Potential Fields

Introduction to Potential Fields:

• Potential field: array (or field) of vectors representing space

• Vector $\mathbf{v} = (m, d)$: consists of magnitude (m) and direction (d)

• Vector represents a force

• Typically drawn as an arrow:

 Length of arrow = m = magnitude

 Angle of arrow = d = direction
Potential Field Path Planning

• Robot is treated as a point under the influence of an artificial potential field.
 – Generated robot movement is similar to a ball rolling down the hill
 – Goal generates attractive force
 – Obstacles are repulsive forces
• Note that this is more than just path planning: it is also a control law for the robot’s motion

© R. Siegwart, I. Nourbakhsh
Potential Fields – More detail

- Vector space is 2D world, like bird’s eye view of map
- Map divided into squares, creating (x,y) grid
- Each element represents square of space
- Perceivable objects in world exert a force field on surrounding space
Some Primitive Types of Potential Fields

Uniform

Perpendicular

Attraction

Repulsion

Tangential
• Change in velocity in different parts of the field

(See your text for 3D versions of these profiles)

Field closest to an attractor/repellor will be stronger
• Repulsive field with linear drop-off:

\[V_{\text{direction}} = 180^\circ \]

\[V_{\text{magnitude}} = \begin{cases}
 \frac{(D - d)}{D} & \text{for } d \leq D \\
 0 & \text{for } d > D
\end{cases} \]

where \(D \) is max range of field’s effect
Important Note:

Entire Field Does Not Have to Be Computed

- Only portion of field affecting robot is computed

- Robot uses functions defining potential fields at its position to calculate component vector
Combining Fields/Behaviors

• Compute each behavior’s potential field
• Sum vectors at robot’s position to get resultant output vector
Issues with Combining Potential Fields

• Impact of update rates:
 – Lower update rates can lead to “jagged” paths

• Robot treated as point:
 ➔ Expect robot to change velocity and direction instantaneously (can’t happen)

• Local minima:
 – Vectors may sum to 0.
The Problem of Local Minima

• If robot reaches local minima, it will just sit still

Local minima: vectors sum to 0
Solutions for Dealing with Local Minima

- Inject noise, randomness:
 - “Bumps” robot out of minima

- Include “avoid-past” behavior:
 - Remembers where robot has been and attracts the robot to other places

- Use “Navigation Templates” (NaTs):
 - The “avoid” behavior receives as input the vector summed from other behaviors
 - Gives “avoid” behavior a preferred direction

- Insert tangential fields around obstacles
Again now, with more math: **Potential Field Generation**

- Generation of potential field function $U(q)$ for robot at point q:
 - attracting (goal) and repulsing (obstacle) fields
 - summing up the fields $U(q) = U_{\text{att}}(q) + U_{\text{rep}}(q)$
 - functions must be differentiable

 $\nabla U = \begin{bmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{bmatrix}$

- Generate artificial force field $F(q)$ as the gradient of the potential field:

 $F(q) = -\nabla U(q)$

 $F(q) = F_{\text{att}}(q) + F_{\text{rep}}(q)$

 $= -\nabla U_{\text{att}}(q) - \nabla U_{\text{rep}}(q)$

Adapted from: © R. Siegwart, I. Nourbakhsh
Converting to robot control

• Set robot velocity \((v_x, v_y)\) proportional to the force \(F(q)\) generated by the field
 – the force field drives the robot to the goal
 – robot is assumed to be a point mass

Adapted from: © R. Siegwart, I. Nourbakhsh
Mathematical Representation: Attractive Potential Field

- Parabolic function representing the Euclidean distance $\|q - q_{goal}\|$ to the goal:

$$U_{att}(q) = \frac{1}{2}k_{att} \cdot \rho_{goal}^2(q)$$

where k_{att} is a positive scaling factor, and $\rho_{goal}(q)$ is distance $\|q - q_{goal}\|$

- Attracting force converges linearly towards 0 (goal):

$$F_{att}(q) = -\nabla U_{att}(q)$$
$$= -k_{att} \cdot \rho_{goal}(q) \nabla \rho_{goal}(q)$$
$$= -k_{att} \cdot (q - q_{goal})$$

© R. Siegwart, I. Nourbakhsh
Mathematical Representation: **Repulsive Potential Field**

- Should generate a barrier around all the obstacles:
 - strong if close to the obstacle
 - no influence if far from the obstacle

\[
U_{rep}(q) = \begin{cases}
\frac{1}{2} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(q) \leq \rho_0 \\
0 & \text{if } \rho(q) \geq \rho_0
\end{cases}
\]

- \(\rho(q) \): minimal distance to the obst. from \(q \); \(\rho_0 \) is distance of influence of obst.
- Field is positive or zero and *tends to infinity* as \(q \) gets closer to the obstacle

\[
F_{rep}(q) = -\nabla U_{rep}(q) = \begin{cases}
 k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2(q)} \frac{q - q_{obstacle}}{\rho(q)} & \text{if } \rho(q) \leq \rho_0 \\
0 & \text{if } \rho(q) \geq \rho_0
\end{cases}
\]
Potential Field Path Planning: Using Harmonic Potentials

- Hydrodynamics analogy
 - robot is moving similar to a fluid particle following its stream
- Ensures that there are no local minima

• Note:
 – Complicated, only simulation shown
(backup)
Return to Motor Schemas:
Example Motor Schema Encodings

• Move-to-goal (ballistic):
 \[V_{\text{magnitude}} = \text{fixed gain value} \]
 \[V_{\text{direction}} = \text{towards perceived goal} \]

• Avoid-static-obstacle:
 \[
 V_{\text{magnitude}} = \begin{cases}
 0 & \text{for } d > S \\
 \frac{S - d}{S - R} \times G & \text{for } R < d \leq S \\
 \infty & \text{for } d \leq R
 \end{cases}
 \]

 where
 \(S = \text{sphere of influence of obstacle} \)
 \(R = \text{radius of obstacle} \)
 \(G = \text{gain} \)
 \(d = \text{distance of robot to center of obstacle} \)
More Motor Schema Encodings

- Stay-on-path:

\[
V_{\text{magnitude}} = \begin{cases}
 P & \text{for } d > (W/2) \\
 \frac{d}{W/2} \times G & \text{for } d \leq (W/2)
\end{cases}
\]

where:
- \(W \) = width of path
- \(P \) = off-path gain
- \(G \) = on-path gain
- \(D \) = distance of robot to center of path

\(V_{\text{direction}} \) = along a line from robot to center of path, heading toward centerline
More Motor Schema Encodings (con’t.)

• Move-ahead:
 \[V_{\text{magnitude}} = \text{fixed gain value} \]
 \[V_{\text{direction}} = \text{specified compass direction} \]

• Noise:
 \[V_{\text{magnitude}} = \text{fixed gain value} \]
 \[V_{\text{direction}} = \text{random direction changed every } p \text{ time steps} \]