“Old View” of Perception vs. “New View”

- Traditional (“old view”) approach:
 - Perception considered in isolation (i.e., disembodied)
 - Perception “as king” (e.g., computer vision is “the” problem)
 - Universal reconstruction (i.e., 3D world models)
“New View” of Perception

Perception without the context of action is meaningless.

- Action-oriented perception
 - *Perceptual processing tuned to meet motor activities’ needs*
- Expectation-based perception
 - *Knowledge of world can constrain interpretation of what is present in world*
- Focus-of-attention methods
 - *Knowledge can constrain where things may appear in the world*
- Active perception
 - *Agent can use motor control to enhance perceptual processing via sensor positioning*
- Perceptual classes:
 - *Partition world into various categories of potential interaction*
Consequence of “New View”

- Purpose of perception is motor control, not representations
- Multiple parallel processes that fit robot’s different behavioral needs are used
- Highly specialized perceptual algorithms extract necessary information and no more.

Perception is conducted on a “need-to-know” basis
Complexity Analysis of New Approach is Convincing

- Bottom-up “general visual search task” where matching is entirely data driven:
 - Shown to be NP-complete (i.e., computationally intractable)

- Task-directed visual search:
 - Has linear-time complexity (Tsotsos 1989)
 - Tractability results from optimizing the available resources dedicated to perceptual processing (e.g., using attentional mechanisms)

- Significance of results for autonomous robotics cannot be understated:
 - “Any behaviorist approach to vision or robotics must deal with the inherent computational complexity of the perception problem: otherwise the claim that those approaches scale up to human-line behavior is easily refuted.” (Tsotsos 1992, p. 140)

Primary Purpose of Perceptual Algorithms…

… is to support particular behavioral needs

- Directly analogous with general results we’ve discussed earlier regarding “hierarchical” robotic control vs. “behavior-based/reactive” robotic control
Review: Laser Line Extraction (1)

\[\rho_i \cos(\theta_i - \alpha) - r = d_i \]

- Least Squares

\[S = \sum_i d_i^2 = \sum_i (\rho_i \cos(\theta_i - \alpha) - r)^2 \]

\[\frac{\partial S}{\partial \alpha} = 0 \quad \frac{\partial S}{\partial r} = 0 \]

- Weighted Least Squares

\[w_i = 1/\sigma_i^2 \]

\[S = \sum w_i d_i^2 = \sum w_i (\rho_i \cos(\theta_i - \alpha) - r)^2 \]
Features Based on Range Data: Line Extraction (2)

- 17 measurements
- error (σ) proportional to ρ^2
- weighted least squares:

$$w_i = \frac{1}{\sigma_i^2}$$

$$\alpha = \frac{1}{2} \text{atan} \left(\frac{\sum w_i \rho_i^2 \sin 2\theta_i - \frac{2}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos \theta_i \sin \theta_j}{\sum w_i \rho_i^2 \cos 2\theta_i - \frac{1}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos (\theta_i + \theta_j)} \right)$$

$$r = \frac{\sum w_i \rho_i \cos (\theta_i - \alpha)}{\sum w_i}$$
Segmentation for Line Extraction

4.3.1

a) Image Space

A set of n_r neighboring points of the image space

$$(x_j - \bar{x})^T (x_j - \bar{x}) \leq d_m$$

b) Model Space

Evidence accumulation in the model space

→ Clusters of normally distributed vectors

Fig 4.36 Clustering: Finding neighboring segments of a common line
Proximity Sensors

- Measure relative distance (range) between sensor and objects in environment
- Most proximity sensors are active
- Common Types:
 - Sonar (ultrasonics)
 - Infrared (IR)
 - Bump and feeler sensors
Sonar (Ultrasonics)

- Refers to any system that achieves ranging through sound
- Can operate at different frequencies
- Very common on indoor and research robots
- Operation:
 - Emit a sound
 - Measure time it takes for sound to return
 - Compute range based on time of flight
Reasons Sonar is So Common

- Can typically give 360° coverage as polar plot
- Cheap (a few $US)
- Fast (sub-second measurement time)
- Good range – about 25 feet with 1” resolution over FOV of 30°
Ultrasonic Sensor (time of flight, sound)

- transmit a packet of (ultrasonic) pressure waves
- distance d of the echoing object can be calculated based on the propagation speed of sound c and the time of flight t.

$$d = \frac{c \cdot t}{2}$$

- The speed of sound c (340 m/s) in air is given by

$$c = \sqrt{\gamma R T}$$

where

- γ: ration of specific heats
- R: gas constant
- T: temperature in degree Kelvin
Ultrasonic Sensor (time of flight, sound)

- typically a frequency: 40 - 180 kHz
- generation of sound wave: piezo transducer
 - transmitter and receiver separated or not separated
- sound beam propagates in a cone like manner
 - opening angles around 20 to 40 degrees
 - regions of constant depth
 - segments of an arc (sphere for 3D)

Typical intensity distribution of a ultrasonic sensor
Sonar Challenges

- “Dead zone”, causing inability to sense objects within about 11 inches
- Indoor range (up to 25 feet) better than outdoor range (perhaps 8 feet)
- Key issues:
 - *Foreshortening:*
 - *Cross-talk:* sonar cannot tell if the signal it is receiving was generated by itself, or by another sonar in the ring
Sonar Challenges (con’t.)

- Key issues (con’t.)
 - Specular reflection: when wave form hits a surface at an acute and bounces away

- Specular reflection also results in signal reflecting differently from different materials
 - E.g., cloth, sheetrock, glass, metal, etc.

- Common method of dealing with spurious readings:
 - Average three readings (current plus last two) from each sensor
Infrared (IR)

- Active proximity sensor
- Emit near-infrared energy and measure amount of IR light returned
- Range: inches to several feet, depending on light frequency and receiver sensitivity
- Typical IR: constructed from LEDs, which have a range of 3-5 inches
- Issues:
 - Light can be “washed out” by bright ambient lighting
 - Light can be absorbed by dark materials

© R. Siegwart, I. Nourbakhsh (Adapted by Parker)
Bump and Feeler (Tactile) Sensors

- Tactile (touch) sensors: wired so that when robot touches object, electrical signal is generated using a binary switch.
- Sensitivity can be tuned (“light” vs. “heavy” touch), although it is tricky.
- Placement is important (height, angular placement).
Proprioceptive Sensors

- Sensors that give information on the internal state of the robot, such as:
 - Motion
 - Position \((x, y, z)\)
 - Orientation \((\text{about } x, y, \text{ z axes})\)
 - Velocity, acceleration
 - Temperature
 - Battery level

- Example proprioceptive sensors:
 - Encoders \((\text{dead reckoning})\)
 - Inertial navigation system \((\text{INS})\)
 - Global positioning system \((\text{GPS})\)
 - Compass
 - Gyroscopes
Dead Reckoning/Odometry/Encoders

- **Purpose:**

 To measure turning distance of motors (in terms of numbers of rotations), which can be converted to robot translation/rotation distance.

- If gearing and wheel size known, number of motor turns \rightarrow number of wheel turns \rightarrow estimation of distance robot has traveled.

- Basic idea in hardware implementation:

 Device to count number of “spokes” passing by.
Wheel / Motor Encoders

- measure position or speed of the wheels or steering
- wheel movements can be integrated to get an estimate of the robot's position -> odometry
- optical encoders are proprioceptive sensors
 ➢ *thus the position estimation in relation to a fixed reference frame is only valuable for short movements.*
- typical resolutions: 2000 increments per revolution.
 ➢ *for high resolution: interpolation*
Encoders (con’t.)

- Challenges/issues:
 - Motion of wheels not corresponding to robot motion, e.g., due to wheel spinning
 - Wheels don’t move but robot does, e.g., due to robot sliding

- Error accumulates quickly, especially due to turning:

 Red line indicates estimated robot position due to encoders/odometry/dead reckoning.

 Begins accurately, but errors accumulate quickly
Another Example of Extent of Dead Reckoning Errors

- Plot of overlaid laser scans overlaid based strictly on odometry:
Inertial Navigation Sensors (INS)

- Inertial navigation sensors: measure movements electronically through miniature accelerometers

- Accuracy: quite good (e.g., 0.1% of distance traveled) if movements are smooth and sampling rate is high

- Problem for mobile robots:
 - Expensive: $50,000 - $100,000 USD
 - Robots often violate smooth motion constraint
 - INS units typically large
Heading Sensors

- Heading sensors can be proprioceptive (gyroscope, inclinometer) or exteroceptive (compass).
- Used to determine the robot's orientation and inclination.
- Allow, together with an appropriate velocity information, to integrate the movement to an position estimate.

 This procedure is called dead reckoning (ship navigation)
Compass

- Since over 2000 B.C.
 - when Chinese suspended a piece of naturally magnetite from a silk thread and used it to guide a chariot over land.
- Magnetic field on earth
 - absolute measure for orientation.
- Large variety of solutions to measure the earth magnetic field
 - mechanical magnetic compass
 - direct measure of the magnetic field (Hall-effect, magnetoresistive sensors)
- Major drawback
 - weakness of the earth field
 - easily disturbed by magnetic objects or other sources
 - not feasible for indoor environments
Gyroscope

- Heading sensors, that keep the orientation to a fixed frame
 - *absolute measure for the heading of a mobile system.*
- Two categories, the mechanical and the optical gyroscopes
 - *Mechanical Gyroscopes*
 - *Standard gyro*
 - *Rated gyro*
 - *Optical Gyroscopes*
 - *Rated gyro*
Mechanical Gyroscopes

- **Concept**: inertial properties of a fast spinning rotor
 - *gyroscopic precession*
- Angular momentum associated with a spinning wheel keeps the axis of the gyroscope inertially stable.
- Reactive torque \(t \) (tracking stability) is proportional to the spinning speed \(w \), the precession speed \(W \) and the wheels inertia \(I \).
- No torque can be transmitted from the outer pivot to the wheel axis
 - *spinning axis will therefore be space-stable*
- Quality: 0.1° in 6 hours

\[\tau = I \omega \Omega \]

- If the spinning axis is aligned with the north-south meridian, the earth’s rotation has no effect on the gyro’s horizontal axis
- If it points east-west, the horizontal axis reads the earth rotation
Rate gyros

- Same basic arrangement shown as regular mechanical gyros

- But: gimble(s) are restrained by a torsional spring
 - enables to measure angular speeds instead of the orientation.

- Others, more simple gyroscopes, use Coriolis forces to measure changes in heading.
Optical Gyroscopes

- First commercial use started only in the early 1980 when they were first installed in airplanes.
- Optical gyroscopes
 - angular speed (heading) sensors using two monochromatic light (or laser) beams from the same source.
 - One is traveling in a fiber clockwise, the other counterclockwise around a cylinder
- Laser beam traveling in direction of rotation
 - slightly shorter path -> shows a higher frequency
 - difference in frequency Δf of the two beams is proportional to the angular velocity Ω of the cylinder
- New solid-state optical gyroscopes based on the same principle are build using microfabrication technology.
Ground-Based Active and Passive Beacons

- Elegant way to solve the localization problem in mobile robotics
- Beacons are signaling guiding devices with a precisely known position
- Beacon base navigation is used since the humans started to travel
 - *Natural beacons (landmarks) like stars, mountains or the sun*
 - *Artificial beacons like lighthouses*
- The recently introduced Global Positioning System (GPS) revolutionized modern navigation technology
 - *Already one of the key sensors for outdoor mobile robotics*
 - *For indoor robots GPS is not applicable,*
- Major drawback with the use of beacons in indoor:
 - *Beacons require changes in the environment*
 -> costly.
 - *Limit flexibility and adaptability to changing environments.*
Global Positioning System (GPS) (1)

- Developed for military use
- Recently it became accessible for commercial applications
- 24 satellites (including three spares) orbiting the earth every 12 hours at a height of 20.190 km.
- Four satellites are located in each of six planes inclined 55 degrees with respect to the plane of the earth’s equators
- Location of any GPS receiver is determined through a time of flight measurement

- Technical challenges:
 - Time synchronization between the individual satellites and the GPS receiver
 - Real time update of the exact location of the satellites
 - Precise measurement of the time of flight
 - Interferences with other signals
Global Positioning System (GPS) (2)
Global Positioning System (GPS) (3)

- Time synchronization:
 - atomic clocks on each satellite
 - monitoring them from different ground stations.

- Ultra-precision time synchronization is extremely important
 - electromagnetic radiation propagates at light speed,

- Roughly 0.3 m per nanosecond.
 - position accuracy proportional to precision of time measurement.

- Real time update of the exact location of the satellites:
 - monitoring the satellites from a number of widely distributed ground stations
 - master station analyses all the measurements and transmits the actual position to each of the satellites

- Exact measurement of the time of flight
 - the receiver correlates a pseudocode with the same code coming from the satellite
 - The delay time for best correlation represents the time of flight.
 - quartz clock on the GPS receivers are not very precise
 - the range measurement with four satellite
 - allows to identify the three values (x, y, z) for the position and the clock correction ΔT

- Recent commercial GPS receiver devices allows position accuracies down to a couple meters.
Differential Global Positioning System (DGPS)

- Satellite-based sensing system

- Robot GPS receiver:
 - **Triangulates relative to signals from 4 satellites**
 - **Outputs position in terms of latitude, longitude, altitude, and change in time**

- Differential GPS:
 - **Improves localization by using two GPS receivers**
 - **One receiver remains stationary, other is on robot**

- Sensor Resolution:
 - **GPS alone: 2-3 meters**
 - **DGPS: up to a few centimeters**
Example DGPS Sensors on Robots
DGPS Challenges

- Does not work indoors in most buildings
- Does not work outdoors in “urban canyons” (amidst tall buildings)
- Forested areas (i.e., trees) can block satellite signals
- Cost is high (several thousand $$)
Computer Vision

- **Computer vision**: processing data from any modality that uses the electromagnetic spectrum which produces an image
- **Image**:
 - A way of representing data in a picture-like format where there is a direct physical correspondence to the scene being imaged
 - Results in a 2D array or grid of readings
 - Every element in array maps onto a small region of space
 - Elements in image array are called pixels
- **Modality** determines what image measures:
 - Visible light ➔ measures value of light (e.g. color or gray level)
 - Thermal ➔ measures heat in the given region
- **Image function**: converts signal into a pixel value
Types of Computer Vision

- Computer vision includes:
 - Cameras (produce images over same electromagnetic spectrum that humans see)
 - Thermal sensors
 - X-rays
 - Laser range finders
 - Synthetic aperture radar (SAR)
Computer Vision is a Field of Study on its Own

- Computer vision field has developed algorithms for:
 - Noise filtering
 - Compensating for illumination problems
 - Enhancing images
 - Finding lines
 - Matching lines to models
 - Extracting shapes and building 3D representations

- However, autonomous mobile robots operating in dynamic environments must use computationally efficient algorithms; not all vision algorithms can operate in real-time
CCD (Charge Coupled Device) Cameras

- **CCD technology:** Typically, computer vision on autonomous mobile robots is from a video camera, which uses CCD technology to detect visible light.

- **Output of most cameras:** analog; therefore, must be digitized for computer use.

- **Framegrabber:**
 - Card that is used by the computer, which accepts an analog camera signal and outputs the digitized results.
 - Can produce gray-scale or color digital image.
 - Have become fairly cheap – color framegrabbers cost about $200-$500.
Representation of Color

- Color measurements expressed as three color planes – red, green, blue (abbreviated RGB)

- RGB usually represented as axes of 3D cube, with values ranging from 0 to 255 for each axis
Software Representation

1. Interleaved: colors are stored together (most common representation)
 - Order: usually red, then green, then blue

Example code:

```c
#define RED 0
#define GREEN 1
#define BLUE 2

int image[ROW][COLUMN][COLOR_PLANE];
...
red = image[row][col][RED];
green = image[row][col][GREEN];
blue = image[row][col][BLUE];
display_color(red, green, blue);
```
Software Representation (con’t.)

2. Separate: colors are stored as 3 separate 2D arrays

Example code:

```c
int image_red[ROW][COLUMN];
int image_green[ROW][COLUMN];
int image_blue[ROW][COLUMN];

...red = image_red[row][col];
green = image_green[row][col];
blue = image_blue[row][col];
display_color(red, green, blue);
```
Challenges Using RGB for Robotics

- Color is function of:
 - Wavelength of light source
 - Surface reflectance
 - Sensitivity of sensor

- Color is not absolute;
 - Object may appear to be at different color values at different distances to due intensity of reflected light
Better: Device which is sensitive to absolute wavelength

Better: Hue, saturation, intensity (or value) (HSV) representation of color

- **Hue**: dominant wavelength, does not change with robot’s relative position or object’s shape
- **Saturation**: lack of whiteness in the color (e.g., red is saturated, pink is less saturated)
- **Intensity/Value**: quantity of light received by the sensor

Transforming RGB to HSV
Representation of HSV

- **Hue**: 0-360 (wavelength)
- **Saturation**: 0-1 (decreasing whiteness)
- **Intensity**: 0-1 (increasing signal strength)
HSV Challenges for Robotics

- Requires special cameras and framegrabbers
- Expensive equipment

- Alternative: Use algorithm to convert -- Spherical Coordinate Transform (SCT)
 - Transforms RGB data to a color space that more closely duplicates response of human eye
 - Used in biomedical imaging, but not widely used for robotics
 - Much more insensitive to lighting changes
Edge Detection

- Ultimate goal of edge detection
 - *an idealized line drawing.*
- Edge contours in the image correspond to important scene contours.
Region Segmentation

- **Region Segmentation**: most common use of computer vision in robotics, with goal to identify region in image with a particular color.

- Basic concept: identify all pixels in image which are part of the region, then navigate to the region’s centroid.

- Steps:
 - *Threshold all pixels which share same color (thresholding)*
 - *Group those together, throwing out any that don’t seem to be in same area as majority of the pixels (region growing)*
Example Code for Region Segmentation

```c
for (i=0; i<numberRows; i++)
    for (j=0; j<numberColumns; j++)
        { if (((ImageIn[i][j][RED] >= redValueLow)
                        && (ImageIn[i][j][RED] <= redValueHigh))
                    && ((ImageIn[i][j][GREEN] >= greenValueLow)
                        && (ImageIn[i][j][GREEN] <= greenValueHigh))
                    && ((ImageIn[i][j][BLUE] >= blueValueLow)
                        && (ImageIn[i][j][BLUE] <= blueValueHigh)))
            ImageOUT[i][j] = 255;
        else
            ImageOut[i][j] = 0;
    }
```

Note range of readings required due to non-absolute color values
Example of Region-Based Robotic Tracking using Vision
Another Example of Vision-Based Robot Detection Using Region Segmentation
Color Histogramming

- Color histogramming:
 - Used to identify a region with several colors
 - Way of matching proportion of colors in a region

- Histogram:
 - Bar chart of data
 - User specifies range of values for each bar (called buckets)
 - Size of bar is number of data points whose value falls into the range for that bucket

- Example:
Color Histograms (con’t.)

- Advantage for behavior-based/reactive robots: **Histogram Intersection**
 - *Color histograms can be subtracted from each other to determine if current image matches a previously constructed histogram*
 - *Subtract histograms bucket by bucket; different indicates # of pixels that didn’t match*
 - *Number of mismatched pixels divided by number of pixels in image gives percentage match = Histogram Intersection*

- This is example of local, behavior-specific representation that can be directly extracted from environment
Range from Vision

- Perception of depth from stereo image pairs, or from optic flow

- Stereo camera pairs: range from stereo

- Key challenge: how does a robot know it is looking at the same point in two images?

 ➢ *This is the correspondence problem.*
Simplified Approach for Stereo Vision

- Given scene and two images
- Find interest points in one image
- Compute matching between images (correspondence)
- Distance between points of interest in image is called disparity
- Distance of point from the cameras is inversely proportional to disparity
- Use triangulation and standard geometry to compute depth map

Issue: camera calibration: need known information on relative alignment between cameras for stereo vision to work properly