Obstacle Avoidance (Local Path Planning)

- The goal of the obstacle avoidance algorithms is to avoid collisions with obstacles
- It is usually based on local map
- Often implemented as a more or less independent task
- However, efficient obstacle avoidance should be optimal with respect to
$>$ the overall goal
$>$ the actual speed and kinematics of the robot
$>$ the on board sensors
$>$ the actual and future risk of collision

Adapted from © R. Siegwart, I. Nourbakhsh

Obstacle Avoidance: Bug1

- Follow along the obstacle to avoid it
- Fully circle each encountered obstacle
- Move to the point along the current obstacle boundary that is closest to the goal
- Move toward the goal and repeat for any future encountered obstacle

Obstacle Avoidance: Bug2

$>$ Follow the obstacle always on the left or right side
$>$ Leave the obstacle if the direct connection between start and goal is crossed

Practical Implementation of Bug2

- Two states of robot motion:
$>(1)$ moving toward goal (GOALSEEK)
$>(2)$ moving around contour of obstacle (WALLFOLLOW)
- Describe robot motion as function of sensor values and relative direction to goal
- Decide how to switch between these two states

```
while (!atGoal)
    { if (goalDist < goalThreshold)
        We're at the goal! Halt.
        else
            { forwardVel = ComputeTranslation(&sonars)
                if (robotState == GOALSEEK)
                            rotationVel = ComputeGoalSeekRot(goalAngle)
                        if (ObstaclesInWay())
                            robotState <- WALLFOLLOW
            }
            if (robotState == WALLFOLLOW)
                    { rotationVel = ComputeRightWallFollowRot(&sonars)
                    if (!ObstaclesInWay())
                        robotState <- GOALSEEK)
                    }
        }
    robotSetVelocity(forwardVel, rotationVel)
    }
```


Practical Implementation of Bug2 (con't.)

- ObstaclesInWay () : is true whenever any sonar range reading in the direction of the goal (i.e., within 45° of the goal) is too short
- ComputeTranslation(): proportional to largest range reading in robot's approximate forward direction

```
> // Note similarity to potential field approach!
> If minSonarFront (i.e., within 450 of the goal) < min_dist
    o return 0
> Else return min (max_velocity, minSonarFront - min_dist)
```


Practical Implementation of Bug2 (con't.)

- For computing rotation direction and speed, popular method is:
$>$ Subtract left and right range readings
$>$ The larger the difference, the faster the robot will turn in the direction of the longer range readings

```
-ComputeGoalSeekRot(): // returns rotational velocity
    > if (abs(angle_to_goal)) < PI/I0
        - return 0
    > else return (angle_to_goal * k) // k is a gain
```

- ComputeRightWallFollowRot(): // returns rotational velocity
$>$ if max(minRightSonar, minLeftSonar) < min_dist
 - return hard_left_turn_value // this is for a right wall follower
$>$ else
 - desiredTurn = (hard_left_turn_value - minRightSonar) * 2
 - translate desiredTurn into proper range
 - return desiredTurn

Pros/Cons of Bug2

- Pros:
$>$ Simple
\rightarrow Easy to understand
> Popularly used
- Cons:
$>$ Does not take into account robot kinematics
- Since it only uses most recent sensor values, it can be negatively impacted by noise
- More complex algorithms (in the following) attempt to overcome these shortcomings

Obstacle Avoidance: Vector Field Histogram (VFH)

Koren \& Borenstein, ICRA 1990

- Overcomes Bug2's limitation of only using most recent sensor data by creating local map of the environment around the robot
- Local map is a small occupancy grid
- This grid is populated only by relatively recent sensor data
- Grid cell values are equivalent to the probability that there is an obstacle in that cell

How to calculate probability that cell is occupied?

- Need sensor model to deal with uncertainty
- Let's look at the approach for a sonar sensor ...

Modeling Common Sonar Sensor

(1)

How to Convert to Numerical Values?

- Need to translate model (previous slide) to specific numerical values for each occupancy grid cell
\rightarrow These values represent the probability that a cell is occupied (or empty), given a sensor scan (i.e., P(occupied | sensing))
- Three methods:
\rightarrow Bayesian
$>$ Dempster-Shafer Theory
$>$ HIMM (Histogrammic in Motion Mapping)
- We'll cover:
- Bayesian
- We won't cover:
$>$ Dempster-Shafer
$>$ HIMM

Bayesian: Most popular evidential method

- Approach:
$>$ Convert sensor readings into probabilities
$>$ Combine probabilities using Bayes' rule:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$>$ That is,

$$
\text { Posterior }=\frac{\text { Likelihood } \times \text { Prior }}{\text { Normalizing constant }}
$$

- Pioneers of approach:
$>$ Elfes and Moravec at CMU in 1980s

Review: Basic Probability Theory

- Probability function:
$>$ Gives values from 0 to 1 indicating whether a particular event, H (Hypothesis), has occurred
- For sonar sensing:
$>$ Experiment: Sending out acoustic wave and measuring time of flight
$>$ Outcome: Range reading reporting whether the region being sensed is Occupied or Empty
- Hypotheses $(\mathrm{H})=\{$ Occupied, Empty $)$
- Probability that H has really occurred:

$$
0<P(H)<1
$$

- Probability that H has not occurred:

$$
l-P(H)
$$

Unconditional and Conditional Probabilities

- Unconditional probability: $P(H)$
$>$ "Probability of H "
$>$ Only provides a priori information
$>$ For example, could give the known distribution of rocks in the environment, e.g., " $x \%$ of environment is covered by rocks"
$>$ For robotics, unconditional probabilities are not based on sensor readings
- For robotics, we want: Conditional probability: $P(H \mid s)$
$>$ "Probability of H , given s" (e.g., $P($ Occupied $\mid s)$, or $P($ Empty $\mid s)$)
$>$ These are based on sensor readings, s
- Note: $P(H \mid s)+P(\operatorname{not} H \mid s)=1.0$

Probabilities for Occupancy Grids

- For each grid[i][j] covered by sensor scan:
$>$ Compute $\mathrm{P}($ Occupied $\mid \mathrm{s})$ and $\mathrm{P}($ Empty $\mid \mathrm{s})$
- For each grid element, grid[i][j], store tuple of the two probabilities:

```
typedef struct {
    double occupied; // i.e., P(occupied | s)
    double empty; // i.e., P(empty | s)
    } P;
P occupancy_grid[ROWS][COLUMNS];
```


Recall: Modeling Common Sonar Sensor to get P(s $\mid \mathbf{H})$

Converting Sonar Reading to Probability: Region I

- Region I:

The nearer the grid element to

where r is distance to grid element that is being updated
α is angle to grid element that is being updated
Max $_{\text {occupied }}=$ highest probability possible (e.g., 0.98)
$\mathrm{P}($ Empty $)=1.0-\mathrm{P}($ Occupied $)$

Converting Sonar Reading to Probability: Region II

- Region II:

The nearer the grid element to
the origin of the sonar beam, the
higher the belief
P(Empty $)=\frac{\frac{R-r}{R}+\frac{\beta-\alpha}{\beta}}{} \begin{aligned} & \text { The closer to the } \\ & \text { acoustic axis, the } \\ & \text { higher the belief }\end{aligned}$
$\mathrm{P}($ Occupied $)=1.0-\mathrm{P}($ Empty $)$
where r is distance to grid element being updated, α is angle to grid element being updated

Note that here, we allow probability of being empty to equal 1.0

Sonar Tolerance

- Sonar range readings have resolution error
- Thus, specific reading might actually indicate range of possible values
- E.g., reading of 0.87 meters actually means within $(0.82,0.92)$ meters
$>$ Therefore, tolerance in this case is 0.05 meters.
- Tolerance gives width of Region I

Tolerance in Sonar Model

Example: What is value of grid cell

\square ? (assume tolerance $=0.5$)

But, not yet there - need $\mathbf{P}(\mathbf{H} \mid \mathbf{s})$, not $\mathbf{P}(\mathbf{s} \mid \mathbf{H})$

- Note that previous calculations gave: $P(s \mid H), \operatorname{not} P(H \mid s)$
- Thus, use Bayes Rule:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{H} \mid \mathrm{s})=\frac{P(s \mid H) P(H)}{P(s \mid H) P(H)+P(s \mid \text { not } H) P(\text { not } H)} \\
& \mathrm{P}(\mathrm{H} \mid \mathrm{s})=\frac{P(s \mid \text { Empty }) P(\text { Empty })}{P(s \mid \text { Empty }) P(\text { Empty })+P(s \mid \text { Occupied }) P(\text { Occupied })}
\end{aligned}
$$

- $P(s \mid$ Occupied $)$ and $P(s \mid$ Empty $)$ are known from sensor model
- $P($ Occupied $)$ and $P($ Empty $)$ are unconditional, prior probabilities (which may or may not be known)
$>$ If not known, okay to assume $\mathrm{P}($ Occupied $)=\mathrm{P}($ Empty $)=0.5$

Returning to Example

- Let's assume we're on Mars, and we know that $P($ Occupied $)=0.75$
- Continuing same example for cell
- $P($ Empty $\mid s=6)=\frac{P(s \mid \text { Empty }) P(\text { Empty })}{P(S \mid \text { Empty }) P(\text { Empty })+P(s \mid \text { Occupied }) P(\text { Occupied })}$

$$
\begin{aligned}
& =\frac{0.83 \times 0.25}{0.83 \times 0.25+0.17 \times 0.75} \\
& =0.62
\end{aligned}
$$

- $P($ Occupied $\mid s=6)=1-P($ Empty $\mid s=6)=0.38$
- These are the values we store in our grid cell representation

Updating with Bayes Rule

- How to fuse multiple readings obtained over time?
- First time:
$>$ Each element of grid initialized with a priori probability of being occupied or empty
- Subsequently:
> Use Bayes' rule iteratively
$>$ Probability at time $\mathrm{t}_{\mathrm{n}-1}$ becomes prior and is combined with current observation at t_{n} using recursive version of Bayes rule:

$$
P\left(H \mid s_{n}\right)=\frac{P\left(s_{n} \mid H\right) P\left(H \mid s_{n-1}\right)}{P\left(s_{n} \mid H\right) P\left(H \mid s_{n-1}\right)+P\left(s_{n} \mid \operatorname{not} H\right) P\left(\text { not } H \mid s_{n-1}\right)}
$$

Now, back to: Vector Field Histogram (VFH)

- Environment represented in a grid (2 DOF)
$>$ cell values are equivalent to the probability that there is an obstacle

- Generate polar histogram:

Now, back to: Vector Field Histogram (VFH)

- From histogram, calculate steering direction:
$>$ Find all openings large enough for the robot to pass through
- Apply cost function G to each opening
$G=a \cdot$ target_direction $+b \cdot$ wheel_orientation $+c \cdot$ previous_direction where:
o target_direction $=$ alignment of robot path with goal
o wheel_orientation $=$ difference between new direction and current wheel orientation
o previous_direction $=$ difference between previously selected direction and new direction
$>$ Choose the opening with lowest cost function value

Obstacle Avoidance: Video VFH

Borenstein et al.

- Notes:
$>$ Limitation if narrow areas (e.g. doors) have to be passed
$>$ Local minimum might not be avoided
$>$ Reaching of the goal cannot be guaranteed
$>$ Dynamics of the robot not really considered

