The goal of the obstacle avoidance algorithms is to avoid collisions with obstacles. It is usually based on a local map. Often implemented as a more or less independent task. However, efficient obstacle avoidance should be optimal with respect to:

- *the overall goal*
- *the actual speed and kinematics of the robot*
- *the on board sensors*
- *the actual and future risk of collision*
Obstacle Avoidance: **Bug1**

- Follow along the obstacle to avoid it
- Fully circle each encountered obstacle
- Move to the point along the current obstacle boundary that is closest to the goal
- Move toward the goal and repeat for any future encountered obstacle
Obstacle Avoidance: **Bug2**

- Follow the obstacle always on the left or right side
- Leave the obstacle if the direct connection between start and goal is crossed
Practical Implementation of Bug2

- Two states of robot motion:
 1. moving toward goal (GOALSEEK)
 2. moving around contour of obstacle (WALLFOLLOW)
- Describe robot motion as function of sensor values and relative direction to goal
- Decide how to switch between these two states

```java
while (!atGoal)
{
  if (goalDist < goalThreshold)
    We're at the goal! Halt.
  else
    {
      forwardVel = ComputeTranslation(&sonars)
      if (robotState == GOALSEEK)
        {
          rotationVel = ComputeGoalSeekRot(goalAngle)
          if (ObstaclesInWay())
            robotState <- WALLFOLLOW
        }
      if (robotState == WALLFOLLOW)
        {
          rotationVel = ComputeRightWallFollowRot(&sonars)
          if (!ObstaclesInWay())
            robotState <- GOALSEEK
        }
    }
  robotSetVelocity(forwardVel, rotationVel)
}
```
Practical Implementation of Bug2 (con’t.)

• ObstaclesInWay(): is true whenever any sonar range reading in the direction of the goal (i.e., within 45° of the goal) is too short

• ComputeTranslation(): proportional to largest range reading in robot’s approximate forward direction

 // Note similarity to potential field approach!
 // If minSonarFront (i.e., within 45° of the goal) < min_dist
 // o return 0
 // Else return min (max_velocity, minSonarFront – min_dist)
Practical Implementation of Bug2 (con’t.)

- For computing rotation direction and speed, popular method is:
 - Subtract left and right range readings
 - The larger the difference, the faster the robot will turn in the direction of the longer range readings

- ComputeGoalSeekRot(): // returns rotational velocity
 - if (abs(angle_to_goal)) < PI/10
 - return 0
 - else return (angle_to_goal * k) // k is a gain

- ComputeRightWallFollowRot(): // returns rotational velocity
 - if max(minRightSonar, minLeftSonar) < min_dist
 - return hard_left_turn_value // this is for a right wall follower
 - else
 - desiredTurn = (hard_left_turn_value - minRightSonar) * 2
 - translate desiredTurn into proper range
 - return desiredTurn

Adapted from © R. Siegwart, I. Nourbakhsh
Pros/Cons of Bug2

• Pros:
 ➢ Simple
 ➢ Easy to understand
 ➢ Popularly used

• Cons:
 ➢ Does not take into account robot kinematics
 ➢ Since it only uses most recent sensor values, it can be negatively impacted by noise

• More complex algorithms (in the following) attempt to overcome these shortcomings
Obstacle Avoidance: Vector Field Histogram (VFH)

- Overcomes Bug2’s limitation of only using most recent sensor data by creating a local map of the environment around the robot.
- Local map is a small occupancy grid.
- This grid is populated only by relatively recent sensor data.
- Grid cell values are equivalent to the probability that there is an obstacle in that cell.

Koren & Borenstein, ICRA 1990
How to calculate probability that cell is occupied?

- Need sensor model to deal with uncertainty

- Let’s look at the approach for a sonar sensor …
Modeling Common Sonar Sensor

Region I: Probably occupied
Region II: Probably empty
Region III: Unknown

$R =$ maximum range
$\beta =$ field of view
How to Convert to Numerical Values?

• Need to translate model (previous slide) to specific numerical values for each occupancy grid cell
 ➢ *These values represent the probability that a cell is occupied (or empty), given a sensor scan (i.e.,* $P(\text{occupied} \mid \text{sensing})$)

• Three methods:
 ➢ *Bayesian*
 ➢ *Dempster-Shafer Theory*
 ➢ *HIMM (Histogrammic in Motion Mapping)*

• We’ll cover:
 ➢ *Bayesian*

• We won’t cover:
 ➢ *Dempster-Shafer*
 ➢ *HIMM*
Bayesian: Most popular evidential method

• Approach:
 - Convert sensor readings into probabilities
 - Combine probabilities using Bayes’ rule:
 \[P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \]
 - That is,
 \[\text{Posterior} = \frac{\text{Likelihood } \times \text{Prior}}{\text{Normalizing constant}} \]

• Pioneers of approach:
 - Elfes and Moravec at CMU in 1980s
Review: Basic Probability Theory

- Probability function:
 - Gives values from 0 to 1 indicating whether a particular event, H (Hypothesis), has occurred

- For sonar sensing:
 - **Experiment**: Sending out acoustic wave and measuring time of flight
 - **Outcome**: Range reading reporting whether the region being sensed is Occupied or Empty

- Hypotheses (H) = {Occupied, Empty}

- Probability that H has really occurred:
 \[0 < P(H) < 1 \]

- Probability that H has not occurred:
 \[1 - P(H) \]
Unconditional and Conditional Probabilities

• Unconditional probability: \(P(H) \)
 ➢ “Probability of H”
 ➢ Only provides a priori information
 ➢ For example, could give the known distribution of rocks in the environment, e.g., “x% of environment is covered by rocks”
 ➢ For robotics, unconditional probabilities are not based on sensor readings

• For robotics, we want: Conditional probability: \(P(H \mid s) \)
 ➢ “Probability of H, given s” (e.g., \(P(\text{Occupied} \mid s) \), or \(P(\text{Empty} \mid s) \))
 ➢ These are based on sensor readings, \(s \)

• Note: \(P(H \mid s) + P(\text{not } H \mid s) = 1.0 \)
Probabilities for Occupancy Grids

• For each grid[i][j] covered by sensor scan:
 ➢ Compute \(P(\text{Occupied} \mid s) \) and \(P(\text{Empty} \mid s) \)

• For each grid element, grid[i][j], store tuple of the two probabilities:

```c
typedef struct {
    double occupied;   // i.e., \( P(\text{occupied} \mid s) \)
    double empty;     // i.e., \( P(\text{empty} \mid s) \)
} P;

P occupancy_grid[ROWS][COLUMNS];
```
Recall: Modeling Common Sonar Sensor to get $P(s \mid H)$

Region I: Probably occupied
Region II: Probably empty
Region III: Unknown

$R =$ maximum range
$\beta =$ field of view
Converting Sonar Reading to Probability: Region I

- Region I:

\[
P(\text{Occupied}) = \frac{R - r}{R} + \frac{\beta - \alpha}{\beta} \times \text{Max}_{\text{occupied}}
\]

where \(r \) is distance to grid element that is being updated
\(\alpha \) is angle to grid element that is being updated
\(\text{Max}_{\text{occupied}} = \text{highest probability possible} \) (e.g., 0.98)

\[
P(\text{Empty}) = 1.0 - P(\text{Occupied})
\]

The nearer the grid element to the origin of the sonar beam, the higher the belief
The closer to the acoustic axis, the higher the belief
We never know with certainty
Converting Sonar Reading to Probability: Region II

- Region II:

\[P(\text{Empty}) = \frac{R - r}{R} + \frac{\beta - \alpha}{\beta} \]

The nearer the grid element to the origin of the sonar beam, the higher the belief.

The closer to the acoustic axis, the higher the belief.

\[P(\text{Occupied}) = 1.0 - P(\text{Empty}) \]

where \(r \) *is distance to grid element being updated,*

\(\alpha \) is angle to grid element being updated

Note that here, we allow probability of being empty to equal 1.0
Sonar Tolerance

- Sonar range readings have resolution error

- Thus, specific reading might actually indicate range of possible values

- E.g., reading of 0.87 meters actually means within (0.82, 0.92) meters

 Therefore, tolerance in this case is 0.05 meters.

- Tolerance gives width of Region I
Tolerance in Sonar Model

Region I: Probably occupied
Region II: Probably empty
Region III: Unknown

Tolerance determines Region I Width
Example: What is value of grid cell (assume tolerance = 0.5)

Which region?

3.5 < (6.0 – 0.5) → Region II

\[
P(\text{Empty}) = \frac{10 - 3.5}{10} + \frac{15 - 0}{15} = \frac{6.5}{10} + \frac{15}{15} = 0.65 + 1 = 1.65
\]

= 0.83

\[
P(\text{Occupied}) = (1 - 0.83) = 0.17
\]
But, not yet there – need $P(H|s)$, not $P(s|H)$

- Note that previous calculations gave: $P(s | H)$, not $P(H | s)$
- Thus, use Bayes Rule:

\[
P(H | s) = \frac{P(s | H) P(H)}{P(s | H) P(H) + P(s | not H) P(not H)}
\]

\[
P(H | s) = \frac{P(s | Empty) P(Empty)}{P(s | Empty) P(Empty) + P(s | Occupied) P(Occupied)}
\]

- $P(s | Occupied)$ and $P(s | Empty)$ are known from sensor model
- $P(Occupied)$ and $P(Empty)$ are unconditional, prior probabilities (which may or may not be known)

 ➢ *If not known, okay to assume* $P(Occupied) = P(Empty) = 0.5$
Returning to Example

- Let’s assume we’re on Mars, and we know that $P(Occupied) = 0.75$
- Continuing same example for cell ...

- $P(Empty \mid s=6) = \frac{P(s \mid Empty) P(Empty)}{P(S \mid Empty) P(Empty) + P(s \mid Occupied) P(Occupied)}$

 = $\frac{0.83 \times 0.25}{0.83 \times 0.25 + 0.17 \times 0.75}$

 = 0.62

- $P(Occupied \mid s=6) = 1 - P(Empty \mid s=6) = 0.38$

- These are the values we store in our grid cell representation
Updating with Bayes Rule

• How to fuse multiple readings obtained over time?

• First time:
 ➢ *Each element of grid initialized with a priori probability of being occupied or empty*

• Subsequently:
 ➢ *Use Bayes’ rule iteratively*
 ➢ *Probability at time t_{n-1} becomes prior and is combined with current observation at t_n using recursive version of Bayes rule:*

$$P (H | s_n) = \frac{P(s_n | H) P(H | s_{n-1})}{P(s_n | H) P(H | s_{n-1}) + P(s_n | not H) P(not H | s_{n-1})}$$
Now, back to: Vector Field Histogram (VFH)

- Environment represented in a grid (2 DOF)
 - cell values are equivalent to the probability that there is an obstacle

- Generate polar histogram:

Koren & Borenstein, ICRA 1990

Adapted from © R. Siegwart, I. Nourbakhsh
Now, back to: Vector Field Histogram (VFH)

- From histogram, calculate steering direction:
 - Find all openings large enough for the robot to pass through
 - Apply cost function G to each opening
 \[G = a \cdot \text{target
direction} + b \cdot \text{wheel
orientation} + c \cdot \text{previous
direction} \]
 where:
 - $\text{target
direction} = \text{alignment of robot
path with goal}$
 - $\text{wheel
orientation} = \text{difference between
new direction and current
wheel orientation}$
 - $\text{previous
direction} = \text{difference between
previously selected
direction and new
direction}$
 - Choose the opening with lowest cost function value

Koren & Borenstein, ICRA 1990
Obstacle Avoidance: Video VFH

• Notes:
 - Limitation if narrow areas (e.g. doors) have to be passed
 - Local minimum might not be avoided
 - Reaching of the goal cannot be guaranteed
 - Dynamics of the robot not really considered

VIDEO: Borenstein.mpg