

Presented by Shane Murphy April 24, 2003

RoboCup: Today and Tomorrow – What we have learned

 Authors – Minoru Asada (Osaka University, Japan), Hiroaki Kitano (Sony CS Labs, Japan), Itsuki Noda (Electrotechnical Laboratory, Japan), Manuela Veloso (Carnegie Mellon, US)

 Published in Artificial Intelligence, 110(2): 193-214, 1999

What is RoboCup?

Mission Goal: "By the mid-21st century, a team of autonomous humanoid robots shall beat the human World Cup champion team under the official regulations of FIFA."

Problem Domain: Real-time sensor fusion, reactive behavior, strategy acquisition, learning, real-time planning, multi-agent systems, context recognition, vision, strategic decision-making, motor control, intelligent robot control, many more

Why Robot Soccer

 Competition forces reliability instead of optimal performance 1 in 100 times, valuable testing platform outside of laboratory, motivates students and spectators

Interesting comparison: Computer chess vs. computer soccer

	Chess	RoboCup
Environment	Static	Dynamic
State Change	Turn Taking	Real Time
Information accessibility	Complete	Incomplete
Sensor readings	Symbolic	Non-Symbolic
Control	Central	Distributed

What is RoboCup?

- Why propose multiple leagues?
 - Vary size / budgetary constraints to promote wider competition.
 - Vary size constraints to promote different application technologies .
 - Vary regulations to promote various problem domains (on / offboard sensor fusion, implicit / explicit communication, strategies, etc).

Current League Definitions in RoboCup

Currently (1999) composed of three leagues:

- Simulation League: eleven agents per team individually controlled, distributed sensing capabilities (visual, auditory).
- Small-size real robot league: five agents per team, 15cm³, play on ping-pong table, global vision allowed.
- Medium-size real robot league: five agents per team, robot base diameter < 50cm, play on 3 ping-pong tables, global vision not allowed

Research Issues and Approaches Considered in Paper

- Agent architecture
- Combination of reactive / planning approaches
- Real-time recognition, planning, reasoning
- Reasoning and action in a dynamic environment
- Sensor fusion
- Multi-agent systems
- Behavior learning
- Strategy acquisition
- Cognitive modelling

Team Architectural Structure

What kind of architectures have been seen at RoboCup?

Туре	CPU	Vision	Issues	League
А	1	1 global	Strategy	Small size
В	n	1 global	Sharing of information	Small size
С	1	1 global +	Sensor fusion,	Small size
		n local	coordination	
D	1 + n	n local	Multiple robots	Middle size
E	n	n local	Sensor fusion, teamwork	Middle size

Simulation League

- Interesting comparison of RoboCup-97 vs. RoboCup-98
 - Introduction of offside rule to diversify strategies, increase realism.
 - Ball speed reduced. Promotes dribbling, passing, teamwork.
 - Better stamina bound. Players tire after 50m dash, with cumulative long term fatigue.

Simulation League

Interesting results of above changes:

- Offside Rule: Strategic option of defensive "Offside Trap." Dynamic formation of teams, enforces lookbefore-passing.
- Man Marking: Stronger teams use explicit manmarking (CMUnited-98), need to predict strategies of opponents.
- Passing strategies: Require prediction of teammate actions to allow through-pass and back-pass.

RoboCup challenge in simulation

- Three strategic research challenges in simulation
 Multi-agent learning: On / Offline learning, examples include interceptions, adaptive player positions, experience based player positions.
 - Teamwork: Strong teams generate a strategic plan, execute in coordinated fashion, monitor for contingencies, select remedial actions.
 - Agent modeling: Required for agent prediction of teammates and opponents.

Small-size real robot league

Research challenges examined in small-size league

- Hardware Innovation:
 - Sensor-activated kicking devices
 - Ball holding, shooting tools for goalie
 - Compact and robust designs
- Efficient perception
 - Global perception challenge: Need reliable, real-time detection of multiple moving objects: ball, teammates, opponents.
 - Example: CMUnited-98: 30 fps used for decisions, prediction used for ball interception, goaltender behavior and pass/shoot decisions.
- Individual and team strategy
 - Role based team structure common, with 1-2 defenders and 3-4 attackers
 - Example: CMUnited-98: Each attacking robot anticipates needs of team and positions itself to maximize probability of successful pass.

Middle-size real robot league

Research challenges addressed in middle-size league

- Optimal platform: Still unknown. Examples include Pioneer-AT, Nomadics' Scout, original designs
- Sensors: No global vision. PC based image processors onboard, also standard sensors (bump, sonar, laser).
 Perception still problematic, particularly detecting other agents.
- Kicking mechanisms: pneumatic, solenoid devices introduced, produce much higher acceleration than in RoboCup-97

Middle-size real robot league

Research results:

- Most teams use if-then static rules. Some learning, evolutionary approaches (Trackies), genetic programming used to teach agents being developed.
- Vision remains main external source of sensing. Fixed cameras necessitate agent rotation to see (passive vision). Proposed panning camera use, multiple or omni-directional vision.
- Environment modeling and localization use geometric field model to localize robots.
- Communication generally implicit, though explicit is allowed. Explicit communication only used by one team (Uttori). Implicit communication considered interesting problem.

Future Issues

- Major progress from 97 to 98 in dynamic systematic teamwork, particularly in simulation and small-size arena. Progress will require greater recognition and prediction of agents
- Small-size league needs to examine size-restriction impact, robust global perception and radio communication. Also real-time adaptation of strategy, tactics through learned behaviors
- Middle-size league needs to examine the slow evolution of behavioral rules, individual agent skills, perception (color-based, edges, texture, optical flow, etc), obstacle avoidance (other agents, walls, etc).

Future Issues

Proposed new leagues: Sony Legged Robot League Humanoid League Fully Autonomous Humanoid League Tele-operated Humanoid League Virtual Humanoid League RoboCup Rescue

Open Field for Questions

