Sensor Modalities

Sensor modality:

Sensors which measure same form of energy andswgace similar ways
“Modality” refers to the raw input used by the sens

Different modalities:
Sound
Pressure
Temperature
Light
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Classification of Sensors

What:

Proprioceptive sensors
measure values internally to the system (robot),
e.g. motor speed, wheel load, heading of the rdimdtery status

Exteroceptive sensors
information from the robots environment
distances to objects, intensity of the ambient)ighique features.

How:
Passive sensors
energy coming for the environment

Active sensors
emit their proper energy and measure the reaction
better performance, but some influence on envirattme
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General Classification (1)

General classification Sensor PC or A or P
(typical use) Sensor System EC

Tactile sensors Contact switches, bumpers EC P

(detection of physical contact or Optical barriers EC A

closeness; security switches) Noncontact proximity sensors EC A

Wheel/motor sensors Brush encoders PC P

(wheel/motor speed and position) Potentiometers PC P
Synchros, resolvers PC A
Optical encoders PC A
Magnetic encoders PC A
Inductive encoders PC A
Capacitive encoders PC A

Heading sensors Compass EC P

(orientation of the robot in relation to | Gyroscopes PC P

a tfixed reference frame) Inclinometers EC A/P

A, active; P, passive: P/A, passive/active; PC, proprioceptive: EC, exteroceptive.
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General Classification (2)

General classification Sensor PC or A or P
(typical use) Sensor System EC
Ground-based beacons GPS EC A
(localization in a fixed reference Active optical or RF beacons EC A
frame) Active ultrasonic beacons EC A
Reflective beacons EC A
Active ranging Reflectivity sensors EC A
(reflectivity, time-of-flight, and geo- Ultrasonic sensor EC A
metric triangulation) Laser rangefinder EC A
Optical triangulation (1D) EC A
Structured light (2D) EC A
Motion/speed sensors Doppler radar EC A
(speed relative to fixed or moving Doppler sound EC A
objects)
Vision-based sensors CCD/CMOS camera(s) EC P
(visual ranging, whole-image analy- Visual ranging packages
sis, segmentation, object recognition) | Object tracking packages
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Characterizing Sensor Performance

Basic sensor response ratings
Range
lower and upper limits

Resolution
minimum difference between two values

Linearity
variation of output signal as function of the inggnal

Bandwidth or Frequency

the speed with which a sensor can provide a strefareadings

usually there is an upper limit depending on thesse and the sampling rate
lower limit is also possible, e.g. acceleration s@n

one also has to consider signal delay

© R. Siegwart, |. Nourbakhsh (Adapted by Parker)



In Situ Sensor Performance (1)

Sensitivity
ratio of output change to input change

however, in real world environment, the sensorvery often high
sensitivity to other environmental changes, elgmination

Cross-sensitivity

sensitivity to environmental parameters that arihogonal to the target
parameters

iInfluence of other active sensors
Error / Accuracy
difference between the sensor’s output and theuvaiiee

!mv!) m = measured value

(accumcy =1 -
v v = true value
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In Situ Sensor Performance (2)

Systematic error -> deterministic errors
caused by factors that can (in theory) be modetegrediction

e.g. calibration of a laser sensor or of the distmm cause by the optic of
a camera

Random error -> non-deterministic

no prediction possible

however, they can be described probabillistically

e.g. Hue instablility of camera, black level noi$eamera ...
Precision

reproducibility of sensor results
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Characterizing Error: The Challenges in Mobile Robdics

Mobile Robot has to perceive, analyze and interpret the state of the
surrounding

Measurements in real world environment are dynamically changing
and error prone.
Examples:

changing illuminations

specular reflections

light or sound absorbing surfaces

rarely possible to model -> appear as random errors

systematic errors and random errors might be weflreed in controlled
environment.
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Multi-Modal Error Distributions: The Challenges In

Behavior of sensors modeled by probability distribution (random
errors)

usually very little knowledge about theusef random errors

often probability distribution is assumed to be Bytric or even
Gaussian

however, it is important to realize how wrong toa be!

Examples:

Sonar (ultrasonic) sensor might overestimate tis¢adice in real environment and
is therefore not symmetric

Thus the sonar sensor might be best modeled byntaes:
- mode for the case that the signal returns directly
- mode for the case that the signals returns afteltirpath reflections.

Stereo vision system might correlate to imagesriecty, thus causing results that
make no sense at all
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Proximity Sensors

Measure relative distance (range) between sensor and objectsin
environment

Most proximity sensors are active

Common Types:

Sonar (ultrasonics)
Infrared (IR)
Bump and feeler sensors
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Range Sensors (time of flight) (1)

L arge range distance measurement -> called range sensors

Range information:

key element for localization and environment maodgeli
Ultrasonic sensors as well as laser range sensors make use of
propagation speed of sound or el ectromagnetic waves respectively.
The traveled distance of a sound or € ectromagnetic wave is given by

d=c.t

Where

d = distance traveled (usually round-trip)

c = speed of wave propagation

t = time of flight.
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Range Sensors (time of flight) (2)

It isimportant to point out
Propagation speed v of sound: 0.3 m/ms

Propagation speed v of of electromagnetic sigh@S m/ns,
one million times faster.

3 meters
Is 10 ms ultrasonic system
only 10 ns for a laser range sensor
time of flight t with electromagnetic signals ig an easy task
laser range sensors expensive and delicate

The quality of time of flight range sensors manly depends on:
Uncertainties about the exact time of arrival of tieflected signal
Inaccuracies in the time of fight measure (lasarga sensors)
Opening angle of transmitted beam (ultrasonic rasgrsors)
Interaction with the target (surface, specular retlens)

Variation of propagation speed
Speed of mobile robot and target (if not at statit) s
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Laser Range Sensor (time of flight, electromagnefic
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Laser Range Sensor (time of flight, electromagnefc

Confidence in therangeisinversely proportional to the square of the received signal
amplitude.

Reflected light

Detector

_'D 5P Technobogies, ind.

Figure 4.11
(a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS
Technologies Inc.: (¢) Industrial 180 degree laser range sensor from Sick Inc., Germany



Laser Range Sensor (time of flight, electromagnefc

Typical range image of a 2D laser range sensor with arotating mirror. The length of
the lines through the measurement points indicate the uncertainties.
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Uncertainty Representation

Sensing is always related to uncertainties.
What are the sources of uncertainties?
How can uncertainty be represented or quantified?
How do they propagate - uncertainty of a functionmfeartain values?
How do uncertainties combine if different sensor regdire fused?

What is the merit of all this for mobile robotics?
Some definitions:

Sensitivity: G=out/in

Resolution: Smallest change which can be detected
Dynamic Range: valye/ resolution (18 -1C°)

Accuracy: errof,.~ (measured value) - (true value)

Errors are usually unknown:
deterministic <@ =) non deterministic (random)
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Uncertainty Representation

Statistical representation and independence of random variables

‘ Probability Density f(x)

Area = 1

| P X
0 Mean 1
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Autonomous Mobile Robots, Chapter 4

Gaussian Distribution
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The Error Propagation Law: Motivation

lmagine extracting aline based
on point measurements with
uncertainties.

The model parameters p; (length of the % = (0. 0)
perpendicular) and 6, (its angle to the i 7 Vi
abscissa) describe aline uniquely.

\(X

The question:
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Feature Extraction - Scene Interpretation

%: scene
| sensing inter-
7 pretation

A mobile robot must be able to determine its relationship to the
environment by sensing and interpreting the measured signals.

A wide variety of sensing technologies are avadadd we have seen in
previous section.

However, the main difficulty lies in interpretingese data, that is, in
deciding what the sensor signals tell us abouttmaronment.

Environment

Choice of sensors (e.g. indoor, outdoor, wallse fspace ...)
Choice of the environment model
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Autonomous Mobile Robots, Chapter 4

Features

» Features are distinctive elements or geometric primitives of the environment.

- They usually can be extracted from measurements and mathematically
described.

» low-level features (geometric primitives) like neircles
» high-level features like edges, doors, tables aslircans.

In mobile robotics features help for
localization and map building.
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Environment Representation and Modeling— Features

Environment Representation
Continuous Metric - X,y,0
Discrete Metric — metric grid
Discrete Topological — topological grid
Environment Modeling

Raw sensor data, e.g. laser range data, grayscasges
large volume of data, low distinctiveness
makes use of all acquired information

Low level features, e.g. line other geometric fesdu
medium volume of data, average distinctiveness
filters out the useful information, still ambiges

High level features, e.g. doors, a car, the Eifdeler
low volume of data, high distinctiveness
filters out the useful information, few/no ambigst not enough information
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Autonomous Mobile Robots, Chapter 4

Environment Models: Examples

A: Feature based Model B: Occupancy Grid
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Feature extraction based on range images

Geometric primitives like line segments, circles, corners, edges

For most other geometric primitives, the parametric description of the
features becomes too complex, and no closed form solutions exist.

However, lines segments are very often sufficient to model the environment,
especially for indoor applications.
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Features Based on Range Data: Line Extraction (1)
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Features Based on Range Data: Line Extraction (2)
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Autonomous Mobile Robots, Chapter 4

Segmentation for Line Extraction

A set of ny neighboring points
of the image space

(x;~ %) (x;~%) < d,,

b) Model Space
By=r[ml}

Evidence accumulation in the model space
—> Clusters of normally distributed vectors

Fig 4.36 Clustering: Finding neighboring segments of a common line
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