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Minerva tour guide robot (CMU): 
Gave tours in Smithsonian’s National Museum of History 

Example of Minerva’s occupancy 
map used for navigation 
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Objectives 

• Path planning:  identifying a trajectory that will cause the robot to reach 
the goal location when executed 
 

• Understand techniques for metric path planning: 
– Configuration space 
– Meadow maps 
– Generalized Voronoi graphs 
– Grids 
– Quadtrees 
– Graph-based planners: A* 
– Wavefront-based planners 
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Introduction to Navigation 

• Navigation is fundamental ability in autonomous mobile robotics 
 

• Primary functions of navigation: 
– Where am I going? 

• Usually defined by human operator or mission planner 
– What’s the best way to get there? 

• Path planning:  qualitative and quantitative 
– Where have I been? 

• Map making 
– Where am I? 

• Localization:  relative or absolute 
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Two types of spatial representations 
commonly used in path planning 

• Examples of two forms of Spatial representations:   
– Qualitative (route) [sometimes called “topological”]: 

 
 
 
 
 

 
– Quantitative (metric or layout): 

 

derived from: 
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Two types of spatial representations 
commonly used in path planning (con’t.) 

• Two forms of Spatial memory:   
– Qualitative (route): 

• Express space in terms of connections between landmarks 
• Dependent upon perspective of the robot 
• Orientation clues are egocentric 
• Usually cannot be used to generate quantitative (metric/layout) representations 

 
– Quantitative (metric or layout): 

• Express space in terms of physical distances of travel 
• Bird’s eye view of the world 
• Not dependent upon the perspective of the robot 
• Independent of orientation and position of robot 
• Can be used to generate qualitative (route) representations 
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Metric Path Planning 

• Objective:  determine a path to a specified goal 
 

• Metric methods: 
– Tend to favor techniques that produce an optimal path 
– Usually decompose path into subgoals called waypoints 

 
• Two components to metric methods for path planning: 

– Representation (i.e., data structure) 
– Algorithm 
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Configuration Space 

• Configuration Space (abbreviated: “Cspace”): 
– Data structure that allows robot to specify position and orientation of objects 

and robot in the environment 
– “Good Cspace”:  Reduces # of dimensions that a planner has to deal with 
– Typically, for indoor mobile robots: 

• Assume 2 DOF for representation 
• Assume robot is round, so that orientation doesn’t matter 
• Assumes robot is holonomic (i.e., it can turn in place)  

– (Although there is much research dealing with path planning in non-
holonomic robots) 

– Typically represents “occupied” and “free” space 
• “Occupied”  object is in that space 
• “Free”  space where robot is free to move without hitting any modeled object 
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Metric Maps use Cspace 

• World Space: physical space robots and obstacles exist in 
– In order to use, generally need to know (x,y,z) plus Euler angles: 6DOF 

• Ex. Travel by car, what to do next depends on where you are and what direction you’re 
currently heading 

• Configuration Space (Cspace) 
– Transform space into a representation suitable for robots, simplifying assumptions 
 

6DOF 
3DOF 
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Major Cspace Representations 

• Idea: reduce physical space to a Cspace representation which is more 
amenable for storage in computers and for rapid execution of algorithms 
 

• Major types 
–Meadow Maps 
–Generalized Voronoi Graphs (GVG) 
–Regular grids, quadtrees 
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Object Growing 

• Since we assume robot is round, we can “grow” objects by the width of 
the robot and then consider the robot to be a point 
 

• Greatly simplifies path planning 
 

• New representation of objects typically called “configuration space object” 
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Method for Object Growing 

Robot starting position 

Robot desired position 
• In this example:  Triangular robot 
• Configuration growing: based on robot’s 

bottom left corner 
• Method:  conceptually move robot around 

obstacles without collision, marking path of 
robot’s bottom left corner 
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Method for Object Growing 

Robot starting position 

Robot desired position 
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Result of Object Growing: New Configuration Space 

Robot starting position 

Robot desired position 

IMPORTANT NOTE:  Must make multiple 
configurations spaces corresponding to various 
degrees of rotations for moving objects. Then, 

generalize search to move from space to space 

Robot now considered a point: 

Can now plan path of point through this 
space without dealing with shape of robot 
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Examples of Cspace Representations 

• Voronoi diagrams 
• Regular grids 
• Quadtrees/octtrees 
• Vertex graphs 
• Hybrid free space/vertex graphs (meadow map) 
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Meadow Maps (Hybrid Vertex-graph Free-space) 

• Transform space into convex polygons 
– Polygons represent safe regions for robot to traverse 

 
• Important property of convex polygons: 

– If robot starts on perimeter and goes in a straight line to any other point on the 
perimeter, it will not go outside the polygon 
 

• Path planning: 
– Involves selecting the best series of polygons to transit through 
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Example Meadow Map 

1.  Grow objects 
2.  Construct convex 
      polygons 

3.  Mark midpoints;  
     these become  
     graph nodes for  
     path planner 

4.  Path planner  
     plans path 
     based upon new  
     graph 
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Class Exercise 

• Create a meadow map and relational graph using mid-point of line 
segments 
 



18 

Path Relaxation 

• Disadvantage of Meadow Map: 
– Resulting path is jagged 

 
• Solution:  path relaxation 

– Technique for smoothing jagged paths resulting from any discretization of 
space 
 

• Approach: 
– Imagine path is a string 
– Imagine pulling on both ends of the string to tighten it 
– This removes most of “kinks” in path 
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Example of Path Relaxation 

Starting point 

Goal point 

Originally planned path 
Relaxed path 
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Limited Usefulness of Meadow Maps 

• Three problems with meadow maps: 
– Technique to generate polygons is computationally complex 

 
– Uses artifacts of the map to determine polygon boundaries, rather than things 

that can be sensed 
 

– Unclear how to update or repair diagrams as robot discovers differences 
between a priori map and the real world 
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Generalized Voronoi Diagrams (GVGs) 

• GVGs:   
– Popular mechanism for representing Cspace and generating a graph 
– Can be constructed as robot enters new environment 

 
• Basic GVG approach: 

– Generate a Voronoi edge, which is equidistant from all points 
– Point where Voronoi edge meets is called a Voronoi vertex 
– Note:  vertices often have physical correspondence to aspects of environment 

that can be sensed 
– If robot follows Voronoi edge, it won’t collide with any modeled obstacles  

don’t need to grow obstacle boundaries 
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Example Generalized Voronoi Graph (GVG) 

• Imagine a fire starting at the boundaries, creating a line where they 
intersect.  Intersection of lines are nodes. 

• Result is a relational graph. 
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Class Exercise 

• Create a GVG of this space 
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Problems with GVG 

• Sensitive to sensor noise 
• Path execution: requires robot to be able to sense boundaries 
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Regular Grids / Occupancy Grids 

• Superimposes a 2D 
Cartesian grid on the world 
space (bigger than pixels, 
but same idea) 

• If there is any object in the 
area contained by a grid 
element, that element is 
marked as occupied 

• Center of each element in 
grid becomes a node, 
leading to highly 
connected graph 

• Grid nodes are connected 
to neighbors (either 4-
connected or 8-connected) 
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Class Exercise 

• Use 4-connected neighbors to create a relational graph 
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Disadvantages of Regular Grids 

• Digitization bias:   
– World doesn’t always line up on grids (If object falls into even small portion of 

grid element, the whole element is marked as occupied) 
– Leads to wasted space 

• Solution:  use fine-grained grids (4-6 inches) 
• But, this leads to high storage cost and high # nodes for path planner to consider 

 
• Partial solution to wasted space:  Quadtrees 
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Quadtrees 

• Representation starts with large area (e.g., 8x8 inches) 
 

• If object falls into part of grid, but not all of grid, space is subdivided into 
for smaller grids 
 

• If object doesn’t fit into sub-element, continue recursive subdivision 
 

• 3D version of Quadtree – called an Octree. 
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Example Quadtree Representation 

(Not all cells are subdivided as in an actual quadtree representation (too much work for 
a drawing by hand!, but this gives basic idea) 
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Summary of Representations 

• Metric path planning requires  
– Representation of world space, usually try to simplify to 

cspace 
– Algorithms which can operate over representation to produce 

best/optimal path 
 

• Representation 
– Usually try to end up with relational graph 
– Regular grids are currently most popular in practice, GVGs 

are interesting 
– Tricks of the trade 

• Grow obstacles to size of robot to be able to treat holonomic 
robots as point 

• Relaxation (string tightening) 
 

• Metric methods often ignore issue of 
– how to execute a planned path 
– Impact of sensor noise or uncertainty, localization 
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Algorithms 

• For Path planning 
– A* for relational graphs 
– Wavefront for operating directly on regular grids 
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Graph Based Planners 

• Finding path between initial node and goal node can be done using graph search 
algorithms 
 

• Graph search algorithms:  found in networks, routing problems, etc. 
 

• However, many graph search algorithms require visiting each node in graph to 
determine shortest path 
– Computationally tractable for sparsely connected graph (e.g., Voronoi diagram) 
– Computationally expensive for highly connected graph (e.g., regular grid) 

 
• Therefore, interest is in “branch and bound” search 

– Prunes off paths that aren’t optimal 
 

• Classic approach:  A* (“A Star”) search algorithm   
– Frequently used for holonomic robots 
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Motivation for A* 

• Single Source Shortest Path algorithms are exhaustive, visiting all edges 
– Can’t we throw away paths when we see that they aren’t going to the goal, 

rather than follow all branches? 
 

• This means having a mechanism to “prune” branches as we go, rather 
than after full exploration 
 

• Algorithms which prune earlier (but correctly) are preferred over 
algorithms which do it later. 
 

• Issue -> the mechanism for pruning 
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A* Search Algorithm 

• Similar to breadth-first: at each point in the time the planner can only 
“see” its node and 1 set of nodes “in front” 

• Idea is to rate the choices, choose the best one first, throw away any 
choices whenever you can: 
 

f*(n) = g*(n) + h*(n)                             // ‘*’ means these are estimates 
 
where: 
• f *(n) is the “goodness” of the path from Start to n 
• g*(n) is the “cost” of going from the Start to node n 
• h*(n) is the cost of going from n to the Goal 

– h is for “heuristic function”, because must have a way of guessing the 
cost of n to Goal since can’t see the path between n and the Goal 
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A* Heuristic Function 

• g*(n) is easy: just sum up the path costs to n 
 

• h*(n) is tricky 
– But path planning requires an a priori map 
– Metric path planning requires a METRIC a priori map 
– Therefore, know the distance between Initial and Goal nodes, just not the 

optimal way to get there 
– h*(n)= distance between n and Goal 

f *(n) = g*(n) + h*(n) 
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Estimating h(n) 

• Must ensure that h*(n) is never greater than h(n)   
 

• Admissibility condition:   
– Must always underestimate remaining cost to reach goal 

 
• Easy way to estimate:   

– Use Euclidian (straight line) distance 
– Straight line will always be shortest path 
– Actual path may be longer, but admissibility condition still holds 
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Example: A to E 

 
• But since you’re starting at A and can only look 1 node ahead, this is 

what you see: 

A B 

D 

F E 

1 

1 

1 

1 

1.4 

1.4 

A B 

D 

E 

1 

1.4 
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• Two choices for n: B, D 
• Do both 

– f*(B) =1 + 2.24  = 3.24 
– f*(D) =1.4 + 1.4 = 2.8 

• Can’t prune, so much keep going (recurse) 
– Pick the most plausible path first => A-D-?-E 

A B 

D 

E 

1 

1.4 

1.4 

2.24 
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• A-D-?-E 
– “stand on D” 
– Can see 2 new nodes: F, E 
– f*(F) =(1.4+1)   + 1 = 3.4 
– f*(E) =(1.4+1.4)+ 0 = 2.8 

 
• Three paths 

– A-B-?-E ≥ 3.24 
– A-D-E = 2.8 
– A-D-F-?-D ≥ 3.4 

 
• A-D-E is the winner!  

– Don’t have to look farther because expanded the shortest first, others 
couldn’t possibly do better without having negative distances, 
violations of laws of geometry… 
 

A B 

D 

E 

1 

1.4 

1.4 

F 
1 

1 
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Class Exercise 

Compute optimal path from A-city to B-city 
 
Straight-line distance to B-city from: 

A-city: 366 
B-city: 0 
F-city: 176  
O-city: 380 
P-city: 98 
R-city: 193 
S-city: 253 
T-city: 329 
Z-city: 374 

A-city 

Z-city 

O-city 

T-city 

S-city 

R-city 

P-city 

B-city 

F-city 

118 

140 

75 

71 
151 

80 

97 
101 

211 
99 
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Pros and Cons of A* Search/Path Planner 

• Advantage: 
– Can be used with any Cspace representation that can be transformed into a 

graph 
 

• Limitation: 
– Hard to use for path planning when there are factors to consider other than 

distance (e.g., rocky terrain, sand, etc.) 
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