
Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

• The goal of the obstacle avoidance algorithms is to avoid collisions
with obstacles

• It is usually based on local map

• Often implemented as a more or less independent task

• However, efficient obstacle avoidance
should be optimal with respect to
� the overall goal

� the actual speed and kinematics of the robot

� the on board sensors

� the actual and future risk of collision

Obstacle Avoidance (Local Path Planning)
know

n obstacles (m
ap)

P
laned path

observed

obstacle

v(t), ω
(t)

6.2.2

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Obstacle Avoidance: Bug1
• Follow along the obstacle to avoid it
• Fully circle each encountered obstacle
• Move to the point along the current obstacle boundary that is closest to

the goal
• Move toward the goal and repeat for any future encountered obstacle

6.2.2

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Obstacle Avoidance:Bug2

� Follow the obstacle always on the left or right side

� Leave the obstacle if the direct connection between start and goal is crossed

6.2.2

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Practical Implementation of Bug2
• Two states of robot motion:

� (1) moving toward goal (GOALSEEK)

� (2) moving around contour of obstacle (WALLFOLLOW)

• Describe robot motion as function of sensor values and relative direction to goal

• Decide how to switch between these two states

while (!while (! atGoalatGoal))
{{ if (if (goalDist goalDist < < goalThresholdgoalThreshold))

We’re at the goal! Halt.We’re at the goal! Halt.
else else

{ { forwardVel forwardVel = = ComputeTranslationComputeTranslation (&(& sonarssonars))
if (if (robotState robotState == GOALSEEK) == GOALSEEK)

{ { rotationVelrotationVel = = ComputeGoalSeekRotComputeGoalSeekRot ((goalAnglegoalAngle))
if (if (ObstaclesInWayObstaclesInWay ())())

robotStaterobotState <<-- WALLFOLLOWWALLFOLLOW
}}

if (if (robotState robotState == WALLFOLLOW)== WALLFOLLOW)
{ { rotationVel rotationVel = = ComputeRightWallFollowRotComputeRightWallFollowRot (&(& sonarssonars))

if (!if (! ObstaclesInWayObstaclesInWay ())())
robotStaterobotState <<-- GOALSEEK)GOALSEEK)

}}
}}

robotSetVelocityrobotSetVelocity ((forwardVelforwardVel , , rotationVelrotationVel))
}}

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Practical Implementation of Bug2 (con’t.)

• ObstaclesInWay(): is true whenever any sonar range reading in the
direction of the goal (i.e., within 45o of the goal) is too short

• ComputeTranslation(): proportional to largest range reading in
robot’s approximate forward direction
� // Note similarity to potential field approach!

� If minSonarFront (i.e., within 45 o of the goal) < min_dist

o return 0

� Else return min (max_velocity, minSonarFront – min_d ist)

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Practical Implementation of Bug2 (con’t.)

• For computing rotation direction and speed, popular method is:
�Subtract left and right range readings
�The larger the difference, the faster the robot will turn in the

direction of the longer range readings

• ComputeGoalSeekRot(): // returns rotational veloci ty
� if (abs(angle_to_goal)) < PI/10

o return 0

� else return (angle_to_goal * k) // k is a gain

• ComputeRightWallFollowRot(): // returns rotational velocity
� if max(minRightSonar, minLeftSonar) < min_dist

o return hard_left_turn_value // this is for a right wall follower

� else
o desiredTurn = (hard_left_turn_value – minRightSonar) * 2

o translate desiredTurn into proper range

o return desiredTurn

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Pros/Cons of Bug2

• Pros:
� Simple

� Easy to understand

� Popularly used

• Cons:
� Does not take into account robot kinematics

� Since it only uses most recent sensor values, it can be negatively
impacted by noise

• More complex algorithms (in the following) attempt to overcome these
shortcomings

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Obstacle Avoidance:Vector Field Histogram (VFH)

• Overcomes Bug2’s limitation of only using most recent sensor data by
creating local map of the environment around the robot

• Local map is a small occupancy grid

• This grid is populated only by relatively recent sensor data

• Grid cell values are equivalent to the probability that there is an
obstacle in that cell

6.2.2

Koren & Borenstein, ICRA 1990

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

How to calculate probability that cell is occupied?

• Need sensor model to deal with uncertainty

• Let’s look at the approach for a sonar sensor …

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Modeling Common Sonar Sensor

R
eg

io
n

I
Region IIRegion III

R

ββββ

Region I: Probably occupied Region II: Probably empty Region III: Unknown

R = maximum range

β = β = β = β = field of view

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

How to Convert to Numerical Values?

• Need to translate model (previous slide) to specific numerical values for each
occupancy grid cell
�These values represent the probability that a cell is occupied (or empty), given a

sensor scan (i.e., P(occupied | sensing))

• Three methods:
�Bayesian
�Dempster-Shafer Theory
�HIMM (Histogrammic in Motion Mapping)

• We’ll cover:
�Bayesian

• We won’t cover:
�Dempster-Shafer
�HIMM

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Bayesian: Most popular evidential method

• Approach:

�Convert sensor readings into probabilities

�Combine probabilities using Bayes’ rule:

�That is,

• Pioneers of approach:

�Elfes and Moravec at CMU in 1980s

(|) ()
(|)

()

P B A P A
P A B

P B
=

Likelihood Prior
Posterior =

Normalizing constant

×

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Review: Basic Probability Theory
• Probability function:

�Gives values from 0 to 1 indicating whether a particular event, H (Hypothesis), has
occurred

• For sonar sensing:
�Experiment:Sending out acoustic wave and measuring time of flight
�Outcome:Range reading reporting whether the region being sensed is Occupied or

Empty

• Hypotheses (H) = {Occupied, Empty)

• Probability that H has really occurred:
0 < P(H) < 1

• Probability that H has not occurred:

1 – P(H)

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Unconditional and Conditional Probabilities

• Unconditional probability: P(H)
�“Probability of H”
�Only provides a priori information
�For example, could give the known distribution of rocks in the environment,

e.g., “x% of environment is covered by rocks”
�For robotics, unconditional probabilities are not based on sensor readings

• For robotics, we want: Conditional probability: P(H | s)
�“Probability of H, given s” (e.g., P(Occupied | s), or P(Empty | s))
�These are based on sensor readings, s

• Note: P(H | s) + P(not H | s) = 1.0

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Probabilities for Occupancy Grids

• For each grid[i][j] covered by sensor scan:
� Compute P(Occupied| s) and P(Empty| s)

• For each grid element, grid[i][j], store tuple of the two probabilities:

typedef struct {

double occupied; // i.e., P(occupied | s)

double empty; // i.e., P(empty | s)

} P;

P occupancy_grid[ROWS][COLUMNS];

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Recall: Modeling Common Sonar Sensor to get P(s | H)

R
eg

io
n

I
Region IIRegion III

R

ββββ

Region I: Probably occupied Region II: Probably empty Region III: Unknown

R = maximum range

β = β = β = β = field of view

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Converting Sonar Reading to Probability: Region I

• Region I:

P(Occupied)= x Maxoccupied

where r is distance to grid element that is being updated

α is angle to grid element that is being updated

Maxoccupied= highest probability possible (e.g., 0.98)

P(Empty)= 1.0– P(Occupied)

R – r β – α
R β

2

+

The closer to the
acoustic axis, the
higher the belief

The nearer the grid element to
the origin of the sonar beam, the
higher the belief

We never know with certainty

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Converting Sonar Reading to Probability: Region II

• Region II:

P(Empty)=

P(Occupied) = 1.0 – P(Empty)

where r is distance to grid element being updated,
α is angle to grid element being updated

Note that here, we allow probability of being empty to equal 1.0

R – r β – α
R β

2

+

The closer to the
acoustic axis, the
higher the belief

The nearer the grid element to
the origin of the sonar beam, the
higher the belief

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Sonar Tolerance

• Sonar range readings have resolution error

• Thus, specific reading might actually indicate range of possible values

• E.g., reading of 0.87 meters actually means within (0.82, 0.92) meters
� Therefore, tolerancein this case is 0.05 meters.

• Tolerance gives width of Region I

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Tolerance in Sonar Model

R
eg

io
n

I
Region IIRegion III

R

ββββ

Region I: Probably occupied Region II: Probably empty Region III: Unknown

Tolerance determines Region I Width

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Example: What is value of grid cell ? (assume tolerance = 0.5)

R
eg

io
n

I

Region IIRegion III

s = 6 R = 10

r = 3.5

α = 0

β = 15β = 15β = 15β = 15

Which region?

3.5 < (6.0 – 0.5) � Region II

10 – 3.5 15 – 0
10 15

2

+
P(Empty) =

= 0.83

P(Occupied) = (1 – 0.83) = 0.17

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

But, not yet there – need P(H|s), not P(s|H)

• Note that previous calculations gave: P(s | H), not P(H | s)

• Thus, use Bayes Rule:

P(H | s) =

P(H | s) =

• P(s | Occupied) andP(s | Empty) are known from sensor model

• P(Occupied) and P(Empty) are unconditional, prior probabilities (which
may or may not be known)
�If not known, okay to assume P(Occupied) = P(Empty)= 0.5

P(s | Empty) P(Empty)

P(s | Empty) P (Empty) + P(s | Occupied) P(Occupied)

P(s | H) P(H)

P(s | H) P (H) + P(s | not H) P(not H)

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Returning to Example

• Let’s assume we’re on Mars, and we know thatP(Occupied) = 0.75
• Continuing same example for cell …

• P(Empty| s=6) =

=

= 0.62

• P(Occupied| s=6) = 1 –P(Empty| s=6) = 0.38

• These are the values we store in our grid cell representation

P(s | Empty) P(Empty)

P(S | Empty) P (Empty) + P(s | Occupied) P(Occupied)

0.83 x 0.25

0.83 x 0.25 + 0.17 x 0.75

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Updating with Bayes Rule

• How to fuse multiple readings obtained over time?

• First time:
� Each element of grid initialized with a prioriprobability of being

occupied or empty

• Subsequently:
� Use Bayes’ rule iteratively

� Probability at time tn-1 becomes prior and is combined with current
observation at tn using recursive version of Bayes rule:

P (H | sn) =
P(sn | H) P(H | sn-1)

P(sn | H) P (H | sn-1) + P(sn | not H) P(not H | sn-1)

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Now, back to: Vector Field Histogram (VFH)

• Environment represented in a grid (2 DOF)
� cell values are equivalent to the probability that there is an obstacle

• Generate polar histogram:

6.2.2

Koren & Borenstein, ICRA 1990

angle at which obstacle is foundangle at which obstacle is found
(relative to robot’s current position)(relative to robot’s current position)

probability of occupiedprobability of occupied

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Now, back to: Vector Field Histogram (VFH)

• From histogram, calculate steering direction:

� Find all openings large enough for the robot to pass through

� Apply cost function Gto each opening

where:
o target_direction = alignment of robot path with goal

o wheel_orientation = difference between new direction and current wheel orientation

o previous_direction = difference between previously selected direction and new direction

� Choose the opening with lowest cost function value

6.2.2

Koren & Borenstein, ICRA 1990

Autonomous Mobile Robots, Chapter 6

Adapted from © R. Siegwart, I. Nourbakhsh

Obstacle Avoidance:Video VFH

• Notes:
� Limitation if narrow areas

(e.g. doors) have to be
passed

� Local minimum might not
be avoided

� Reaching of the goal cannot be guaranteed

� Dynamics of the robot not
really considered

Borenstein et al.

6.2.2

VIDEO:
Borenstein.mpg

