Robot Teams: From Diversity to Polymorphism

Chapter 2 Taxonomies of Multirobot Task and Reward

Author: Tucker Balch & Lynne E. Parker

Presented by: Xiaoquan Fu
March 11, 2003
Task impacts multirobot performance

- Purpose of taxonomies of task
 -- Effectiveness of design strategy of multirobot system depends on task
 -- Example: Might need cooperation or not

- Assumption: task defined by performance metric
 -- Taxonomy of tasks based on difference between performance metrics

- Studied from reinforcement learning perspective
 -- Reinforcement learning: rewards and/or punishments are used to alter numeric values in a controller to encourage/discourage robot's behavior

- Taxonomy provides framework for investigating impact of differences in performance metric and rewards on system performance
Difference between task and reward

• Performance maximized when reward parallels performance metric

• Might be difficult to reward strictly according to performance
 -- Examples:
 1. No enough information from sensors to evaluate performance
 2. Great delay in receiving reward
 3. Performance depends on other agents

• Performance metric (task) and reward function are different and should be treated separately

• Taxonomy of rewards enable to study which features enhance or hinder performance
A Taxonomy of Multirobot Task

- Time
 - TIME_LIM: Fixed time task
 Example: collect as many objects as possible in 10 minutes
 - TIME_MIN: Minimum time task
 Example: HW3 – find 90 percent of targets
 - TIME_UNLIM: Unlimited time task
 Example: patrol the building for burglars
 - SYNC: Synchronization required

- Subject of action
 - OBJECT_BASED: movement/placement of objects is important
 Example: robot soccer
 - ROBOT_BASED: movement/placement of robots is important
 Example: robot formation keeping
A Taxonomy of Multirobot Task (cont.)

- Resource limits
 -- RESOURCE_LIM: limited external resources
 Example: foraging
 -- ENERGY_MIN: minimum energy task
 -- COMP_INT: competition between team members for resources
 Example: foraging
 -- COMP_EXT: team competes with external agencies
 Example: robot soccer

- Group movement
 -- CONVERGENCE: multiple robots converge
 Example: HW2
 -- COVERAGE: multiple agents spread apart
 Example: search, grazing and cleaning
 -- MOVEMENT_TO: movement to a position
 -- MOVEMENT_WHILE: movement while maintaining position
 Example: HW4
A Taxonomy of Multirobot Task (cont.)

- Platform capabilities
 -- SINGLE_AGENT: a single agent can perform task
 -- MULTI_AGENT: multiple agents are required
 -- DISPERSED: agents must be dispersed
 -- SENSORCOMPLETE: can sense all relevant features
 -- SENSOR_LIM: world is partially observable
 -- COMM: communication required
Two examples of task classification

- Foraging: maximize the number of objects collected and delivered to homebase in 10 minutes
 -- TIME_LIM: performance measured over fixed period
 -- OBJECT_BASED: performance based on location of objects
 -- RESOURCE_LIM: collection of objects reduces availability of attractors
 -- COMP_INT: robots on a team compete among themselves
 -- SINGLE_AGENT: an individual robot can perform task

- Formation maintenance: minimize total position error for four robots in a diamond formation in 10 minutes
 -- TIME_LIM: task carried out over 10 minutes
 -- ROBOT_BASED: performance depends on location of robots
 -- CONVERGENCE: robots maintain close to each other
 -- MOVEMENT_WHILE: convergence maintained while robots move
 -- MULTI_AGENT: required four robots
A taxonomy of multirobot reward

- Source of reward
 -- INTERNAL_SOURCE: reward is internal based on sensor values
 -- EXTERNAL_SOURCE: reward is generated by external agent
 Example: dog trained by master; “reward” and “punish” button for robots
 -- COMB_SOURCE: combined internal and external reward

- Relation to performance
 -- PERFORMANCE: reward is tied directly to performance
 PERFORMANCE-based reward might be delayed
 Example: foraging
 -- HEURISTIC: reward based on intuition of state value
 can provide more immediate feedback

- Example of comparison of PERFORMANCE-based and HEURISTIC reward
 -- robot soccer
A taxonomy of multirobot reward (cont.)

• Time
 -- IMMEDIATE: immediate rewards are provided
 -- DELAYED: reward is delayed

• Continuity
 -- DISCRETE: reward takes on several discrete values
 -- CONTINUOUS: reward drawn from continuous interval

• Locality
 -- LOCAL: individual agents receive unique rewards
 -- GLOBAL: all agents receive identical reward signal
 Comparison Example: robot soccer
 * GLOBAL: might require expensive communication
 * GLOBAL: possible weak correlation between agent action and value of global signal
 * LOCAL: might not able to optimize overall system performance
 -- COMBINED_LOCALITY: combination of global and local
Summary and Conclusions

- Taxonomies provide framework for investigating how different types of reward impact task performance
- Taxonomy of reward functions provide framework for robot system design
- This work is a starting point – to expand to learn more about multiagent robotic systems