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e Localization base on external sensors,
beacons or landmarks

* Probabilistic Map Based Localization

Perception



Challenges of L ocalization

Knowing the absolute position (e.g. GPS) is noficieit
Localization in human-scale in relation with enwvineent
Planning in th&Cognitionstep requires more than only position as input

Perception and motion plays an important role
Sensor noise
Sensor aliasing
Effector noise
Odometric position estimation
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Sensor Noise

Sensor noise is mainly influenced by environment
e.g. surface, illumination ...

or by the measurement principle itself
e.g. interference between ultrasonic sensors

Sensor noise drastically reduces the useful infoomaf sensor
readings. The solution is:

to take multiple reading into account
employ temporal and/or multi-sensor fusion
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Sensor Aliasing

In robots, non-unigueness of sensors readingeiadrm

Even with multiple sensors, there is a many-todma@ping from
environmental states to robot’s perceptual inputs

Therefore the amount of information perceived l®/gbnsors is
generally insufficient to identify the robot’s ptien from a single
reading

Robot’s localization is usually based on a seriegeadings

Sufficient information is recovered by the robo¢otime

© R. Siegwart, I. Nourbakhsh



Effector Noise: Odometry, Dead Reckoning

Odometry and dead reckoning:
Position update is based on proprioceptive sensors

Odometry: wheel sensors only
Dead reckoning: also heading sensors

The movement of the robot, sensed with wheel ensaal®d/or
heading sensors is integrated to the position.

Pros: Straight forward, easy
Cons: Errors are integrated -> unbounded

Using additional heading sensors (e.g. gyroscopghthelp to reduce
the accumulated errors, but the main problems metha same.
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Odometry: Error sources

deterministic non-deterministic
(systematic) <G > (non-systematic)

deterministic errors can be eliminated by proper calilon of the system.

non-deterministic errors have to be described by erroretsodnd will always
lead to uncertain position estimate.

Major Error Sources:
Limited resolution during integration (time incrementgasurement resolution

)

Misalignment of the wheels (deterministic)
Unequal wheel diameter (deterministic)
Variation in the contact point of the wheel
Unequal floor contact (slipping, non-planar ...)
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Odometry: Classification of Integration Errors

Range error: integrated path length (distanceh®tobots movement
sum of the wheel movements

Turn error: similar to range error, but for turns
difference of the wheel motions

Drift error: difference in the error of the whe&ads to an error in the
robot’s angular orientation

Over long periods of time, turn and drift errors

far outweigh range errors!

Consider moving forward on a straight line along #axis. The error
In they-position introduced by a move @fmeters will have a component
of dsinA@, which can be quite large as the angular eré@& grows.
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Autonomous Mobile Robots, Chapter 5

Odometry: The Differential Drive Robot (1)
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Autonomous Mobile Robots, Chapter 5

Odometry: The Differential Drive Robot (2)

» Kinematics
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Odometry: The Differential Drive Robot (3)

» Error model (details are beyond the scope of ass;ljust know that

we can build an error model...)
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Odometry: Growth of Pose uncertainty for Straight Line Movement

» Note: Errors perpendicular to the direction of moeabtare growing much faster!

Error Propagation in Odometry
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Odometry: Growth of Pose uncertainty for Movement on a Circle

« Note: Error ellipse does not remain perpendiculdhéodirection of movement!

Error Propagation in Odometry
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Autonomous Mobile Robots, Chapter 5

Tolocalize or not?

* How to navigate between A and B

» navigation without hitting obstacles

» detection of goal location

» Possible by following always the left wall

» However, how to detect that the goal is reached
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Behavior Based Navigation

SEensors

communicate data

discover new area

detect goal position

avoid obstacles

>, actuatc}rs>

RREER

follow right / left wall

coordination / fusion
e.g. fusion via vector summation
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Model Based Navigation

— perception

Y

localization / map-building

Esor%— v actuatﬂrs>

cognition / planning

Y

motion control
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