Sensor Modalities

• Sensor modality:

Sensors which measure same form of energy and process it in similar ways
 "Modality" refers to the raw input used by the sensors

• Different modalities:

- *⊳Sound*
- ▶Pressure
- *>Temperature*
- ≻Light
 - ♦ *Visible light*
 - ♦ Infrared light
 - \blacklozenge *X-rays*
 - \bullet *Etc.*

Classification of Sensors

• What:

- > Proprioceptive sensors
 - measure values internally to the system (robot),
 - + e.g. motor speed, wheel load, heading of the robot, battery status
- > Exteroceptive sensors
 - information from the robots environment
 - distances to objects, intensity of the ambient light, unique features.
- How:
 - > Passive sensors
 - energy coming for the environment
 - > Active sensors
 - *• emit their proper energy and measure the reaction*
 - *better performance, but some influence on environment*

General Classification (1)

General classification	Sensor	PC or	A or P
(typical use)	Sensor System	EC	
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC PC PC	P P A A A A A
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

General Classification (2)

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

Characterizing Sensor Performance

- Basic sensor response ratings
 - > Range
 - Iower and upper limits
 - > Resolution

minimum difference between two values

➢ Linearity

+ variation of output signal as function of the input signal

Bandwidth or Frequency

- + the speed with which a sensor can provide a stream of readings
- + usually there is an upper limit depending on the sensor and the sampling rate
- + lower limit is also possible, e.g. acceleration sensor
- one also has to consider signal delay

In Situ Sensor Performance (1)

Characteristics that are especially relevant for real world environments

- Sensitivity
 - > ratio of output change to input change
 - however, in real world environment, the sensor has very often high sensitivity to other environmental changes, e.g. illumination
- Cross-sensitivity
 - sensitivity to environmental parameters that are orthogonal to the target parameters
 - > influence of other active sensors
- Error / Accuracy
 - *b difference between the sensor's output and the true value*

$$\left(accuracy = 1 - \underbrace{\frac{m-v}{v}}_{v}\right) = true value$$

In Situ Sensor Performance (2)

Characteristics that are especially relevant for real world environments

- Systematic error -> deterministic errors
 - > caused by factors that can (in theory) be modeled -> prediction
 - e.g. calibration of a laser sensor or of the distortion cause by the optic of a camera
- Random error -> non-deterministic
 - > no prediction possible
 - *b* however, they can be described probabilistically
 - > e.g. Hue instability of camera, black level noise of camera ...
- Precision
 - > reproducibility of sensor results

Characterizing Error: The Challenges in Mobile Robotics

- Mobile Robot has to perceive, analyze and interpret the state of the surrounding
- Measurements in real world environment are dynamically changing and error prone.
- Examples:
 - > changing illuminations
 - > specular reflections
 - > light or sound absorbing surfaces
 - cross-sensitivity of robot sensor to robot pose and robot-environment dynamics
 - *rarely possible to model -> appear as random errors*
 - systematic errors and random errors might be well defined in controlled environment. This is not the case for mobile robots !!

Multi-Modal Error Distributions: The Challenges in ...

- Behavior of sensors modeled by probability distribution (random errors)
 - *b* usually very little knowledge about the *causes* of random errors
 - often probability distribution is assumed to be symmetric or even
 Gaussian
 - *be however, it is important to realize how wrong this can be!*
 - > Examples:
 - Sonar (ultrasonic) sensor might overestimate the distance in real environment and is therefore not symmetric
 - Thus the sonar sensor might be best modeled by two modes:
 - mode for the case that the signal returns directly
 - mode for the case that the signals returns after multi-path reflections.
 - Stereo vision system might correlate to images incorrectly, thus causing results that make no sense at all

Proximity Sensors

- Measure relative distance (range) between sensor and objects in environment
- Most proximity sensors are active
- Common Types:
 - > Sonar (ultrasonics)
 - \succ Infrared (IR)
 - *>* Bump and feeler sensors

Range Sensors (time of flight) (1)

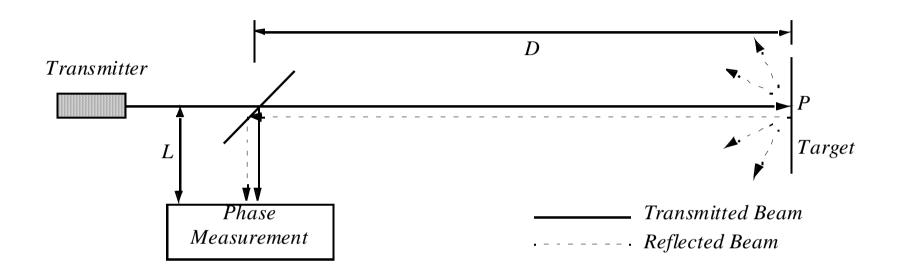
- Large range distance measurement -> called range sensors
- Range information:
 - *key element for localization and environment modeling*
- Ultrasonic sensors as well as laser range sensors make use of propagation speed of sound or electromagnetic waves respectively. The traveled distance of a sound or electromagnetic wave is given by

$$d=c \cdot t$$

• Where

> *d* = *distance traveled* (*usually round-trip*)

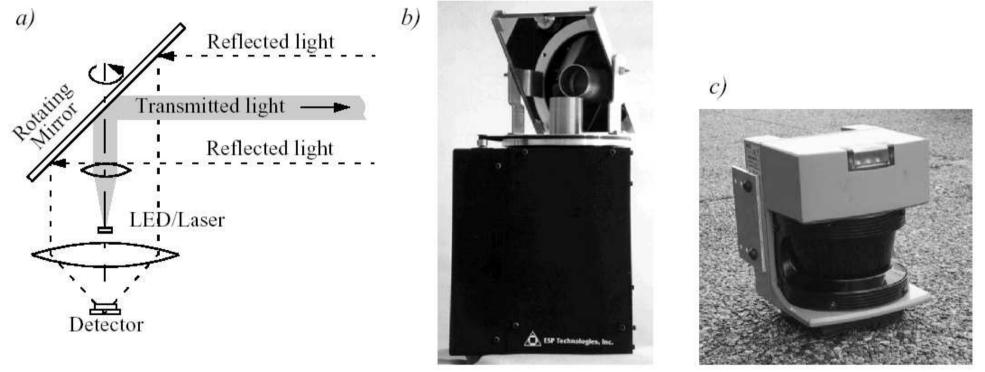
- \succ c = speed of wave propagation
- \succ t = time of flight.



Range Sensors (time of flight) (2)

- It is important to point out
 - > Propagation speed v of sound: 0.3 m/ms
 - > Propagation speed v of of electromagnetic signals: 0.3 m/ns,
 - one million times faster.
 - *3 meters*
 - ♦ is 10 ms ultrasonic system
 - only 10 ns for a laser range sensor
 - time of flight t with electromagnetic signals is not an easy task
 - laser range sensors expensive and delicate
- The quality of time of flight range sensors manly depends on:
 - > Uncertainties about the exact time of arrival of the reflected signal
 - Inaccuracies in the time of fight measure (laser range sensors)
 - > Opening angle of transmitted beam (ultrasonic range sensors)
 - > Interaction with the target (surface, specular reflections)
 - > Variation of propagation speed
 - > Speed of mobile robot and target (if not at stand still)

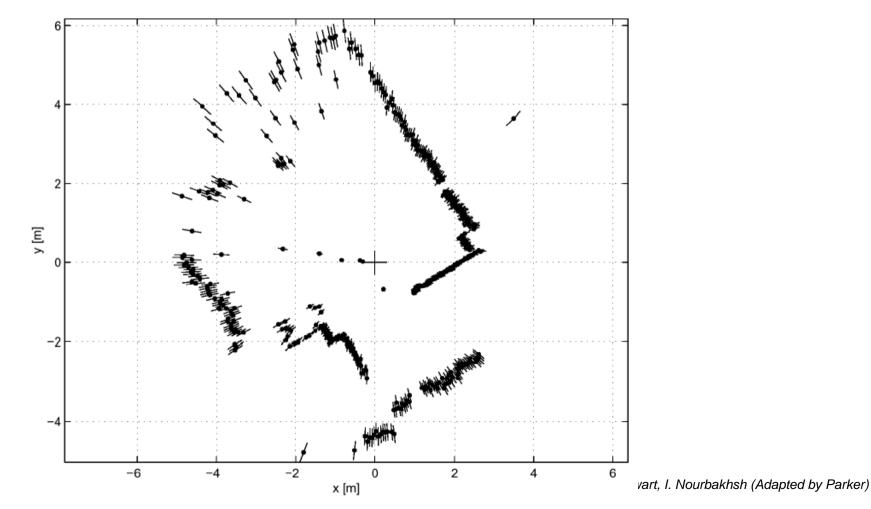
Laser Range Sensor (time of flight, electromagnetic)



- Transmitted and received beams coaxial
- Transmitter illuminates a target with a collimated beam
- Received detects the time needed for round-trip
- A mechanical mechanism with a mirror sweeps
 - > 2 or 3D measurement

Laser Range Sensor (time of flight, electromagnetic)

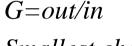
• Confidence in the range is inversely proportional to the square of the received signal amplitude.


Figure 4.11

(a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany

Laser Range Sensor (time of flight, electromagnetic)

• Typical range image of a 2D laser range sensor with a rotating mirror. The length of the lines through the measurement points indicate the uncertainties.

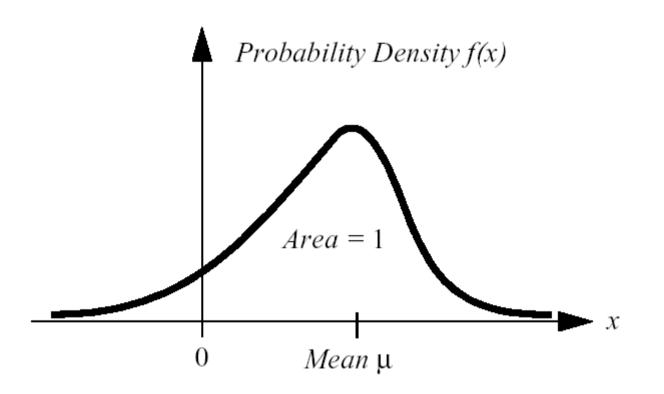


Uncertainty Representation

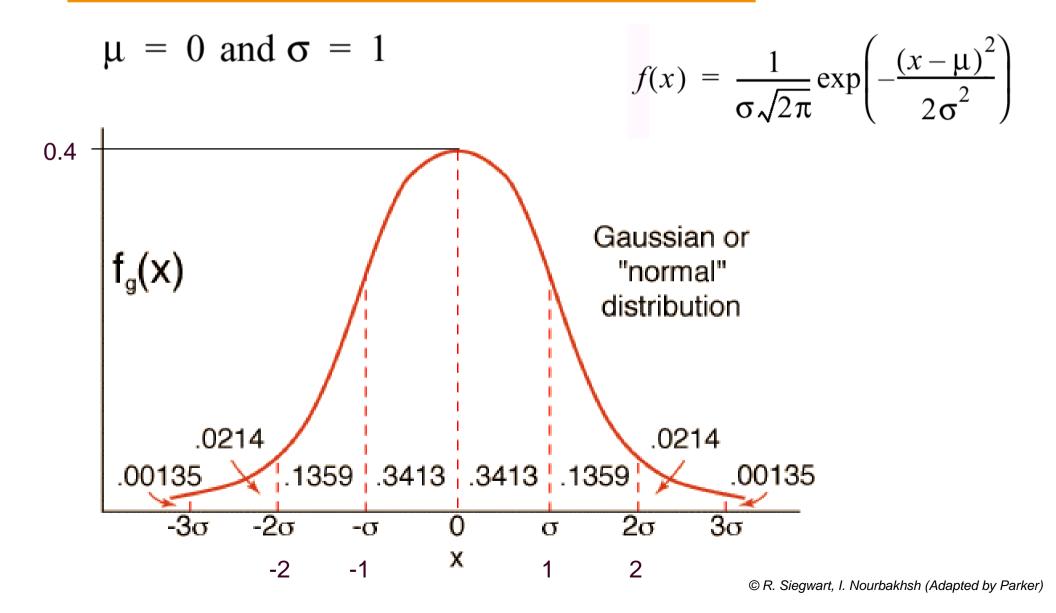
- Sensing is always related to uncertainties.
 - > What are the sources of uncertainties?
 - How can uncertainty be represented or quantified?
 - *> How do they propagate uncertainty of a function of uncertain values?*
 - > How do uncertainties combine if different sensor reading are fused?
 - > What is the merit of all this for mobile robotics?
- Some definitions:
 - > Sensitivity:
 - > Resolution:
 - > Dynamic Range:
 - > Accuracy:
- Errors are usually unknown:

deterministic

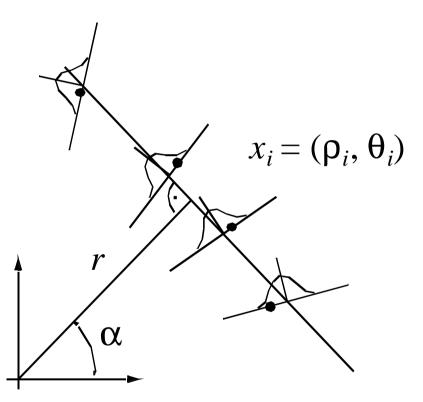
Smallest change which can be detected value_{max}/ resolution $(10^4 - 10^6)$ error_{max}= (measured value) - (true value)

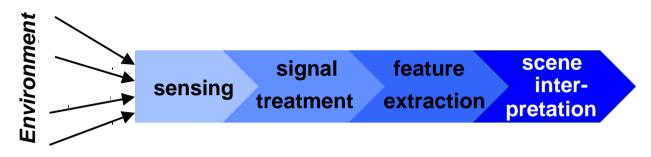


non deterministic (random)


Uncertainty Representation

• Statistical representation and independence of random variables


Gaussian Distribution


The Error Propagation Law: Motivation

- Imagine extracting a line based on point measurements with uncertainties.
- The model parameters ρ_i (length of the perpendicular) and θ_i (its angle to the abscissa) describe a line uniquely.

- The question:
 - What is the uncertainty of the extracted line knowing the uncertainties of the measurement points that contribute to it ?

Feature Extraction - Scene Interpretation

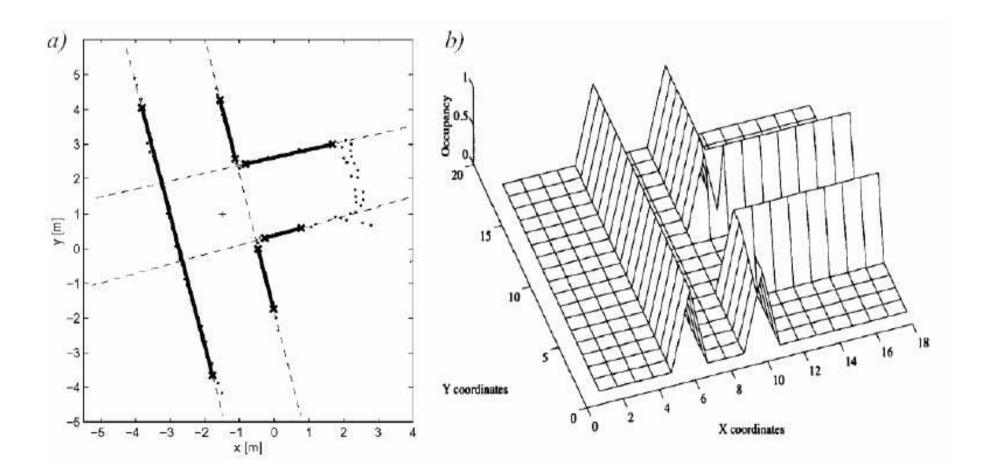
- A mobile robot must be able to determine its relationship to the environment by sensing and interpreting the measured signals.
 - > A wide variety of sensing technologies are available as we have seen in previous section.
 - > However, the main difficulty lies in interpreting these data, that is, in deciding what the sensor signals tell us about the environment.
 - Choice of sensors (e.g. indoor, outdoor, walls, free space ...)
 Choice of the environment model

Features

- Features are distinctive elements or geometric primitives of the environment.
- They usually can be extracted from measurements and mathematically described.
 - > low-level features (geometric primitives) like lines, circles
 - high-level features like edges, doors, tables or trash cans.

In mobile robotics features help for localization and map building.

Environment Representation and Modeling \rightarrow **Features**


• Environment Representation

- *Continuous Metric* $\rightarrow x, y, \theta$
- > Discrete Metric
- > Discrete Topological
- Environment Modeling
 - *Raw sensor data, e.g. laser range data, grayscale images*
 - Iarge volume of data, low distinctiveness
 - makes use of all acquired information
 - > Low level features, e.g. line other geometric features
 - medium volume of data, average distinctiveness
 - *filters out the useful information, still ambiguities*
 - > High level features, e.g. doors, a car, the Eiffel tower
 - low volume of data, high distinctiveness
 - + filters out the useful information, few/no ambiguities, not enough information

- \rightarrow topological grid
- \rightarrow metric grid

Environment Models: Examples

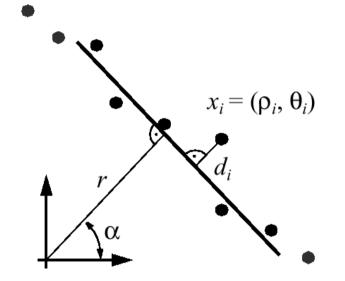
A: Feature based Model

B: Occupancy Grid

© R. Siegwart, I. Nourbakhsh (Adapted by Parker)

Feature extraction based on range images

- Geometric primitives like line segments, circles, corners, edges
- For most other geometric primitives, the parametric description of the features becomes too complex, and no closed form solutions exist.
- However, lines segments are very often sufficient to model the environment, especially for indoor applications.

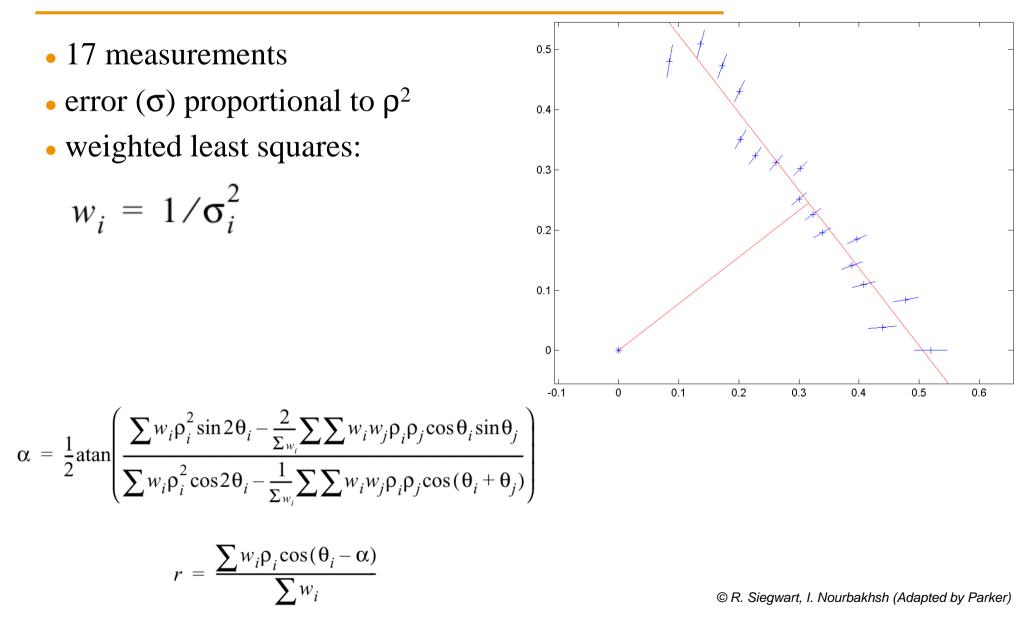


Features Based on Range Data: Line Extraction (1)

$$\rho_i \cos(\theta_i - \alpha) - r = d_i$$

• Least Squares

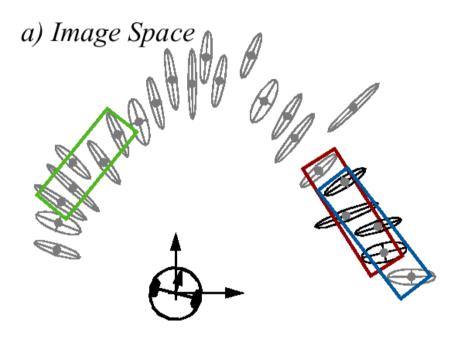
$$S = \sum_{i} d_{i}^{2} = \sum_{i} (\rho_{i} \cos(\theta_{i} - \alpha) - r)^{2}$$
$$\frac{\partial S}{\partial \alpha} = 0 \qquad \frac{\partial S}{\partial r} = 0$$



• Weighted Least Squares

$$w_{i} = 1/\sigma_{i}^{2}$$

$$S = \sum w_{i} d_{i}^{2} = \sum w_{i} (\rho_{i} \cos(\theta_{i} - \alpha) - r)^{2}$$



Features Based on Range Data: Line Extraction (2)

Segmentation for Line Extraction

A set of n_f neighboring points of the image space

$$(x_j - \bar{x})^T (x_j - \bar{x}) \le d_m$$

b) Model Space $\beta_1 = r [m]$ $\beta_0 = \alpha [rad]$

Evidence accumulation in the model space \rightarrow Clusters of normally distributed vectors

Fig 4.36 Clustering: Finding neighboring segments of a common line