Autonomous Mobile Robots

Mobile Robot Kinematics

2
 Mobile Robot Kinematics: Overview

- Mobile robot and manipulator arm characteristics
- Arm is fixed to the ground and usually comprised of a single chain of actuated links
- Mobile robot motion is defined through rolling and sliding constraints taking effect at the wheel-ground contact points

C Willow Garage

C dexter12322222222222, youtube.com

Mobile Robot Kinematics: Overview

- Definition and Origin
- From kinein (Greek); to move
- Kinematics is the subfield of Mechanics which deals with motions of bodies
- Manipulator- vs. Mobile Robot Kinematics
- Both are concerned with forward and inverse kinematics
- However, for mobile robots, encoder values don't map to unique robot poses
- However, mobile robots can move unbound with respect to their environment
- There is no direct (=instantaneous) way to measure the robot's position
- Position must be integrated over time, depends on path taken
- Leads to inaccuracies of the position (motion) estimate
- Understanding mobile robot motion starts with understanding wheel constraints placed on the robot's mobility

Forward and Inverse Kinematics

- Forward kinematics:
- Transformation from joint- to physical space
- Inverse kinematics
- Transformation from physical- to joint space
- Required for motion control
- Due to nonholonomic constraints in mobile robotics, we deal with differential (inverse) kinematics
- Transformation between velocities instead of positions
- Such a differential kinematic model of a robot has the following form:

8 Differential Kinematics Model

- Due to a lack of alternatives:
- establish the robot speed $\dot{\xi}=\left[\begin{array}{lll}\dot{x} & \dot{y} & \dot{\theta}\end{array}\right]^{T}$ as a function of the wheel speeds $\dot{\varphi}_{i}$, steering angles β_{i}, steering speeds $\dot{\beta}_{i}$ and the geometric parameters of the robot (configuration coordinates).
- forward kinematics

$$
\dot{\xi}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=f\left(\dot{\varphi}_{1}, \ldots \dot{\varphi}_{n}, \beta_{1}, \ldots \beta_{m}, \dot{\beta}_{1}, \ldots \dot{\beta}_{m}\right)
$$

$$
\left[\begin{array}{lllllllll}
\dot{\varphi}_{1} & \cdots & \dot{\varphi}_{n} & \beta_{1} & \ldots & \beta_{m} & \dot{\beta}_{1} & \ldots & \dot{\beta}_{m}
\end{array}\right]^{T}=f(\dot{x}, \dot{y}, \dot{\theta})
$$

- But generally not integrable into

$$
\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]=f\left(\varphi_{1}, \ldots \varphi_{n}, \beta_{1}, \ldots \beta_{m}\right)
$$

9 Representing Robot Pose

- Representing the robot within an arbitrary initial frame
- Inertial frame: $\left\{X_{I}, Y_{I}\right\}$
- Robot frame: $\left\{X_{R}, Y_{R}\right\}$
- Robot pose: $\xi_{I}=\left[\begin{array}{lll}x & y & \theta\end{array}\right]^{T}$
- Mapping between the two frames

$$
\begin{gathered}
\dot{\xi}_{R}=R(\theta) \dot{\xi}_{I}=R(\theta) \cdot\left[\begin{array}{lll}
\dot{x} & \dot{y} & \dot{\theta}
\end{array}\right]^{T} \\
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

10 Example: Robot aligned with $Y_{\text {, }}$

$$
\begin{gathered}
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
\dot{\xi}_{R}=R\left(\frac{\pi}{2}\right) \dot{\xi}_{I}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
\dot{y} \\
-\dot{x} \\
\dot{\theta}
\end{array}\right] \xrightarrow{Y_{I}}
\end{gathered}
$$

11
 Wheel Kinematic Constraints

- Assumptions
- Movement on a horizontal plane
- Point contact of the wheels
- Wheels not deformable
- Pure rolling ($\mathrm{v}_{\mathrm{c}}=0$ at contact point)
- No slipping, skidding or sliding
- No friction for rotation around contact point
- Steering axes orthogonal to the surface
- Wheels connected by rigid frame (chassis)

12 Kinematic Constraints: Fixed Standard Wheel

$$
\begin{aligned}
& {[\sin (\alpha+\beta)-\cos (\alpha+\beta)(-l) \cos \beta] R(\theta) \dot{\xi}_{I}-r \dot{\varphi}=0} \\
& {[\cos (\alpha+\beta) \sin (\alpha+\beta) l \sin \beta] R(\theta) \dot{\xi}_{I}=0}
\end{aligned}
$$

- Suppose that the wheel A is in position such that $\alpha=0$ and $\beta=0$
- This would place the contact point of the wheel on $X_{\text {I }}$ with the plane of the wheel oriented parallel to $Y_{\text {/ }}$. If $\theta=0$, then the sliding constraint reduces to:

$$
\begin{aligned}
& \text { to: } \\
& {\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=0}
\end{aligned}
$$

15 Kinematic Constraints: Steered Standard Wheel

16 Kinematic Constraints: Castor Wheel

17 Kinematic Constraints: Swedish Wheel

18 Kinematic Constraints: Spherical Wheel

- Rotational axis of the wheel can have an arbitrary direction

19 Kinematic Constraints: Complete Robot

- Given a robot with M wheels
- each wheel imposes zero or more constraints on the robot motion
- only fixed and steerable standard wheels impose constraints
- What is the maneuverability of a robot considering a combination of different wheels?
- Suppose we have a total of $N=N_{f}+N_{s}$ standard wheels
- We can develop the equations for the constraints in matrix forms:
- Rolling

$$
\left.J_{1}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}+J_{2} \dot{\varphi}=0 \quad \varphi(t)=\left[\begin{array}{c}
\varphi_{f}(t) \\
\varphi_{s}(t)
\end{array}\right] \quad J_{1}\left(\beta_{s}\right)=\underset{\left(\begin{array}{c}
\left.N_{f}+N_{s}\right) \times 1
\end{array}\right.}{\left[\begin{array}{c}
J_{1 f} \\
J_{1 s}\left(\beta_{s}\right) \\
N_{f}+N_{s}
\end{array}\right] \times 3}\right] J_{2}=\operatorname{diag}\left(r_{1} \cdots r_{N}\right)
$$

- Lateral movement

$$
C_{1}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}=0
$$

$$
C_{1}\left(\beta_{s}\right)=\underset{\substack{C_{1 f} \\
C_{1 s}\left(\beta_{s}\right) \\
\left(N_{f}+N_{s}\right) \times 3}}{\left[\begin{array}{c}
\text { an }
\end{array}\right.}
$$

20 Mobile Robot Maneuverability

- The maneuverability of a mobile robot is the combination
- of the mobility available based on the sliding constraints
- plus additional freedom contributed by the steering
- Three wheels is sufficient for static stability
- additional wheels need to be synchronized
- this is also the case for some arrangements with three wheels
- It can be derived using the equation seen before
- Degree of mobility
δ_{m}
- Degree of steerability δ_{s}
- Robots maneuverability $\delta_{M}=\delta_{m}+\delta_{s}$

21 Mobile Robot Maneuverability: Degree of Mobility

- To avoid any lateral slip the motion vector $R(\theta) \dot{\xi}_{I}$ has to satisfy the following constraints:

$$
\begin{aligned}
& C_{1 f} R(\theta) \dot{\xi}_{I}=0 \\
& C_{1 s}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}=0 C_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}
C_{1 f} \\
C_{1 s}\left(\beta_{s}\right)
\end{array}\right]
\end{aligned}
$$

- Mathematically:
- $R(\theta) \dot{\xi}_{I}$ must belong to the null space of the projection matrix $C_{1}\left(\beta_{s}\right)$
- Null space of $C_{1}\left(\beta_{s}\right)$ is the space N such that for any vector n in N

$$
C_{1}\left(\beta_{s}\right) \cdot n=0
$$

- Geometrically this can be shown by the Instantaneous Center of Rotation (ICR)

22
 Mobile Robot Maneuverability: ICR

- Instantaneous center of rotation (ICR)
- Ackermann Steering

Bicycle
b)
© R. Siegwart, ETH Zurich - ASL

Mobile Robot Maneuverability: More on Degree of Mobility

- Robot chassis kinematics is a function of the set of independent constraints

$$
\operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right] \quad C_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}
C_{1 f} \\
C_{1 s}\left(\beta_{s}\right)
\end{array}\right] \quad \begin{aligned}
& C_{1 f} R(\theta) \dot{\xi}_{I}=0 \\
& C_{1 s}\left(\beta_{s}\right) R(\theta) \dot{\xi}_{I}=0
\end{aligned}
$$

- the greater the rank of $C_{1}\left(\beta_{s}\right)$ the more constrained is the mobility
- Mathematically

$$
\delta_{m}=\operatorname{dim} N\left[C_{1}\left(\beta_{s}\right)\right]=3-\operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right] \quad 0 \leq \operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right] \leq 3
$$

- no standard wheels $\quad \operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right]=0$
- all direction constrained $\quad \operatorname{rank}\left[C_{1}\left(\beta_{s}\right)\right]=3$
- Examples:
- Unicycle: One single fixed standard wheel
- Differential drive: Two fixed standard wheels
- wheels on same axle
- wheels on different axle

24
 Mobile Robot Maneuverability: Degree of Steerability

- Indirect degree of motion

$$
\delta_{s}=\operatorname{rank}\left[C_{1 s}\left(\beta_{s}\right)\right]
$$

- The particular orientation at any instant imposes a kinematic constraint
- However, the ability to change that orientation can lead additional degree of maneuverability
- Range of $\delta_{s}: 0 \leq \delta_{s} \leq 2$
- Examples:
- one steered wheel: Tricycle
- two steered wheels: No fixed standard wheel
- car (Ackermann steering): $N_{f}=2, N_{s}=2 \quad->$ common axle

25 Mobile Robot Maneuverability: Robot Maneuverability

- Degree of Maneuverability

$$
\delta_{M}=\delta_{m}+\delta_{s}
$$

- Two robots with same δ_{M} are not necessary equal
- Example: Differential drive and Tricycle (next slide)
- For any robot with $\delta_{M}=2$ the ICR is always constrained to lie on a line
- For any robot with $\delta_{M}=3$ the ICR is not constrained and can be set to any point on the plane
- The Synchro Drive example: $\delta_{M}=\delta_{m}+\delta_{s}=1+1=2$

26 Mobile Robot Maneuverability: Wheel Configurations

- Differential Drive

Tricycle

Five Basic Types of Three-Wheel Configurations

Omnidirectional
$\delta_{M}=3$
$\delta_{m}=3$
$\delta_{s}=0$

Differential
$\delta_{M}=2$
$\delta_{m}=2$
$\delta_{m}=2$
$\delta_{s}=0$

Omni-Steer
$\delta_{M}=3$
$\delta_{m}=2$
$\delta_{s}=1$

Two-Steer
$\delta_{M}=3$
$\delta_{m}=1$
$\delta_{s}=2$

28 Synchro Drive

$$
\delta_{M}=\delta_{m}+\delta_{s}=1+1=2
$$

29 Mobile Robot Workspace: Degrees of Freedom

- The Degree of Freedom (DOF) is the robot's ability to achieve various poses.
- But what is the degree of vehicle's freedom in its environment?
- Car example
- Workspace
- how the vehicle is able to move between different configuration in its workspace?
- The robot's independently achievable velocities
- = differentiable degrees of freedom (DDOF) $=\delta_{m}$
- Bicycle: $\delta_{M}=\delta_{m}+\delta_{s}=1+1 \quad$ DDOF $=1 ; \quad \mathrm{DOF}=3$
- Omni Drive: $\delta_{M}=\delta_{m}+\delta_{s}=3+0 \quad \mathrm{DDOF}=3 ; \quad \mathrm{DOF}=3$

30 Mobile Robot Workspace: Degrees of Freedom, Holonomy

- DOF degrees of freedom:
- Robots ability to achieve various poses
- DDOF differentiable degrees of freedom:
- Robots ability to achieve various trajectories

$D D O F \leq \delta_{M} \leq D O F$

- Holonomic Robots
- A holonomic kinematic constraint can be expressed as an explicit function of position variables only
- A non-holonomic constraint requires a different relationship, such as the derivative of a position variable
- Fixed and steered standard wheels impose non-holonomic constraints

31 Path / Trajectory Considerations: Omnidirectional Drive

© R. Siegwart, ETH Zurich - ASL

32 Path / Trajectory Considerations: Two-Steer

(c) R. Siegwart, ETH Zurich - ASL

- At higher speeds, and in difficult terrain, dynamics become important

- For other vehicles, the no-sliding constraints, and simple kinematics presented in this lecture do not hold

Autonomous Mobile Robots

Motion Control wheeled robots

35 Wheeled Mobile Robot Motion Control: Overview

- The objective of a kinematic controller is to follow a trajectory described by its position and/or velocity profiles as function of time.
- Motion control is not straight forward because mobile robots are typically non-holonomic and MIMO systems.
- Most controllers (including the one presented here) are not considering the dynamics of the system

36 Motion Control: Open Loop Control

- trajectory (path) divided in motion segments of clearly defined shape:
- straight lines and segments of a circle
- Dubins car, and Reeds-Shepp car
- control problem:
- pre-compute a smooth trajectory based on line, circle (and clothoid) segments
- Disadvantages:
- It is not at all an easy task to pre-compute a feasible trajectory
- limitations and constraints of the robots velocities and accelerations
- does not adapt or correct the trajectory if dynamical changes of the environment occur.
- The resulting trajectories are usually not
 smooth (in acceleration, jerk, etc.)

- Find a control matrix K, if exists

$$
\begin{array}{r}
K=\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23}
\end{array}\right] \\
\text { with } k_{i j}=k(t, e)
\end{array}
$$

- such that the control of $v(t)$ and $\omega(t)$

$$
\left[\begin{array}{c}
v(t) \\
\omega(t)
\end{array}\right]=K \cdot e=K \cdot\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]
$$

- drives the error e to zero

$$
\lim _{t \rightarrow \infty} e(t)=0
$$

- MIMO state feedback control

38 Motion Control: Kinematic Position Control

- The kinematics of a differential drive mobile robot described in the inertial frame $\left\{x_{1}, y_{l}, \theta\right\}$ is given by,

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

- where \dot{x} and \dot{y} are the linear velocities in the direction of the x_{1} and y_{1} of the inertial frame.
- Let alpha denote the angle between the x_{R} axis of the robots reference frame and the vector connecting the center of the axle of the wheels with the final position.

39 Kinematic Position Control: Coordinates Transformation

- Coordinates transformation into polar coordinates with its origin at goal position:

$$
\begin{aligned}
& \rho=\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& \alpha=-\theta+\operatorname{atan} 2(\Delta y, \Delta x)
\end{aligned}
$$

$$
\beta=-\theta-\alpha
$$

$\beta=-\theta-\alpha$

- System description, in the new polar coordinates

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=} & {\left[\begin{array}{cc}
-\cos \alpha & 0 \\
\frac{\sin \alpha}{\rho} & -1 \\
-\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\omega
\end{array}\right] } \\
& \text { for } I_{1}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=} & {\left[\begin{array}{cc}
\cos \alpha & 0 \\
-\frac{\sin \alpha}{\rho} & -1 \\
\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\omega
\end{array}\right] } \\
& \text { for } I_{2}=(-\pi,-\pi / 2] \cup(\pi / 2, \pi]
\end{aligned}
$$

40 Kinematic Position Control: Remarks

- The coordinates transformation is not defined at $x=y=0$;
- For $\alpha \in I_{1}$ the forward direction of the robot points toward the goal, for $\alpha \in I_{2}$ it is the backward direction.

$$
\alpha \in I_{1}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

- By properly defining the forward direction of the robot at its initial configuration, it is always possible to have $\alpha \in I_{1}$ at $\mathrm{t}=0$. However this does not mean that a remains in I_{1} for all time t.

41 Kinematic Position Control: The Control Law

- It can be shown, that with

$$
v=k_{\rho} \rho \quad \omega=k_{\alpha} \alpha+k_{\beta} \beta
$$

the feedback controlled system

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{c}
-k_{\rho} \rho \cos \alpha \\
k_{\rho} \sin \alpha-k_{\alpha} \alpha-k_{\beta} \beta \\
-k_{\rho} \sin \alpha
\end{array}\right]
$$

will drive the robot to $(\rho, \alpha, \beta)=(0,0,0)$

- The control signal v has always constant sign,
- the direction of movement is kept positive or negative during movement
- parking maneuver is performed always in the most natural way and without ever inverting its motion.

42 Kinematic Position Control: Resulting Path

- The goal is in the center and the initial position on the circle.

$$
\mathrm{k}=\left(\mathrm{k}_{\rho}, \mathrm{k}_{\alpha}, \mathrm{k}_{\beta}\right)=(3,8,-1.5)
$$

© R. Siegwart, ETH Zurich - ASL

43 Kinematic Position Control: Stability Issue

- It can further be shown, that the closed loop control system is locally exponentially stable if

$$
\begin{aligned}
& k_{\rho}>0 ; k_{\beta}<0 ; k_{\alpha}-k_{\rho}>0 \\
& \mathrm{k}=\left(\mathrm{k}_{\rho}, \mathrm{k}_{\alpha}, \mathrm{k}_{\beta}\right)=(3,8,-1.5)
\end{aligned}
$$

- Proof:
for small $x \rightarrow \cos x=1, \sin x=x$

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
\rho \\
\alpha \\
\beta
\end{array}\right] \quad A=\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]
$$

and the characteristic polynomial of the matrix A of all roots

$$
\left(\lambda+k_{\rho}\right)\left(\lambda^{2}+\lambda\left(k_{\alpha}-k_{\rho}\right)-k_{\rho} k_{\beta}\right)
$$

have negative real parts.

