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Sensor Modalities

� Sensor modality:  
�Sensors which measure same form of energy and process it in similar ways
�“Modality” refers to the raw input used by the sensors

� Different modalities:
�Sound
�Pressure
�Temperature
�Light

�Visible light
�Infrared light
�X-rays
�Etc.
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Classification of Sensors

� What:
� Proprioceptive sensors 

� measure values internally to the system (robot), 

� e.g. motor speed, wheel load, heading of the robot, battery status 

� Exteroceptive sensors 
� information from the robots environment

� distances to objects, intensity of the ambient light, unique features.

� How:
� Passive sensors 

� energy coming for the environment 

� Active sensors 
� emit their proper energy and measure the reaction 

� better performance, but some influence on environment 

4.1.1
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General Classification (1)

4.1.1
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General Classification (2)

4.1.1
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Characterizing Sensor Performance

� Basic sensor response ratings
� Range

� lower and upper limits

� Resolution
� minimum difference between two values

� Linearity
� variation of output signal as function of the input signal

� Bandwidth or Frequency
� the speed with which a sensor can provide a stream of readings
� usually there is an upper limit depending on the sensor and the sampling rate
� lower limit is also possible, e.g. acceleration sensor
� one also has to consider signal delay

4.1.2
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In Situ Sensor Performance (1)

Characteristics that are especially relevant for real world environments

� Sensitivity
� ratio of output change to input change
� however, in real world environment, the sensor has very often high 

sensitivity to other environmental changes, e.g. illumination

� Cross-sensitivity
� sensitivity to environmental parameters that are orthogonal to the target 

parameters
� influence of other active sensors

� Error / Accuracy
� difference between the sensor’s output and the true value

m = measured value
v = true value

error

4.1.2
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In Situ Sensor Performance (2)

Characteristics that are especially relevant for real world environments

� Systematic error -> deterministic errors
� caused by factors that can (in theory) be modeled -> prediction

� e.g. calibration of a laser sensor or of the distortion cause by the optic of 
a camera

� Random error -> non-deterministic
� no prediction possible

� however, they can be described probabilistically 

� e.g. Hue instability of camera, black level noise of camera …

� Precision
� reproducibility of sensor results

4.1.2
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Characterizing Error: The Challenges in Mobile Robotics

� Mobile Robot has to perceive, analyze and interpret the state of the 
surrounding

� Measurements in real world environment are dynamically changing 
and error prone. 

� Examples:
� changing illuminations

� specular reflections

� light or sound absorbing surfaces

� cross-sensitivity of robot sensor to robot pose and robot-environment 
dynamics
� rarely possible to model -> appear as random errors

� systematic errors and random errors might be well defined in controlled 
environment. This is not the case for mobile robots !!

4.1.2
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Multi-Modal Error Distributions: The Challenges in …

� Behavior of sensors modeled by probability distribution (random 
errors)
� usually very little knowledge about the causes of random errors

� often probability distribution is assumed to be symmetric or even 
Gaussian

� however, it is important to realize how wrong this can be!

� Examples: 
� Sonar (ultrasonic) sensor might overestimate the distance in real environment and 

is therefore not symmetric

Thus the sonar sensor might be best modeled by two modes:
- mode for the case that the signal returns directly
- mode for the case that the signals returns after multi-path reflections.

� Stereo vision system might correlate to images incorrectly, thus causing results that 
make no sense at all 

4.1.2
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Proximity Sensors

� Measure relative distance (range) between sensor and objects in 
environment

� Most proximity sensors are active

� Common Types:
� Sonar (ultrasonics)

� Infrared (IR)

� Bump and feeler sensors
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Range Sensors (time of flight) (1)

� Large range distance measurement  -> called range sensors

� Range information:
� key element for localization and environment modeling

� Ultrasonic sensors as well as laser range sensors make use of 
propagation speed of sound or electromagnetic waves respectively. 
The traveled distance of a sound or electromagnetic wave is given by 

d = c . t
� Where

� d = distance traveled (usually round-trip)

� c = speed of wave propagation

� t = time of flight.

4.1.6
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Range Sensors (time of flight) (2)

� It is important to point out 
� Propagation speed v of sound: 0.3 m/ms 
� Propagation speed v of of electromagnetic signals:  0.3 m/ns, 

� one million times faster. 

� 3 meters 
� is 10 ms ultrasonic system 
� only 10 ns for a laser range sensor
� time of flight t with electromagnetic signals is not an easy task
� laser range sensors expensive and delicate

� The quality of time of flight range sensors manly depends on:
� Uncertainties about the exact time of arrival of the reflected signal
� Inaccuracies in the time of fight measure (laser range sensors)
� Opening angle of transmitted beam (ultrasonic range sensors)
� Interaction with the target (surface, specular reflections)
� Variation of propagation speed
� Speed of mobile robot and target (if not at stand still)

4.1.6



Autonomous Mobile Robots, Chapter 4

© R. Siegwart, I. Nourbakhsh (Adapted by Parker)

Laser Range Sensor (time of flight, electromagnetic)

� Transmitted and received beams coaxial

� Transmitter illuminates a target with a collimated beam

� Received detects the time needed for round-trip

� A mechanical mechanism with a mirror sweeps 

� 2 or 3D measurement

Phase
Measurement

Target

D

L

Transmitter

Transmitted Beam

Reflected Beam

P

4.1.6
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Laser Range Sensor (time of flight, electromagnetic)

� Confidence in the range is inversely proportional to the square of the received signal 
amplitude. 

� Hence dark, distant objects will not produce such good range estimated as 
closer brighter objects …

4.1.6
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Laser Range Sensor (time of flight, electromagnetic)

� Typical range image of a 2D laser range sensor with a rotating mirror. The length of 
the lines through the measurement points indicate the uncertainties.

4.1.6
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Uncertainty Representation

� Sensing is always related to uncertainties. 

� What are the sources of uncertainties?

� How can uncertainty be represented or quantified?

� How do they propagate - uncertainty of a function of uncertain values?

� How do uncertainties combine if different sensor reading are fused?

� What is the merit of all this for mobile robotics?

� Some definitions:

� Sensitivity: G=out/in

� Resolution: Smallest change which can be detected

� Dynamic Range: valuemax/ resolution (104 -106)

� Accuracy: errormax= (measured value) - (true value)

� Errors are usually unknown: 

deterministic non deterministic (random)

4.2
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Uncertainty Representation

� Statistical representation and independence of random variables

4.2
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Gaussian Distribution

0.4
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4.2.1
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The Error Propagation Law: Motivation

� Imagine extracting a line based 
on point measurements with 
uncertainties.

� The model parameters  ρi (length of the 
perpendicular) and θi (its angle to the 
abscissa) describe a line uniquely.

� The question:
� What is the uncertainty of the extracted line knowing the uncertainties of 

the measurement points that contribute to it ?

4.2.2

α

r

xi = (ρi, θ i)
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Feature Extraction - Scene Interpretation

� A mobile robot must be able to determine its relationship to the
environment by sensing and interpreting the measured signals. 
� A wide variety of sensing technologies are available as we have seen in 

previous section. 

� However, the main difficulty lies in interpreting these data, that is, in 
deciding what the sensor signals tell us about the environment. 

� Choice of sensors (e.g. indoor, outdoor, walls, free space …)

� Choice of the environment model

sensing
signal

treatment

feature

extraction

scene

pretation
inter-
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Features

� Features are distinctive elements or geometric primitives of the environment. 

� They usually can be extracted from measurements and mathematically 
described. 

� low-level features (geometric primitives) like lines, circles 

� high-level features like edges, doors, tables or trash cans.

In mobile robotics features help for 

localization and map building.

4.3
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Environment Representation and Modeling→→→→ Features

� Environment Representation
� Continuous Metric → x,y,θ
� Discrete Metric → metric grid
� Discrete Topological → topological grid

� Environment Modeling
� Raw sensor data, e.g. laser range data, grayscale images

� large volume of data, low distinctiveness
� makes use of all acquired information

� Low level features, e.g. line other geometric features
� medium volume of data, average distinctiveness
� filters out the useful information, still ambiguities

� High level features, e.g. doors, a car, the Eiffel tower
� low volume of data, high distinctiveness
� filters out the useful information, few/no ambiguities, not enough information

4.3
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Environment Models: Examples

A: Feature based Model B: Occupancy Grid

4.3
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Feature extraction based on range images

� Geometric primitives like line segments, circles, corners, edges

� For most other geometric primitives, the parametric description of the 
features becomes too complex, and no closed form solutions exist. 

� However, lines segments are very often sufficient to model the environment, 
especially for indoor applications. 

4.3.1
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Features Based on Range Data: Line Extraction (1)

� Least Squares

� Weighted Least Squares

4.3.1
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Features Based on Range Data: Line Extraction (2)

� 17 measurements

� error (σ) proportional to ρ2

� weighted least squares:

4.3.1
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Segmentation for Line Extraction

4.3.1


