Autonomous Mobile Robots, Chapter 6

Obstacle Avoidanc@Local Path Planning)

* The goal of the obstacle avoidance algorithms es/md collisions

with obstacles
e It Is usually based olmcal map

« Often implemented as a more or les$ependent task

* However, efficient obstacle avoidance
should be optimal with respect to

» the overall goal

» the actual speed and kinematics of the robot
» the on board sensors

» the actual and future risk of collision

Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Obstacle Avoidancd3ugl

 Follow along the obstacle to avoid it

 Fully circle each encountered obstacle

* Move to the point along the current obstacle boontiaat is closest to
the goal

* Move toward the goal and repeat for any future ante&red obstacle

+wapeew ol © R Siegwart, 1. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Obstacle Avoidancdiug?2

» Follow the obstacle always on the left or rightesid
» Leave the obstacle if the direct connection betvatart and goal is crossed

start

Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Practical Implementation of Bug2

e Two states of robot motion:

» (1) moving toward goal (GOALSEEK)

» (2) moving around contour of obstacle (WALLFOLLOW)
* Describe robot motion as function of sensor valresrelative direction to goal
* Decide how to switch between these two states

while (! atGoal)
{ if(goalDist < goalThreshold)
We're at the goal! Halt.
else
{ forwardVel = ComputeTranslation (& sonars)
if (robotState == GOALSEEK)
{ rotationVel = ComputeGoalSeekRot (goalAngle)
if (ObstaclesinWay
robotState <- WALLFOLLOW

}
if (robotState == WALLFOLLOW)
{ rotationVel = ComputeRightWallFollowRot (& sonars)
if ! ObstaclesinWay ())
robotState <- GOALSEEK)

}

robotSetVelocity (forwardVel , rotationVel)

Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Practical Implementation of Bug2 (con'’t.)

« ObstaclesIinway(): IS true whenever any sonar range reading in the
direction of the goal (i.e., within 4%f the goal) is too short

« ComputeTranslation(): proportional to largest range reading in

robot’s approximate forward direction
» [/ Note similarity to potential field approach!
» If minSonarFront (i.e., within 45 o of the goal) < min_dist
o returnO
» Else return min (max_velocity, minSonarFront — min_d ISt)

Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Practical Implementation of Bug2 (con'’t.)

e For computing rotation direction and speed, popuiathod is:
» Subtract left and right range readings

» The larger the difference, the faster the robot wiln in the
direction of the longer range readings

 ComputeGoalSeekRot(): // returns rotational veloci ty
» if (abs(angle _to goal)) < PI/10

o returnO
» else return (angle to _goal * k) // kis a gain

* ComputeRightWallFollowRot(): // returns rotational velocity
» If max(minRightSonar, minLeftSonar) < min_dist
o return hard_left turn_value // this is for a right wall follower
> else
0 desiredTurn = (hard_left_turn_value — minRightSonar) *2

0 translate desiredTurn into proper range
0 return desiredTurn
Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Pros/Cons of Bug2

* Pros:
» Simple
» Easy to understand
» Popularly used

e Cons:
» Does not take into account robot kinematics

» Since it only uses most recent sensor valuesnibeanegatively
Impacted by noise

* More complex algorithms (in the following) attentptovercome these
shortcomings

Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Obstacle Avoidanca/ector Field Histogram (VFH)

Koren & Borenstein, ICRA 1990

» Overcomes Bug?2’s limitation of only using most netcgensor data by
creating local map of the environment around thm®to

 Local map is a small occupancy grid

 This grid is populated only by relatively recenbhser data

 Grid cell values are equivalent to the probabititst there is an
obstacle in that cell \
\

—

\
\C 27

|

\ENEA

Adapted from © R. Siegwart, . Nourbakhsh

How to calculate probability that cell is occupied?

* Need sensor model to deal with uncertainty

* Let’s look at the approach for a sonar sensor ...

Adapted from © R. Siegwart, . Nourbakhsh

Modeling Common Sonar Sensor

/\\ R = maximum range
B =field of view
/ T~
/ B ~} T~
§/ \\\
! \\\
R ~~
Region IlI Region I /,//
\ \ ///
\ -
\ -
_—

Region I: Probably occupied

Region Il: Probably empty

Reaion lll: Unknown

How to Convert to Numerical Values?

* Need to translate model (previous slide) to speciiimerical values for each
occupancy grid cell

» These values represent the probability that a cell @iped (or empty), given a
sensor scan (i.e., P(occupied | sensing))

e Three methods:
»Bayesian
»Dempster-Shafer Theory
»HIMM (Histogrammic in Motion Mapping)

 We'll cover:
»Bayesian

* \We won't cover:
»Dempster-Shafer
»HIMM

Bayesian: Most popular evidential method

» Approach:
»Convert sensor readings into probabilities
»Combine probabilities using Bayes’ rule:

P(A| B) = P(BL(AE);)P(A

»That is,

. Likelihood x Prior
Posterior =

Normalizing constan

* Pioneers of approach:
»Elfes and Moravec at CMU in 1980s

Review: Basic Probabllity Theory

 Probability function:

» Gives values from 0 to 1 indicating whether a patacevent, H (Hypothesis), has
occurred

 For sonar sensing:
» Experiment: Sending out acoustic wave and measuring time of flight

»Outcome: Range reading reporting whether the region being serss@dcupied or
Empty

« Hypotheses (H) = {Occupied, Empty)

* Probability that H has really occurred:
O<PH) <1

 Probability that H has not occurred:
1 - P(H)

Unconditional and Conditional Probabillities

« Unconditional probability:P(H)
»“Probability of H”
»Only providesa prioriinformation

» For example, could give the known distributionadks in the environment,
e.g., “x% of environment is covered by rocks”

»For robotics, unconditional probabilities aret based on sensor readings

 For robotics, we want: Conditional probabiliti’(H | 9)
»"“Probability of H, givens’ (e.g., F(Occupied | § or P(Empty | $)
» These are based on sensor readirsgs,

* Note: P(H|s) + P(notH |s) = 1.0

Probabilities for Occupancy Grids

* For each grid][i][j] covered by sensor scan:
» ComputeP(Occupied s) and P(Empty| s)

* For each grid element, grid[i][j], store tuple aettwo probabillities:

t ypedef struct {
doubl e occupied; [// i.e., P(occupied | s)
doubl e enpty; [l 1.e., Plenpty | s)
} P

P occupancy_gri d[ROA5] [COLUWNS] ;

Recall: Modeling Common Sonar Sensor to get P($)

/\\ R = maximum range
B =field of view
/ T~
/ B ~/ \\
§/ \\\
! \\\
R ~
Region IlI Region I ,//
L~
\ \ ///
\ -
\ -
_—

Region I: Probably occupied

Region Il: Probably empty

Reaion lll: Unknown

Converting Sonar Reading to Probability: Region |

The nearer the grid element to

* Region I: the origin of the sonar beam, the
higher the belief
The closer to the

/ acoustic axis, the
R-r . b-a

higher the belief

P(Occupiedy R . A X M@, pied
\ We never know with certainty

where r is distance to grid element that is being updlate
a is angle to grid element that is being updated
MaX,...pieq= Nighest probability possible (e.g., 0.98)

P(Empty)= 1.0—P(Occupied)

Converting Sonar Reading to Probability: Region Il

: _ The nearer the grid element to
* Region II: the origin of the sonar beam, the
higher the belief

The closer to the
R-r fB-a / acoustic axis, the
= higher the belief
P(Empty)=__ R %
2

P(Occupied) = 1.0 — P(Empty)

wherer is distance to grid element being updated,
a is angle to grid element being updated

Note that here, we allow probability of being emjotyqual 1.0

Sonar Tolerance

e Sonar range readings have resolution error

* Thus, specific reading might actually indicate @d possible values

* E.g., reading of 0.87 meters actually means withi82, 0.92) meters
» Thereforetolerancan this case is 0.05 meters.

 Tolerance gives width of Region |

Tolerance in Sonar Model

idth
T ines R gion | W
‘ Tolerance deter™
/| i~ ’
/ S
/ B / \/ \\\
s/ L
DU N R .(: Y R R I I A Y - T R A IO :>
Region IlI Region I ,//
//
\ \ ///
\ \
\L
_—
Region I: Region Il Reaion llI:

Example: What is value of gric Ce”. (assume tolerance = 0.5)
Which region?
/' ~_ 3.5 < (6.0 - 0.5) = Region |l
T
B—'15 / 5\/ ~L___
’ > / _35\\\ 101-03.5+ 1155-0
N S T~ P(Empty) =
................. P i —— T 2
Region Il Region I ,//, = 0.83
—
//
\ \ T P(Occupied) = (1-0.83) = 0.17
\[
_—

But, not yet there — need P(H|s), not P(s|H)

* Note that previous calculations gave(s| H), notP(H | s)
* Thus, use Bayes Rule:

P(H|s) = P(s | H) P(H)
P(s | H) P (H) + P(s | not H) P(not H)

P(H|s)= P(s | Empty) P(Empty)
P(s | Empty) P (Empty) + P(s | Occupied) P(Occupied)

* P(s| Occupied andP(s| Empty are known from sensor model
* P(Occupied andP(Empty are unconditional, prior probabilities (which
may or may not be known)
»>f not known, okay to assurR€¢Occupied) = P(Emptyg 0.5

Returning to Example

* Let's assume we’re on Mars, and we know th@ccupied) =0.75
e Continuing same example for c.

* P(Empty| s=6) = P(s | Empty) P(Empty)

P(S | Empty) P (Empty) + P(s | Occupied) P(Occupied)
0.83 x0.25

0.83 x0.25 +0.17x0.75
= 0.62

 P(Occupied s=6) =1 —P(Empty|s=6) = 0.38

» These are the values we store in our grid cell espntation

Updating with Bayes Rule

* How to fuse multiple readings obtained over time?

e First time:
» Each element of grid initialized witnpriori probability of being
occupied or empty
» Subsequently:

» Use Bayes'’ rule iteratively

» Probability at timet, ; becomes prior and is combined with current
observation at, using recursive version of Bayes rule

P(s,| H) P(H s, ,)
P(s,|H)P(H|s,.,) *+P(s,|notH) PnotH]|s,,)

P(H|s)=

Autonomous Mobile Robots, Chapter 6

Now, back to: Vector Field Histogram (VFH)

 Environment represented in a grid (2 DOF) Koren & Borenstein, ICRA 1990

» cell values are equivalent to the probability thiadre is an obstacle

| YA

\

\

N
Y
—

\

v
N

= \

P ‘
. ‘ probability of occupied

threshold

I.|,|| AL Ty u — O

-180° 0 180°
angle at which obstacle is found —
(relative to robot’s current position)

Adapted from © R. Siegwart, . Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Now, back to: Vector Field Histogram (VFH)

Koren & Borenstein, ICRA 1990

* From histogram, calculate steering direction:
» Find all openings large enough for the robot to pdssugh

» Applycost function Go each opening
G = a - target_direction+b - wheel_orientation+c - previous_direction

where:
0 target_direction = alignment of robot path with doa
o wheel _orientation = difference between new direcamd current wheel orientation

0 previous_direction = difference between previowssdiected direction and new direction

» Choose the opening with lowest cost function value
P

’—
1

[/

=- vAB/ImE\\ threshold
g \ %_._[[['JJ{ !IIIII i III' 2 u U

-180° 0 - 180°

MUAPLCU TTUTT Y 1\ Jicyvvadag, 1.

LIV
i
\

INUul uur\nsh

Autonomous Mobile Robots, Chapter 6

6.2.2

Obstacle Avoidancé/ideo VFH

Borenstein et al.

* Notes:

» Limitation if narrow areas
(e.g. doors) have to be
passed

» Local minimum might not

be avoided VIDEO:

> Reaching of the goal cannot be guaranteed Borenstein.mpg

» Dynamics of the robot not
really considered

Adapted from © R. Siegwart, . Nourbakhsh

