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Abstract

This paper introduces the concepts of distributed intelligence,
outlining the motivations for studying this field of research.
We then classify common systems of distributed intelligence
based upon the types of interactions exhibited, since the type
of interaction has relevance to the solution paradigm to be
used. We outline three common paradigms for distributed
intelligence — the bioinspired paradigm, the organizational
and social paradigm, and the knowledge-based, ontological
paradigm — and give examples of how these paradigms can
be used in multi-robot systems. We then look at a common
problem in multi-robot systems — that of task allocation —
and show how the solution approach to this problem is very
different depending upon the paradigm chosen for abstract-
ing the problem. Our conclusion is that the paradigms are
not interchangeable, but rather the selection of the appropri-
ate paradigm is dependent upon the specific constraints and
requirements of the application of interest. Further work is
needed to provide guidance to the system designer on select-
ing the proper abstraction, or paradigm, for a given problem.

Introduction to Distributed Intelligence

Distributed Intelligence refers to systems of entities working
together to reason, plan, solve problems, think abstractly,
comprehend ideas and language, and learn. Here, we define
an entity as any type of intelligent process or system, in-
cluding agents, humans, robots, smart sensors, and so forth.
In these systems, different entities commonly specialize in
certain aspects of the task at hand. As humans, we are all
familiar with distributed intelligence in teams of human en-
tities. For example, corporate management teams consist of
leaders with particular specialties as Chief Executive Officer
(CEO), Chief Operating Officer (COO), Chief Financial Of-
ficer (CFO), Chief Information Officer (CIO), and so forth.
Oncology patient care teams consist of doctors that special-
ize in certain areas, such as surgical oncology, medical on-
cology, plastic and reconstructive surgery, pathology, etc.
Distributed intelligence is also exhibited in military applica-
tions, such as special forces A-Teams, where team members
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specialize in weapons, engineering, medicine, communica-
tions, and so forth. Another military example includes per-
sonnel on an aircraft carrier flight deck, who are segmented
into the catapult crew, the landing signal officers, ordnance-
men, plane handlers, etc. As humans have clearly learned,
these teams can very efficiently solve complex tasks by mak-
ing use of specialists who work together productively.

The objective of distributed intelligence in computer sci-
ence (and related fields) is to generate systems of software
agents, robots, sensors, computer systems, and even people
and animals (such as search and rescue dogs) that can work
together with the same level of efficiency and expertise as
human teams. Clearly, such systems could address many
important challenges, including not only urban search and
rescue, but also military network-centric operations, gaming
technologies and simulation, computer security, transporta-
tion and logistics, and many others.

As a research topic, the study of distributed intelligence
has gained much popularity in recent years. Figure 1
shows data from the Web of Science resulting from a key-
word search on the terms “distributed intelligence”, “dis-
tributed AI”, “distributed artificial intelligence”, “multia-
gent”, “multi-agent”, “distributed robot”, “multirobot”, and
“multi-robot”. Each year’s results shows the number of
publications that appeared containing these keywords. The
search begins in year 1980 — the most recent year with no
publications containing any of these keywords — up through
2006. (Presumably, the 2006 data is somewhat incomplete,
as there is a time lag between the appearance of a publication
and its inclusion in Web of Science.) While this is an ad-
mittedly incomplete survey of this area of research, the data
does clearly show the significantly increasing interest in this
research area, as investigators and application developers are
recognizing the potential power of distributed intelligence.

What is the potential promise of distributed intelligence?
Certainly, some applications can be better solved using a dis-
tributed solution approach – especially those tasks that are
inherently distributed in space, time, or functionality. Fur-
ther, if a system is solving various subproblems in parallel,
then it offers the potential of reducing the overall task com-
pletion time. Any system consisting of multiple, sometimes



Figure 1: Web of Science data showing the number of pub-
lications appearing per year on topics related to distributed
intelligence.

redundant, entities, offers possibilities of increasing the ro-
bustness and reliability of the solution, due to the ability for
one entity to take over from another failing entity. Finally,
for many applications, creating a monolithic entity that can
address all aspects of a problem can be very expensive and
complex; instead, creating multiple, more specialized enti-
ties that can share the workload offers the possibility of re-
ducing the complexity of the individual entities.

Of course, these advantages of distributed intelligence
are, to some extent, offset by some disadvantages. For ex-
ample, even though the individual entity cost and complex-
ity may be less, determining how to manage the complete
system may be more difficult and complex, because of the
lack of centralized control or of a centralized repository of
global information. Further, distributed intelligent systems
may require more communication to coordinate all the enti-
ties in the system. Increasing the number of entities can lead
to increased interference between entities, as they must act
without complete knowledge of the other entities’ intents.
Finally, systems of multiple entities will typically experi-
ence increased uncertainty about the state of the system as a
whole.

Overall, however, as new solution approaches are being
developed and validated, the research and user community
is finding that it is often possible to realize the advantages
of distributed intelligence systems while countering many
of the possible disadvantages. The challenge is determin-
ing how best to properly design the system so as to achieve
global coherence through the local interactions of individual
entities.

The Domain Space of Distributed Intelligence

As researchers are discovering, there are many possible so-
lution strategies, or paradigms, for achieving distributed in-

telligence. Not all of these paradigms are appropriate for
all types of distributed intelligence. Thus, it is important to
understand the various types of distributed intelligence that
can occur in different application settings.

One important way to view the domain space in dis-
tributed intelligence is by understanding the types of interac-
tions that can take place between the entities in the system.
As illustrated in Figure 2, we find it instructive to view the
types of interactions along three different axes — the types
of goals, whether entities have awareness of others on the
team, and whether an entity’s actions advance the goals of
others on the team. In terms of types of goals, we classify
systems into two types — those in which each entity has in-
dividual goals, and those in which the entities have shared
goals. For the awareness of others axis, we divide the sys-
tems into those that are aware and those that are not aware.
By aware in this context, we refer to whether entities reason
about the actions and intentions of their teammates. Robots
that are not aware may sense the presence of local entities
and move so as to maintain a certain distance, for example,
but otherwise perform no other reasoning to understand the
intent or future plans of the teammates. Often, these “un-
aware” systems operate based on the principle of stigmergy,
in which communication between entities is not direct, but
rather through changes made in the environment.

Finally, we segment systems into those in which an en-
tity’s actions do advance the goals of others on the team (yes)
and those that do not (no). An example of an entity advanc-
ing the goals of others with its actions is a floor cleaning
robot, as a member of a floor cleaning robot team. Each
robot’s actions of cleaning a bit of the floor are helpful to
the other teammates, who do not have to repeat the floor
cleaning in that particular spot.

Obviously, these segmentations of the domain space are
approximate, yet we believe they are helpful in understand-
ing the primary types of interactions that can occur in typ-
ical applications. Different areas of this subspace represent
common types of interactions seen in systems of distributed
intelligence. These common forms of interaction are:

• Collective

• Cooperative

• Collaborative

• Coordinative

In the following paragraphs we describe these types of inter-
actions in more detail.

Perhaps the simplest type of interaction is the collective
interaction, in which entities are not aware of other entities
on the team, yet they do share goals, and their actions are
beneficial to their teammates. An example of this type of in-
teraction in multi-robot systems is the swarm robotics work
of many researchers (e.g., (McLurkin 2004; Matarić 1995;



Figure 2: Categorization of types of interactions in systems
of distributed intelligence.

Kube & Zhang 1993)). This work focuses on creating sys-
tems of robots that can perform biologically-relevant tasks,
such as foraging, swarming, flocking, herding, formation-
keeping, and so forth. Robots in these systems typically per-
form relatively simple local control laws which, when com-
bined with larger numbers of robots, result in the global goal
being achieved, often as an emergent property of the local
interactions.

The second type of interaction is the cooperative interac-
tion, in which entities are aware of other entities, they share
goals, and their actions are beneficial to their teammates. In
multi-robot systems, an example of this type of interaction is
multiple robots working together and reasoning about each
other’s capabilities in order to accomplish a joint task, such
as pushing a box (e.g., (Gerkey & Matarić 2002)), cleaning
up a worksite (e.g., (Parker 1998)), performing search and
rescue (e.g., (Murphy 2000)), or extra-planetary exploration
(e.g., (Stroupe et al. 2006)). In these systems, robots may
at times be working on different parts of the higher level
goal, and thus may at times have to ensure that they share
the workspace without interfering with each other. How-
ever, the majority of the work of the robots is focused on
working together to achieve a common goal.

A third type of interaction in systems of distributed intel-
ligence occurs when robots have individual goals, they are
aware of their teammates, and their actions do help advance
the goals of others. This part of the domain space is typ-
ically called collaborative, and is characterized by entities
helping each other to achieve their individual, yet compati-
ble, goals. While closely associated to the cooperative do-
main space, we make a distinction here to focus on the abil-
ity of entities to work together to help others better achieve
their individual goals. In human research teams, we are fa-
miliar with the concept of collaboration, in which each per-
son brings unique expertise that helps the team as a whole
achieve a broader objective. Each team member has his/her

own goal of performing his/her own aspect of the research,
but by working together with others with complementary ex-
pertise, each can help the other members better achieve their
individual goals. Of course, most of these collaborations
are also cooperative, and it is possible to turn a collabo-
rative team into a cooperative team by simply viewing the
team goals from a higher perspective. A multi-robot exam-
ple of a collaborative team is a group of robots that each
must reach specified goal positions that are unique to each
member. If robots are unable to reach their goal positions
independently, due to sensor limitations, they could work
together with other robots by sharing sensory capabilities to
help all team members reach their individual goal locations.
This type of collaboration is sometimes called coalition for-
mation, and has been illustrated in (Parker & Tang 2006;
Vig & Adams 2006).

Finally, the fourth type of interaction relevant to dis-
tributed intelligence is what we call coordinative. In these
systems, entities are aware of each other, but they do not
share a common goal, and their actions are not helpful to
other team members. In multi-robot systems, these situa-
tions often occur when robots share a common workspace.
The robots must work to coordinate their actions to min-
imize the amount of interference between themselves and
other robots. Multi-robot path planning techniques (e.g.,
(Kloder & Hutchinson 2006; Guo & Parker 2002)) or traffic
control techniques (e.g., (Asama et al. 1991; Yuta & Pre-
mvuti 1992; Wang 1991)) are commonly used in these do-
mains.

As a side note, we could have extended the third axis of
our domain space to categorize systems based on whether
they (1) positively affect the goals of other entities, (2) have
no effect on the goals of other entities, or (3) negatively effect
the goals of other entities. Then, we could create a new type
of interaction in which entities have individual goals, they
are aware of each other, but their actions have a negative
effect on others’ goals. This defines the adversarial domain,
in which entities actively work against each other. In multi-
robot systems, this topic is studied extensively in the multi-
robot soccer application domain (e.g., (Kitano et al. 1997;
Browning et al. 2005; Veloso, Stone, & Han 1999; Stone
& Veloso 1999)). This form of interaction also has clear
relevance for many military applications.

Paradigms for Distributed Intelligence

Just as there are many types of interactions in systems of
distributed intelligence, there are also many paradigms for
achieving distributed intelligence. Each paradigm abstracts
the problem space in a different way, enabling the system
designer to view the system from a perspective that sheds
light on proper solution strategies. Often, these paradigms
take inspiration from societies of insects, or societies of hu-
mans. Not all paradigms are appropriate for all types of
interaction dynamics. In this section, we outline some of



the more common paradigms for distributed intelligence, es-
pecially focusing on their relevance to multi-robot systems.
Note that a fundamental challenge in all of these paradigms
is determining how best to achieve global coherence from
the interaction of entities at the local level. By abstracting
the problem in different ways, alternative solution strategies
become apparent that can help address this challenge.

Three commonly used paradigms for building systems of
distributed intelligence include:

• Bioinspired, emergent swarms paradigm,

• Organizational and social paradigms, and

• Knowledge-based, ontological, and semantic paradigms.

We discussed concepts of the bioinspired, emergent
swarms paradigm in the previous section, as part of the de-
scription of collective interactions. In this paradigm, the
need for communication between entities is greatly reduced
by assuming the ability of the entities to sense relevant in-
formation in their local environments (i.e., stigmergy). The
application requirements in these problems allow for simple
action protocols, or control rules, that are identical on each
entity, and that lead to the desired group behavior. An ex-
ample local control rule under this paradigm that can cause
all the agents/robots to aggregate (as in a swarm) is:

Aggregate:

If agent is outside aggregation

distance

then turn toward aggregation

centroid and go.

Else

stop.

This is a powerful paradigm for those applications that
require the same task to be performed across a distributed
workspace, where the task does not require complex inter-
actions of entities and all entities are interchangeable. Re-
search challenges include developing tools that can predict
the global behavior given a set of local control rules, as
well as the inverse problem, in which we want to derive the
local control rules, given a desired global behavior. This
paradigm is relevant for many spatially distributed appli-
cations, including flocking, schooling, foraging, chaining,
search, sorting, herding, aggregation, condensation, disper-
sion, containment, formations, harvesting, deployment, and
coverage. However, other types of interactions require more
complex solution paradigms.

Organizational and social paradigms are typically based
on organizational theory derived from human systems.
Knowledge from the fields of sociology, economics, and
psychology, and related areas, have proven valuable for un-
derstanding how to create systems of intelligent artifacts that
can work together to solve complex problems. In these ap-

proaches, agent/robot interactions are designed by modeling
individual and group dynamics as part of an organization.
These approaches reduce the communications requirements
among entities by making use of models drawn from these
fields. This type of approach is commonly used for cooper-
ative and collaborative types of distributed intelligence.

Two examples of organizational theory applied to multi-
robot systems are the use of roles and value systems, as well
as the use of market economies. Roles are often used to
divide the application into manageable tasks that can each
be assigned to a different robot in the team. An easy di-
vision of work is achieved by assigning roles according to
the skills and capabilities of the individual team members.
For instance, in multi-robot soccer (Stone & Veloso 1998;
Marsella et al. 1999; Veloso, Stone, & Han 1999), posi-
tions played by the different robots are often defined as roles,
such as goal keeper, left defender, right defender, left for-
ward, right forward, and so forth. The robot best suited, and
perhaps in closest proximity, to the available roles/positions
then selects to perform that role.

Market economies are used in multi-robot systems as
a paradigm for task allocation, which we discuss further
in the next section. In brief, task allocation is the prob-
lem of mapping tasks to robots, such that the most suit-
able robot is selected to perform the most appropriate task,
leading to all tasks being satisfactorily completed. Market-
based approaches to task allocation (e.g., (Dias et al. 2006;
Zlot & Stentz 2006; Gerkey & Matarić 2002)) make use of
the theory of market economies to determine how best to
manage bids, how to handle multiple bids in parallel, how to
consider multiple tasks at once, and so forth. More discus-
sion on this topic is given in the next section.

A third paradigm commonly used for developing systems
of distributed intelligence is the knowledge-based, ontolog-
ical, and/or semantic paradigm. The focus in these ap-
proaches is on knowledge sharing between heterogeneous
robots/agents, with the objective of easily allowing these
entities to share and understand knowledge from disparate
sources. Often, knowledge is defined as an ontology, which
specifies a common vocabulary and semantics for the knowl-
edge in the system. Such approaches require a language for
representing knowledge, such as the Knowledge Interchange
Format (KIF) (Genesereth & Fikes 1992), as well as a lan-
guage for communicating knowledge, such as the Knowl-
edge Query and Manipulation Language (KQML) (Finin,
Labrou, & Mayfield 1995). This paradigm achieves com-
munication reduction by making use of shared assumptions
of vocabulary and semantics.

This type of paradigm can be used for many types of inter-
actions, including cooperative, collaborative, and coordina-
tive. However, while this paradigm has become perhaps the
dominant paradigm in multi-agent systems, it is not com-
monly used in multi-robot systems, at least in the form of
full-fledged ontologies. More than likely, this is because



physical robot systems are more challenged by noise and un-
certainty in sensing and actuation, as well as low-bandwidth
communications, limited power, and limited computation.
As such, the limiting bottleneck in multi-robot systems is not
typically the semantics of the shared knowledge, but rather
dealing with these uncertainties. However, this does not
mean that multi-robot systems do not use knowledge-based
approaches. On the contrary, many approaches do model in-
formation about the system and about the teammates in order
to more effectively cooperate, collaborate, and coordinate.

Contrasting Paradigms for a Typical

Multi-Robot Challenge: Task Allocation

Having explored three common paradigms in systems of dis-
tributed intelligence, we now briefly compare and contrast
these paradigms in their approach to a common challenge
in multi-robot systems — that of task allocation. As previ-
ously introduced, task allocation arises in many multi-robot
applications in which the mission of the team is defined as
a set of tasks that must be completed. Each task can usu-
ally be addressed by a variety of different robots; conversely,
each robot can usually work on a variety of different tasks.
Independent tasks can be achieved concurrently, while de-
pendent tasks must be achieved according to their interde-
pendence constraints. Once the set of tasks has been de-
fined, the challenge is to determine the preferred mapping of
robots to tasks that optimizes some objective function. This
is the task allocation problem. The general task allocation
problem is known to be NP-hard (Gerkey & Matarić 2004),
meaning that optimal solutions cannot be found quickly for
large problems. Therefore, solutions to this problem are typ-
ically approximations that are acceptable in practice.

Let us examine how each of the paradigms we have dis-
cussed would handle the multi-robot task allocation prob-
lem. First, the bioinspired approach to task allocation would
typically assume large numbers of homogeneous robots that
are all interchangeable. In this situation, any robot that is
available and senses the need for a task to be performed can
select to perform that task (i.e., the task is allocated to that
robot). Because of stigmergy, robots do not have to explic-
itly communicate in order to determine which task to under-
take. Robots that fail can be replaced by any other available
robot. If all robots operate under this principle, then the en-
tire mission is typically accomplished.

Second, an organizational approach to task allocation
would make use of roles, as we described previously for
multi-robot soccer. Each role encompasses several specific
tasks, and robots select roles that are best suited for their ca-
pabilities. In this case, robots need not be homogeneous, but
instead can have a variety of different sensing, computation,
and effector capabilities.

An alternative organizational approach to task allocation
is the market-based approach also mentioned previously. In

these approaches, robots explicitly communicate to bid for
tasks according to their expected contribution to those tasks.
Assignments are typically made by greedily assigning each
task to the robot that can perform it with the highest util-
ity. The fundamental paradigm for interaction in this case is
based upon the Contract Net Protocol (Smith 1980), which
was the first to address the problem of how agents can ne-
gotiate to collectively solve a set of tasks. The use of a
market-based approach specifically for multi-robot task al-
location was first developed in the M+ architecture (Botelho
& Alami 1999). In the M+ approach, robots plan their own
individual plans for the task they have been assigned. They
then negotiate with other teammates to incrementally adapt
their actions to suit the team as a whole, through the use of
social rules that facilitate the merging of plans.

Finally, the knowledge-based approach is also used for
task allocation in multi-robot teams, through the modeling
of teammate capabilities. Many variations are possible, such
as in the ALLIANCE approach (Parker 1998), in which
robots model the ability of team members to perform the
tasks of the system by observing team member performance
and collecting relevant task quality statistics, such as time
to task completion. Robots then use these models to select
tasks to perform that benefit the group as a whole. In this ap-
proach, explicit communication is not required for the selec-
tion of task assignments. Other techniques are also possible
that make use of learned models of teammate capabilities.

As we see through these task allocation examples, a spe-
cific problem in multi-robot systems can be addressed in
many different ways, based upon the paradigm selected for
abstracting the problem at hand. Each paradigm has its own
advantages and disadvantages, which may be specific to the
application. The paradigms are therefore not interchange-
able for many applications, with the most suitable approach
depending upon the relevant constraints and requirements of
the application.

Conclusions

In this paper, we have outlined aspects of the field of
distributed intelligence, focusing on the types of interac-
tions that can occur in such systems, and some common
paradigms used to achieve distributed intelligence. To ex-
plore the challenges, we have used examples from the field
of multi-robot systems to illustrate, compare, and contrast
the alternative interactions and paradigms. The main mes-
sage of these discussions is that the choice of paradigm is
not always obvious, and is dependent upon the requirements
of the application to be addressed. We also note that com-
plex systems of multiple robots can make use of several dif-
ferent paradigms simultaneously. For example, a large-scale
exploration, mapping, deployment, and detection problem,
such as that described in (Howard, Parker, & Sukhatme
2006) can make use of an organizational paradigm to de-
fine roles for the high-level abstraction, an application-



specific knowledge-based approach for multi-robot map-
ping, a knowledge-based modeling approach for mobile net-
work deployment, and a bioinspired approach for creating a
mobile sensor network. The challenge as system designers
is to create and make use of the appropriate paradigms that
best address the specific constraints and challenges of the
application at hand.
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