
Metric Path Planning

September 23, 2014

Minerva tour guide robot (CMU):
Gave tours in Smithsonian’s National Museum of History

Example of Minerva’s occupancy
map used for navigation

2

Objectives

• Path planning: identifying a trajectory that will cause the robot to reach
the goal location when executed

• Understand techniques for metric path planning:
– Configuration space
– Meadow maps
– Generalized Voronoi graphs
– Grids
– Quadtrees
– Graph-based planners: A*
– Wavefront-based planners

3

Introduction to Navigation

• Navigation is fundamental ability in autonomous mobile robotics

• Primary functions of navigation:
– Where am I going?

• Usually defined by human operator or mission planner
– What’s the best way to get there?

• Path planning: qualitative and quantitative
– Where have I been?

• Map making
– Where am I?

• Localization: relative or absolute

4

Two types of spatial representations
commonly used in path planning

• Examples of two forms of Spatial representations:
– Qualitative (route) [sometimes called “topological”]:

– Quantitative (metric or layout):

derived from:

5

Two types of spatial representations
commonly used in path planning (con’t.)

• Two forms of Spatial memory:
– Qualitative (route):

• Express space in terms of connections between landmarks
• Dependent upon perspective of the robot
• Orientation clues are egocentric
• Usually cannot be used to generate quantitative (metric/layout) representations

– Quantitative (metric or layout):

• Express space in terms of physical distances of travel
• Bird’s eye view of the world
• Not dependent upon the perspective of the robot
• Independent of orientation and position of robot
• Can be used to generate qualitative (route) representations

6

Metric Path Planning

• Objective: determine a path to a specified goal

• Metric methods:
– Tend to favor techniques that produce an optimal path
– Usually decompose path into subgoals called waypoints

• Two components to metric methods for path planning:

– Representation (i.e., data structure)
– Algorithm

7

Configuration Space

• Configuration Space (abbreviated: “Cspace”):
– Data structure that allows robot to specify position and orientation of objects

and robot in the environment
– “Good Cspace”: Reduces # of dimensions that a planner has to deal with
– Typically, for indoor mobile robots:

• Assume 2 DOF for representation
• Assume robot is round, so that orientation doesn’t matter
• Assumes robot is holonomic (i.e., it can turn in place)

– (Although there is much research dealing with path planning in non-
holonomic robots)

– Typically represents “occupied” and “free” space
• “Occupied” object is in that space
• “Free” space where robot is free to move without hitting any modeled object

8

Metric Maps use Cspace

• World Space: physical space robots and obstacles exist in
– In order to use, generally need to know (x,y,z) plus Euler angles: 6DOF

• Ex. Travel by car, what to do next depends on where you are and what direction you’re
currently heading

• Configuration Space (Cspace)
– Transform space into a representation suitable for robots, simplifying assumptions

6DOF
3DOF

9

Major Cspace Representations

• Idea: reduce physical space to a Cspace representation which is more
amenable for storage in computers and for rapid execution of algorithms

• Major types
–Meadow Maps
–Generalized Voronoi Graphs (GVG)
–Regular grids, quadtrees

10

Object Growing

• Since we assume robot is round, we can “grow” objects by the width of
the robot and then consider the robot to be a point

• Greatly simplifies path planning

• New representation of objects typically called “configuration space object”

11

Method for Object Growing

Robot starting position

Robot desired position
• In this example: Triangular robot
• Configuration growing: based on robot’s

bottom left corner
• Method: conceptually move robot around

obstacles without collision, marking path of
robot’s bottom left corner

12

Method for Object Growing

Robot starting position

Robot desired position

13

Result of Object Growing: New Configuration Space

Robot starting position

Robot desired position

IMPORTANT NOTE: Must make multiple
configurations spaces corresponding to various
degrees of rotations for moving objects. Then,

generalize search to move from space to space

Robot now considered a point:

Can now plan path of point through this
space without dealing with shape of robot

14

Examples of Cspace Representations

• Voronoi diagrams
• Regular grids
• Quadtrees/octtrees
• Vertex graphs
• Hybrid free space/vertex graphs (meadow map)

15

Meadow Maps (Hybrid Vertex-graph Free-space)

• Transform space into convex polygons
– Polygons represent safe regions for robot to traverse

• Important property of convex polygons:

– If robot starts on perimeter and goes in a straight line to any other point on the
perimeter, it will not go outside the polygon

• Path planning:
– Involves selecting the best series of polygons to transit through

16

Example Meadow Map

1. Grow objects
2. Construct convex
 polygons

3. Mark midpoints;
 these become
 graph nodes for
 path planner

4. Path planner
 plans path
 based upon new
 graph

17

Class Exercise

• Create a meadow map and relational graph using mid-point of line
segments

18

Path Relaxation

• Disadvantage of Meadow Map:
– Resulting path is jagged

• Solution: path relaxation

– Technique for smoothing jagged paths resulting from any discretization of
space

• Approach:
– Imagine path is a string
– Imagine pulling on both ends of the string to tighten it
– This removes most of “kinks” in path

19

Example of Path Relaxation

Starting point

Goal point

Originally planned path
Relaxed path

20

Limited Usefulness of Meadow Maps

• Three problems with meadow maps:
– Technique to generate polygons is computationally complex

– Uses artifacts of the map to determine polygon boundaries, rather than things

that can be sensed

– Unclear how to update or repair diagrams as robot discovers differences
between a priori map and the real world

21

Generalized Voronoi Diagrams (GVGs)

• GVGs:
– Popular mechanism for representing Cspace and generating a graph
– Can be constructed as robot enters new environment

• Basic GVG approach:

– Generate a Voronoi edge, which is equidistant from all points
– Point where Voronoi edge meets is called a Voronoi vertex
– Note: vertices often have physical correspondence to aspects of environment

that can be sensed
– If robot follows Voronoi edge, it won’t collide with any modeled obstacles

don’t need to grow obstacle boundaries

22

Example Generalized Voronoi Graph (GVG)

• Imagine a fire starting at the boundaries, creating a line where they
intersect. Intersection of lines are nodes.

• Result is a relational graph.

23

Class Exercise

• Create a GVG of this space

24

Problems with GVG

• Sensitive to sensor noise
• Path execution: requires robot to be able to sense boundaries

25

Regular Grids / Occupancy Grids

• Superimposes a 2D
Cartesian grid on the world
space (bigger than pixels,
but same idea)

• If there is any object in the
area contained by a grid
element, that element is
marked as occupied

• Center of each element in
grid becomes a node,
leading to highly
connected graph

• Grid nodes are connected
to neighbors (either 4-
connected or 8-connected)

26

Class Exercise

• Use 4-connected neighbors to create a relational graph

27

Disadvantages of Regular Grids

• Digitization bias:
– World doesn’t always line up on grids (If object falls into even small portion of

grid element, the whole element is marked as occupied)
– Leads to wasted space

• Solution: use fine-grained grids (4-6 inches)
• But, this leads to high storage cost and high # nodes for path planner to consider

• Partial solution to wasted space: Quadtrees

28

Quadtrees

• Representation starts with large area (e.g., 8x8 inches)

• If object falls into part of grid, but not all of grid, space is subdivided into
for smaller grids

• If object doesn’t fit into sub-element, continue recursive subdivision

• 3D version of Quadtree – called an Octree.

29

Example Quadtree Representation

(Not all cells are subdivided as in an actual quadtree representation (too much work for
a drawing by hand!, but this gives basic idea)

30

Summary of Representations

• Metric path planning requires
– Representation of world space, usually try to simplify to

cspace
– Algorithms which can operate over representation to produce

best/optimal path

• Representation
– Usually try to end up with relational graph
– Regular grids are currently most popular in practice, GVGs

are interesting
– Tricks of the trade

• Grow obstacles to size of robot to be able to treat holonomic
robots as point

• Relaxation (string tightening)

• Metric methods often ignore issue of
– how to execute a planned path
– Impact of sensor noise or uncertainty, localization

31

Algorithms

• For Path planning
– A* for relational graphs
– Wavefront for operating directly on regular grids

32

Graph Based Planners

• Finding path between initial node and goal node can be done using graph search
algorithms

• Graph search algorithms: found in networks, routing problems, etc.

• However, many graph search algorithms require visiting each node in graph to
determine shortest path
– Computationally tractable for sparsely connected graph (e.g., Voronoi diagram)
– Computationally expensive for highly connected graph (e.g., regular grid)

• Therefore, interest is in “branch and bound” search

– Prunes off paths that aren’t optimal

• Classic approach: A* (“A Star”) search algorithm
– Frequently used for holonomic robots

33

Motivation for A*

• Single Source Shortest Path algorithms are exhaustive, visiting all edges
– Can’t we throw away paths when we see that they aren’t going to the goal,

rather than follow all branches?

• This means having a mechanism to “prune” branches as we go, rather
than after full exploration

• Algorithms which prune earlier (but correctly) are preferred over
algorithms which do it later.

• Issue -> the mechanism for pruning

34

A* Search Algorithm

• Similar to breadth-first: at each point in the time the planner can only
“see” its node and 1 set of nodes “in front”

• Idea is to rate the choices, choose the best one first, throw away any
choices whenever you can:

f*(n) = g*(n) + h*(n) // ‘*’ means these are estimates

where:
• f *(n) is the “goodness” of the path from Start to n
• g*(n) is the “cost” of going from the Start to node n
• h*(n) is the cost of going from n to the Goal

– h is for “heuristic function”, because must have a way of guessing the
cost of n to Goal since can’t see the path between n and the Goal

35

A* Heuristic Function

• g*(n) is easy: just sum up the path costs to n

• h*(n) is tricky
– But path planning requires an a priori map
– Metric path planning requires a METRIC a priori map
– Therefore, know the distance between Initial and Goal nodes, just not the

optimal way to get there
– h*(n)= distance between n and Goal

f *(n) = g*(n) + h*(n)

36

Estimating h(n)

• Must ensure that h*(n) is never greater than h(n)

• Admissibility condition:
– Must always underestimate remaining cost to reach goal

• Easy way to estimate:

– Use Euclidian (straight line) distance
– Straight line will always be shortest path
– Actual path may be longer, but admissibility condition still holds

37

Example: A to E

• But since you’re starting at A and can only look 1 node ahead, this is

what you see:

A B

D

F E

1

1

1

1

1.4

1.4

A B

D

E

1

1.4

38

• Two choices for n: B, D
• Do both

– f*(B) =1 + 2.24 = 3.24
– f*(D) =1.4 + 1.4 = 2.8

• Can’t prune, so much keep going (recurse)
– Pick the most plausible path first => A-D-?-E

A B

D

E

1

1.4

1.4

2.24

39

• A-D-?-E
– “stand on D”
– Can see 2 new nodes: F, E
– f*(F) =(1.4+1) + 1 = 3.4
– f*(E) =(1.4+1.4)+ 0 = 2.8

• Three paths

– A-B-?-E ≥ 3.24
– A-D-E = 2.8
– A-D-F-?-D ≥ 3.4

• A-D-E is the winner!

– Don’t have to look farther because expanded the shortest first, others
couldn’t possibly do better without having negative distances,
violations of laws of geometry…

A B

D

E

1

1.4

1.4

F
1

1

40

Class Exercise

Compute optimal path from A-city to B-city

Straight-line distance to B-city from:

A-city: 366
B-city: 0
F-city: 176
O-city: 380
P-city: 98
R-city: 193
S-city: 253
T-city: 329
Z-city: 374

A-city

Z-city

O-city

T-city

S-city

R-city

P-city

B-city

F-city

118

140

75

71
151

80

97
101

211
99

41

Pros and Cons of A* Search/Path Planner

• Advantage:
– Can be used with any Cspace representation that can be transformed into a

graph

• Limitation:
– Hard to use for path planning when there are factors to consider other than

distance (e.g., rocky terrain, sand, etc.)

	Metric Path Planning
	Objectives
	Introduction to Navigation
	Two types of spatial representations�commonly used in path planning
	Two types of spatial representations�commonly used in path planning (con’t.)
	Metric Path Planning
	Configuration Space
	Metric Maps use Cspace
	Major Cspace Representations
	Object Growing
	Method for Object Growing
	Method for Object Growing
	Result of Object Growing: New Configuration Space
	Examples of Cspace Representations
	Meadow Maps (Hybrid Vertex-graph Free-space)
	Example Meadow Map
	Class Exercise
	Path Relaxation
	Example of Path Relaxation
	Limited Usefulness of Meadow Maps
	Generalized Voronoi Diagrams (GVGs)
	Example Generalized Voronoi Graph (GVG)
	Class Exercise
	Problems with GVG
	Regular Grids / Occupancy Grids
	Class Exercise
	Disadvantages of Regular Grids
	Quadtrees
	Example Quadtree Representation
	Summary of Representations
	Algorithms
	Graph Based Planners
	Motivation for A*
	A* Search Algorithm
	A* Heuristic Function
	Estimating h(n)
	Example: A to E
	Slide Number 38
	Slide Number 39
	Class Exercise
	Pros and Cons of A* Search/Path Planner

