics

³27 Five Basic Types of Three-Wheel Configurations

³28 Synchro Drive

$$\delta_M = \delta_m + \delta_s = 1 + 1 = 2$$

C J. Borenstein

³29 Mobile Robot Workspace: Degrees of Freedom

- The Degree of Freedom (DOF) is the robot's ability to achieve various poses.
- But what is the degree of vehicle's freedom in its environment?
 - Car example
- Workspace
 - how the vehicle is able to move between different configuration in its workspace?
- The robot's independently achievable velocities
 - = differentiable degrees of freedom (DDOF) = δ_m
 - Bicycle: $\delta_M = \delta_m + \delta_s = 1 + 1$ DDOF = 1; DOF=3
 - Omni Drive: $\delta_M = \delta_m + \delta_s = 3 + 0$ DDOF=3; DOF=3

30 Mobile Robot Workspace: Degrees of Freedom, Holonomy

DOF degrees of freedom:

3

- Robots ability to achieve various poses
- DDOF differentiable degrees of freedom:
 - Robots ability to achieve various trajectories

 $DDOF \leq \delta_M \leq DOF$

Holonomic Robots

- A holonomic kinematic constraint can be expressed as an explicit function of position variables only
- A non-holonomic constraint requires a different relationship, such as the derivative of a position variable
- Fixed and steered standard wheels impose non-holonomic constraints

3 - Mobile Robot Kinematics

³ Path / Trajectory Considerations: Omnidirectional Drive

3 - Mobile Robot Kinematics

³ 32 Path / Trajectory Considerations: Two-Steer

33 Beyond Basic Kinematics

• At higher speeds, and in difficult terrain, dynamics become important

 For other vehicles, the no-sliding constraints, and simple kinematics presented in this lecture do not hold

Autonomous Mobile Robots

Motion Control wheeled robots

Autonomous Systems Lab

35 Wheeled Mobile Robot Motion Control: Overview

- The objective of a kinematic controller is to follow a trajectory described by its position and/or velocity profiles as function of time.
- Motion control is not straight forward because mobile robots are typically non-holonomic and MIMO systems.
- Most controllers (including the one presented here) are not considering the dynamics of the system

36 Motion Control: Open Loop Control

- trajectory (path) divided in motion segments of clearly defined shape:
 - straight lines and segments of a circle
 - Dubins car, and Reeds-Shepp car
- control problem:
 - pre-compute a smooth trajectory based on line, circle (and clothoid) segments
- Disadvantages:
 - It is not at all an easy task to pre-compute a feasible trajectory
 - limitations and constraints of the robots velocities and accelerations
 - does not adapt or correct the trajectory if dynamical changes of the environment occur.
 - The resulting trajectories are usually not smooth (in acceleration, jerk, etc.)

³37 Motion Control: Feedback Control

Find a control matrix K, if exists

$$K = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \end{bmatrix}$$

with
$$k_{ij} = k(t,e)$$

• such that the control of v(t)and $\omega(t)$

$$\begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = K \cdot e = K \cdot \begin{vmatrix} x \\ y \\ \theta \end{vmatrix}$$

• drives the error e to zero $\lim_{t \to \infty} e(t) = 0$

• MIMO state feedback control

38 Motion Control: Kinematic Position Control

 The kinematics of a differential drive mobile robot described in the inertial frame {x_I, y_I, θ} is given by,

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 \\ \sin\theta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

- where x and y are the linear velocities in the direction of the x₁ and y₁ of the inertial frame.
- Let alpha denote the angle between the x_R axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.

³ 39 Kinematic Position Control: Coordinates Transformation

 Coordinates transformation into polar coordinates with its origin at goal position:

$$\rho = \sqrt{\Delta x^2 + \Delta y^2}$$

$$\alpha = -\theta + \operatorname{atan} 2(\Delta y, \Delta x)$$

$$\beta = -\theta - \alpha$$

System description, in the new polar coordinates

$$\begin{bmatrix} \dot{\rho} \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} -\cos \alpha & 0 \\ \frac{\sin \alpha}{\rho} & -1 \\ -\frac{\sin \alpha}{\rho} & 0 \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix} \qquad \begin{bmatrix} \dot{\rho} \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} \cos \alpha & 0 \\ -\frac{\sin \alpha}{\rho} & -1 \\ \frac{\sin \alpha}{\rho} & 0 \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$for \ I_1 = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad for \ I_2 = \left(-\pi, -\pi/2 \right] \cup \left(\pi/2, \pi \right]$$

$$e R. Siegwart, ETH Zurich - ASL$$

40 Kinematic Position Control: Remarks

The coordinates transformation is not defined at x = y = 0;

• For $\alpha \in I_1$ the forward direction of the robot points toward the goal, for $\alpha \in I_2$ it is the backward direction. $\alpha \in I_1 = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$

By properly defining the forward direction of the robot at its initial configuration, it is always possible to have α ∈ I₁at t=0. However this does not mean that a remains in I₁ for all time t.

41 Kinematic Position Control: The Control Law

It can be shown, that with

$$v = k_{\rho}\rho$$
 $\omega = k_{\alpha}\alpha + k_{\beta}\beta$

the feedback controlled system

$$\dot{\beta} = \begin{bmatrix} -k_{\rho}\rho\cos\alpha \\ k_{\rho}\sin\alpha - k_{\alpha}\alpha - k_{\beta}\beta \\ -k_{\rho}\sin\alpha \end{bmatrix}$$

will drive the robot to $(\rho, \alpha, \beta) = (0, 0, 0)$

- The control signal v has always constant sign,
 - the direction of movement is kept positive or negative during movement
 - parking maneuver is performed always in the most natural way and without ever inverting its motion.

42 Kinematic Position Control: Resulting Path

The goal is in the center and the initial position on the circle.

43 Kinematic Position Control: Stability Issue

 It can further be shown, that the closed loop control system is locally exponentially stable if

$$k_{\rho} > 0$$
; $k_{\beta} < 0$; $k_{\alpha} - k_{\rho} > 0$
 $k = (k_{\rho}, k_{\alpha}, k_{\beta}) = (3, 8, -1.5)$

Proof:

3

for small $x \rightarrow \cos x = 1$, $\sin x = x$

$$\begin{bmatrix} \dot{\rho} \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} -k_{\rho} & 0 & 0 \\ 0 & -(k_{\alpha} - k_{\rho}) & -k_{\beta} \\ 0 & -k_{\rho} & 0 \end{bmatrix} \begin{bmatrix} \rho \\ \alpha \\ \beta \end{bmatrix} \qquad A = \begin{bmatrix} -k_{\rho} & 0 & 0 \\ 0 & -(k_{\alpha} - k_{\rho}) & -k_{\beta} \\ 0 & -k_{\rho} & 0 \end{bmatrix}$$

and the characteristic polynomial of the matrix A of all roots

$$(\lambda + k_{\rho})(\lambda^2 + \lambda(k_{\alpha} - k_{\rho}) - k_{\rho}k_{\beta})$$

have negative real parts.