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Abstract— This paper addresses the challenge of forming
appropriate heterogeneous robot teams to solvetightly-coupled,
potentially multi-robot tasks, in which the robot capabilities
may vary over the environment in which the task is being
performed. Rather than making use of a permanent tightly-
coupled robot team for performing the task, our approach
aims to recognize when tight coupling is needed, and then only
form tight cooperative teams at those times. This results in
important cost savings, since coordination is only used when the
independent operation of the team members would put mission
success at risk. Our approach is to define a new semantic
information type, called environmentally dependent information,
which allows us to capture certain environmentally-dependent
perceptual constraints on vehicle capabilities. We define loca-
tions at which the robot team must transition between tight and
weak cooperation ascritical junctures. Note that these critical
juncture points are a function of the robot team capabilities and
the environmental characteristics, and are not due to a change
in the task itself. We calculate critical juncture points by making
use of our prior ASyMTRe approach, which can automatically
configure heterogeneous robot team solutions to enable sharing
of sensory capabilities across robots. We demonstrate these
concepts in experiments involving a human-controlled blimp
and an autonomous ground robot in a target localization task.

I. INTRODUCTION

In many heterogeneous robot teams, some robot team
members are unable to perform certain tasks without direct
help from other teammates. This limitation in team member
capabilities leads to the need for robots to form coalitionsto
help each other solve tasks. Typically, these tasks are called
multi-robot tasks(per the taxonomy of Gerkey [4]) that must
be solved usingtightly-coupledcooperation [7]. However,
this categorization of a task as amulti-robot taskpresumes
that the designation is independent of the robot team member
capabilities. In reality, whether a task can be performed bya
single robot, or requires multiple robots, is in fact dependent
on the capabilities of the robot team members. Prior work
(e.g., [11]) has resulted in approaches that can automatically
construct solutions for tasks that are dependent upon the
capabilities of the team members.
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However, existing techniques are not sufficient when the
capabilities of the robot team members not only vary from
robot to robot, but also vary within an individual robot
depending upon the environmental characteristics. Examples
of this type of task include landmark-based localization,
in which sufficient landmarks within the field of view
are needed to properly achieve localization; camera-based
navigation, in which sufficient lighting is needed to avoid
collisions; or wheel-based locomotion, which requires a
relatively smooth surface for motion. Thus, a task may at
times require the tight coupling of multiple robots working
together, while at other times, a different coalition of robots,
or even a single more capable robot working alone, is needed
to achieve the task. By automatically determining when tight
cooperation is need during the task, the robot team can avoid
the permanent use of high-cost coalitions of robots working
together, restricting those solutions to segments of the task
that cannot otherwise be solved.

This paper addresses this class of robot tasks. In par-
ticular, we focus onweakly-decomposable tasks, which we
define to be tasks such as “search”, “coverage”, “forage”,
or “path following” that must be performed in continuous
space and time, and which cannot be trivially be subdivided
into discrete subtasks independently of the environment
or robot team. Note that such tasks could be subdivided
into separate routes that fully-capable teams could execute
independently to achieve the overall task, such as different
paths for covering different parts of the workspace; however,
these subdivisions are typically made independently of the
robot capabilities, and cannot be trivially assigned to robots
without considering the characteristics of the environment
or of the robots themselves. Our objective is to develop an
approach that allows robots with limited, environmentally-
dependent capabilities to perform such tasks autonomously
by teaming with other robots at the appropriate time and
place. In this paper, we focus primarily on robots’ perceptual
capabilities that may vary across the environment.

In this paper, we first define the concept ofenvironmentally
dependent information, which provides a way to describe
certain environmentally-dependent perceptual limitations of
the robots. We next define the concept ofcritical junctures,
which are those environmental regions of the task where
the robot team must transition between tight and weak
cooperation. To reason with this information to determine
appropriate teams of robots at each critical juncture, we make
use of our prior ASyMTRe architecture [11] for configuring



robot team solutions that make use of sensor sharing when
needed.

We illustrate these new ideas in a target localization task,
which requires the team to explore an indoor area and
localize targets found in the environment. We present exper-
iments in which a human-piloted Unmanned Aerial Vehicle
(UAV) (specifically, a blimp), and an autonomous mobile
(ground) robot work together in this target localization task.
Coordination occurs between the autonomous mobile ground
robot with sophisticated localization capabilities (but limited
target detection capabilities) and the human-controlled blimp
with only limited localization capabilities (but more capa-
ble target detection capabilities). Our experiments compare
independent robot operations with approaches that either
(1) pre-plan the critical juncture regions, or (2) reactively
recognize critical juncture points at run time. Our results
show that it is indeed possible to automatically identify the
critical junctures for when tightly-coupled coordinationis
needed between vehicles, and that teams employing these
tightly-coupled cooperative behaviors during critical juncture
regions exhibit improved performance over non-cooperative
teams. Our results further indicate that pre-planning critical
regions is not always preferred over a reactive approach.

II. RELATED WORK

A significant body of research has addressed the subject
of coordination in heterogeneous entity teams (see [10] for
an overview of the field). Research specific to heterogeneous
robots often focuses on the issue oftask allocation, which
is the problem of determining a suitable mapping between
robots and tasks. A formal analysis of this problem is
presented in [4]. Several approaches to robot team task allo-
cation have been developed. Typically, a task is decomposed
into independent subtasks [9], hierarchical task trees [18], or
roles [6], [13], [15] either by a general autonomous planner
or by the human designer. Independent subtasks or roles can
be achieved concurrently, while subtasks in task trees are
achieved according to their interdependence. An example of
a behavior-based approach to multi-robot task allocation is
ALLIANCE [9]. After Smith [16] first introduced the Con-
tract Net Protocol (CNP), many market-based approaches
addressing multi-robot cooperation through negotiation were
developed, including M+ [1], TraderBots [2], [18], and
Hoplites [7]. In these approaches, a task is divided into
subtasks or hierarchical subtask trees (in the case of [18])
for the robots to bid and negotiate to carry out the subtasks.
In other work, Fua and Ge [3] also address the problem
of multi-robot tasks using the COBOS cooperative backoff
adaptive scheme. However, these prior approaches do not
include a concept of environmentally dependent information
or capability.

Other work related to this research effort is work in
coalition formation (e.g., [14]). In these systems, agentsare
organized into coalescent teams to achieve a higher-level
goal [5]. Shehory [14] describes a method of allocating a
set of interdependent tasks to a group of agents by forming

coalitions. However, as noted in [17], many of the multi-
agent approaches to coalition formation cannot be directly
transferred to multi-robot applications, since robot capabili-
ties and sensors are situated directly on the robots and are
not transferable between robots. Lundh, et al., [8] present
an approach to configuring groups of robots based on their
functionalities, and using knowledge-based techniques. Their
work is different from ours, in that they plan for a series of
discrete actions to achieve a goal, rather than addressing a
weakly-decomposable task.

In prior work, we have developed the ASyMTRe approach
[11] for automatically configuring heterogeneous robot team
solutions for solving a given task. Rather than pre-defining
a task to be a single-robot task or a multi-robot task, the
ASyMTRe approach determines what the best solution to the
task would be by exploiting the sensing, computation, and
motor schema capabilities of the robot team members. The
resulting solution for a task could either require only a single
team member, or it could require multiple team members
working together to share their sensing, computational, and
effector capabilities to achieve the given task. Our ASyMTRe
approach differs from other prior work in that it abstracts the
problem at theschemalevel, rather than the task level, per-
mitting more flexibility in the solution approach. ASyMTRe
can use this abstraction to generate alternative combinations
of robot capabilities (i.e., schemas that generate required
information) that can accomplish the task, and does not
assume a fixed list of capabilities (or even information types)
that are needed to accomplish a task. By abstracting the
task using schemas and information requirements, rather
than specific solutions based on specific sensors, we believe
ASyMTRe generates more flexible solution strategies for
multi-robot coalition formation that are not dependent upon
a fixed list of capabilities or resources required for each
task. The work described in this paper extends this prior
work of ASyMTRe by defining robot capabilities that are
dependent upon the local environment, rather than being
fixed for that robot. Further, we show how the critical regions
requiring tight cooperation between robots can be determined
automatically.

III. APPROACH TO SYNERGISTIC CONTROL

Our fundamental ideas for achieving synergistic control
are based on two concepts. First, we develop a representation
for environmentally-dependent, sensor-generated information
that robots must use to achieve certain tasks; we call this
informationenvironmentally dependent information(or EDI).
Second, we definecritical juncturesin which environmental
characteristics change the perceptual capabilities of robot
team members, thus requiring a new team composition. The
following subsections describe these concepts in more detail.

A. Environmentally Dependent Information

In defining the perceptual capabilities of a robot, our
approach is to focus on theinformation that is obtained
from a combination of sensors plus computation, rather
than focusing on the sensor resource alone. This focus on



information flow emphasizes the use of the sensor toward
some objective, rather than just the presence of the sensor
alone. Thus, to achieve a task, a robot (or coalition of robots)
must have a required flow of information from sensor to
motor control. As an example, consider the task of localizing
a target. The required information needed to localize a target
might be a scanned map of the environment, the current
global position of the robot within the environment, and the
relative position of the target within the field of view. In
turn, some of this information may itself be dependent upon
yet other information. For example, determining the current
global position of the robot may require a combination of
a laser scanner and a Monte Carlo Localization algorithm
for finding the most likely position of the robot in the given
map. Or, alternatively, the current global position could be
calculated using a combination of a camera and two or more
known landmarks within the field of view. The particular
combination of sensor and perceptual computation necessary
to generate the required information will vary from robot
to robot. Indeed, some information can come from other
robots, thus enabling coalitions of robots to work together
to solve the given task. In any case, as long as the required
information is available, regardless of the source, the robot
can calculate the global position of the target and mark its
position on the map of the environment.

This perspective of the problem in terms of the information
flow through the robot system, regardless of the source of
the information, is the basis of the ASyMTRe approach in
our earlier work [11]. To simplify the automatic reconfigura-
bility of the approach,schemasare used as basic building
blocks, consisting of environmental sensors (ES), perceptual
schemas (PS), communication schemas (CS), and motor
schemas (MS). The inputs and outputs of these schemas
are defined in terms of their semantic information content,
where the set of possible information types is given by
F = {F1, F2, ...}. For a schemaSi (which is one of the
available ES, PS, CS, or MS schemas on a robotRi),
ISi and OSi ⊂ F represent the input and output sets of
Si, respectively. The output of a schema can be connected
to the input of another schema as long as their semantic
information types match. Then robots on the team are
defined asR = {R1, R2, ..., Rn}. The task to be performed
is defined asT = {MS1, MS2, ...}, which is the set of motor
schemas that define the group-level task to be achieved. A
robotRi is represented byRi = (ESi, Si), in which ESi is a
set of environmental sensors that are installed onRi, where
OES

j

i ⊂ F is the output of ESji (that is, thejth ES on
robot Ri). A solution to the task is given by a combination
of schemas that can satisfy the required information flow
to meet the task requirements. Different configurations of
schemas can solve a given task in different ways, either
within an individual robot, or across multiple robots. When
alternative solutions exist, the preferred approach is selected
using a supplied utility function.

To incorporate the idea ofenvironmentally-dependent
information (EDI) into this concept, we must add addi-
tional descriptive content to the required information; this

additional descriptive content identifies the environmental
characteristics necessary to generate the information. These
characteristics must then be used in planning the required
coalitions for different regions of the environment. More
formally, the approach is as follows. Each generated solution
for robot Ri will contain a set of environmental sensors
and perceptual schema combinations (ESj

i , PSj
i ), for all

j environmental schemas used in the solution for robot
Ri. Each of these combinations generates a required type
of information OES

j

i ⊂ F . It is these combinations of
sensors and perceptual schemas that can be dependent upon
certain environmental characteristics. Thus, corresponding to
these pairs of sensors and perceptual schema processes must
be additional information on environmental constraints for
using that combination, if any. Thus, we define constraints,
H1..r

p,q , which specify ther environmental constraints on a
given (ESp, PSq) combination. Environmental constraints
are defined as conditions (i.e., propositional variables) that
must be either true or false for a set of pre-determined,
application-dependent environmental variables. Examples of
suchH conditions include “range< 2m”, “ lighting-level>
60 footcandles”, “ 3 landmarks of type x within range< 3m”,
etc. If the environmental constraints are not met in a given
environmental region, then ASyMTRe must discard this
combination of sensors and schemas as a possible solution.

As an example of a practical definition of an EDI, consider
the task of indoor localization for the purpose of target local-
ization. For autonomous robots in static indoor environments,
localization can typically be achieved by making use of a
laser scanner, a scanned map of the environment, and a
localization algorithm. However, a less-capable vehicle with
unsophisticated sensors (such as a human-controlled blimp
with only a crude camera onboard) may only be able to
perform localization if known landmarks, corresponding to
known positions on the map, are within line of sight of the
remote camera. In this example, the EDI is defined to be
a distinct corner landmark that is useful to the human for
performing global localization; this EDI is associated with
the (ES, PS) combination of (camera, global localization
schema). Figure 1 shows the corner EDIs thus defined for
an example application environment in the target search
task. As long as these landmarks are within sight, and they
can be mapped to a global position in the environment,
then a trained human should be able to localize targets
in the image, within some error bounds. However, if no
identifiable landmarks are within view, then the human needs
an alternative reference point in order to localize targetsin
the environment. To illustrate this idea in our experiments,
the alternative reference point is the autonomous ground
robot itself, which, when needed by the human to localize
a seen target, moves to the general proximity of the blimp
and reports its precise position to the human (via radio).
The human can then approximate the relative position of
the blimp to the ground robot, and use this information
to localize the visible target. This cooperation between the
autonomous ground robot and the human-controlled blimp



Fig. 1. Environmentally Dependent Information (EDI) (i.e., corner land-
marks) in the test environment for a target localization task.

is the type of tightly-coupled cooperation illustrated in our
experiments.

B. Critical Junctures and Regions

Our hypothesis is that the cost of using tightly-coupled
coordination can be minimized by using independent be-
haviors when possible and tightly-coupled coordination only
when independent behaviors would otherwise fail. We use
the termcritical junctures(CJs) to describe the starting point
in a weakly-decomposable task where independent behaviors
will fail and tightly-coupled coordination is required; this
term is also used to describe ending points during a task
where tightly-coupled coordination is no longer required.
The time between these critical juncture points is called a
critical region, or cooperative region.

In our current approach, we make some important as-
sumptions affecting critical junctures. First, we assume that
the environment in which the robots operate is known in
advance, so that advanced planning techniques can be used
for calculating critical junctures. If this assumption does
not hold, meaning that the environment is not knowna
priori , then it is still possible to identify critical junctures
using reactive planning. Second, we assume that robots (or
coalitions of robots) performing the tasks of interest (i.e.,
search, coverage, etc.) do so by following a path (or, more
precisely, a set of paths) through the environment that is
(are) generated by a separate computational process. These
paths define the routes that fully-capable robot teams must
take in order to achieve the task in a cooperative fashion.
By assuming that robot teams are given paths to follow to
achieve the given task, critical juncture points can be asso-
ciated with locations along the path at which environmental
characteristics change the required composition of the robot
team. Finally, we assume that the available robot assets are

Fig. 2. Critical (or cooperative) regions, demarcated by Critical Junctures,
indicating where tightly-coupled cooperation is needed, due to the lack of
EDI information.

sufficiently dense, relative to the workspace, so that robots
can provide assistance to each other when needed without
incurring an excessive overhead cost. Future research will
be aimed at relaxing these assumptions.

C. Using ASyMTRe and EDIs to Compute CJs

Our approach can either pre-compute critical junctures,
or determine reactively when a critical juncture has been
reached. As previously stated, for pre-computed critical
junctures, we assume that a separate process (not addressed
in this paper) has preplanned paths for fully capable robot
coalitions. As an example, Figure 2 shows example paths
for a UAV and a ground robot for a target search task,
which requires the robot team to search the entire workspace
for targets of interest. These paths are then sampled at
regular intervals, with the spacing along the paths dependent
upon the sensing range of the robots. At each sampled
position, ASyMTRe is run as a subroutine to generate a task
solution for that position. A different set of robot schema
configurations will be generated depending on whether the
area is within range of a required EDI. When the generated
task solution changes between an independent solution and
a cooperative solution, that point is identified as a critical
juncture. Segments of the paths that are between critical
junctures are identified as critical regions, which requiretight
cooperation between robots. Figure 2 shows example paths
of the UAV and ground robot, with the cooperative regions
(boxed in black) overlaid on the EDI map from Figure 1.

Of course, it is clear that the optimal paths of the robots
are dependent on which regions of the environment require
tightly-coupled cooperation; thus, in the general case, our
decoupled approach of considering the paths separately from
the cooperative regions will not find optimal paths. However,
it is also well-known that the general multi-robot path



planning problem is intractable (specifically, PSPACE-hard),
so it is a non-trivial problem to generate optimal solutions
to this problem. Nevertheless, in future work we plan to
consider tractable methods of coupling the multi-robot path
planning step with the consideration of the critical junctures.

For reactive detection of critical junctures, the robots
periodically rerun the ASyMTRe configuration algorithm to
determine if the current configuration is still valid, or, ifnot,
to determine an alternative configuration of robot capabilities
that can address the task in the current area of the envi-
ronment. When the best alternative solution requires tightly-
coupled cooperation between robots, the robots communicate
with each other to initiate the tightly-coupled cooperation.

IV. PHYSICAL ROBOT EXPERIMENTS

To illustrate our concepts, we implemented a physical
robot solution to the indoor target localization task. The
heterogeneous team for this task consisted of a human-
controlled aerial blimp and an autonomous ground robot.
The following subsections describe the task, the robots, and
the test scenarios we used to evaluate our approach.

A. Target localization task

The objective of the target localization task is to visit
all of the identified indoor workspace in search of targets,
and to note the location of the identified targets on a map.
The team is provided with a map of the environment in
advance (which, in this case, was autonomously generated
by the ground robot in advance of the target localization
task). In the physical robot experiments, targets were chosen
to be solid green balloons of size 30 cm in diameter, which
have the beneficial characteristics of being spherical (and
thus present the same two-dimensional profile from any
angle), easy to detect in our indoor test area, inexpensive,
lightweight, and easy to manage. (The images in Figure 4
show several balloon targets.) Targets are uniformly dis-
tributed in the environment at two possible heights (“high”
and “low”), using an automated process that selects the target
locations, followed by manually placing the targets at the
generated locations. A total of 12 targets were used in the
experiments reported in this paper, in an environment of
size of approximately 450m2, yielding approximately a 4-
5m spacing between targets. Figure 3 shows an example
of the test environment and the selected target positions.
Note that in this environment, the area in the lower left of
the workspace, marked by a dashed rectangle, is an area
accessible only by the blimp; this is a lunch area with many
tables and chairs that block the ground robot’s path.

B. Robots and behaviors

The human-operated blimp used in these experiments was
a custom-built, 180cm long envelope controlled by a stan-
dard, two stick, hobby-type transmitter/receiver for remote
control. The blimp carries an Eyecam 2.4GHz color micro
wireless video camera, whose output is displayed on a pro-
jector, for use by the human controller. More details on the
blimp design are available in [12]. The autonomous ground

Fig. 3. Example target locations.

mobile robot used for these experiments was a Pioneer 3
DX robot. This robot includes an onboard computer, a SICK
laser range finder, a Canon VC-C4 camera (tilted down15o

from horizontal), and 802.11 wireless. Software behaviors
operating on the robot include self-localization, navigation,
communication, and target detection and localization.

The behavior of the vehicles for target detection is as
follows. The autonomous ground robot moves along a pre-
planned path, and, at periodic waypoints along that path, it
stops and conducts a360o visual sweep of the area with
the camera, looking for targets. The human-controlled UAV,
being less-precisely controllable than the autonomous ground
robot, follows its predefined path and, as deemed necessary
by the human pilot, rotates and changes altitude to visually
scan the surrounding area for targets. Upon detecting a target,
the robot or UAV then localizes the target to the best of
its ability. For the ground robot, this involves using the
direction and size of the target in the image, combined
with self-location and orientation to determine a precisex, y

position of the target. Because the robot’s camera is fixed in
a slightly downward-facing position, the robot is not capable
of seeing “high” targets; thus, allz-axis values reported by
the robot are set at the ground level, or “low”. For the UAV,
target localization involves a human operator using self-
localization, determined by position and orientation relative
to a corner EDI or the ground robot (whose global position
is communicated to the UAV operator when requested),
combined with the direction and size of the target, to visually
estimate and record the position of the target. The human
operator identifies thex, y position as well as az value
(either “high” or “low”) per target.

Because of the way the targets are distributed and the
information types defined for the environment, the UAV
and robot are expected to have different levels of success
localizing targets for different target locations. For example,
targets placed at a high elevation in the environment are



Fig. 4. On the top, the UAV waits on the ground robot for localization
assistance. On the bottom, the robot assists the UAV in localizing a target.

unlikely to be detected by the ground robot, whereas targets
in areas outside the range of EDIs are unlocalizable to the
UAV without assistance. In these experiments, while there
are targets that are detectable only by the UAV, there are no
targets only detectable by the robot. While in this special case
a solution could be designed where the robot is dedicated to
assisting the UAV, such a solution would work only for this
special case. The solutions described here are generalizable
and as such will also work in the case where there are targets
localizable only by the robot. We therefore only present and
evaluate the solutions in that context.

C. Scenarios

We validated our proposed approach in three scenarios,
each representing an alternative approach to identifying
critical regions: Independent, Cooperative Planned, and Co-
operative Reactive.

In the Independentscenario, the UAV and robot each per-
form the task independently, without any cooperation. This
represents a base case for comparison, where no cooperation
is attempted. Note the differing capabilities of the robot and
the UAV in this scenario: the robot, with its short height and
fixed camera, cannot localize “high” targets, while the UAV
cannot localize any targets outside of the range of an EDI.

In the Cooperative Plannedscenario, the CJs are planned
algorithmically in advance at the start of the task. In this sce-
nario, the paths of the robot and UAV coincide at segments
where cooperation is required. Critical juncture points inboth
the robot and UAV path are preplanned using ASyMTRe.
When navigating through such a cooperative region, the robot
stops at each waypoint and communicates its position to the

UAV, as well as its state as being ready to proceed to the next
point at the UAV’s request. The UAV then uses the robot’s
communicated position to perform relative localization of
any nearby targets. After searching that area for targets, the
UAV sends the command to proceed to the robot. When
navigating outside of a cooperative region, the robot and
UAV proceed searching along their paths independently. If
either the robot or the UAV reaches a CJ that denotes the
beginning of a cooperative region before the other, they wait
for the other team member. This cooperative behavior allows
the UAV to localize all targets in the environment.

In theCooperative Reactivescenario, the CJs are identified
algorithmically as needed during experiment runtime, in
reaction to the EDI information available to the blimp during
the experiment. In this scenario, the robot and UAV proceed
exactly as they would in the independent scenario, except that
when the human-driven UAV realizes that EDI information
needed to localize a seen target is missing, the human UAV
operator communicates a message to the robot to proceed
to a roughly approximated position near the UAV and the
detected target1. Upon receipt of this request, the robot
proceeds to the position requested by the UAV. Once there,
the robot communicates its presence and exact position to
the UAV. Then, the human operator of the UAV is able
to visually localize the target relative to the robot. At this
point, the UAV communicates a message to resume previous
behavior to the robot, and the robot returns to its previous
waypoint position and to the independent search behavior.
This scenario is included in our experiments to determine
whether it streamlines the need for cooperative behavior,
by only invoking tightly-coupled cooperation at CJs where
targets are detected, rather than at all CJs.

V. RESULTS AND DISCUSSION

Five sets of three experiments each were run. Experiments
within the same set used the same randomly generated target
positions. The three runs within each set were for the three
scenarios outlined in the prior section. Thus, a total of 15
experimental runs on the physical robots were conducted.
Figure 4 shows two snapshots of the robots during these
experiments. To evaluate the performance of the behavioral
approaches, we defined three metrics: Target Localization
Accuracy, Task Completion Time, and Aggregate System
Run Time. Target Localization Accuracy is the ratio of the
number of targets localized to the number of actual targets.
Task Completion Time is the maximum of the robot and UAV
run times for a single run. Aggregate System Run Time is
the sum of the run time of the robot and UAV for a single
run.

1In our experiments, it is assumed that the human UAV operator can
roughly identify an approximate position in the vicinity of its current
location to which the robot should move. The camera on the blimp has
sufficient range that if the robot gets within the vicinity, the human can
see it. For more accurate positioning, the human and robot can iterate
to move the robot into closer range of the blimp, in case the original
approximated position is too far for accurate target localization. For more
general applications, we would like to enable the robot to seek out the
blimp, based on the roughly approximated position provided bythe human.



(a) (b) (c)

Fig. 5. (a) Mean Target Localization Accuracy, per scenario; (b) Mean Task Completion Time, per scenario; (c) Mean Aggregate System Run Time, per
scenario. The error bars indicate the standard deviation ofthe results

Figure 5(a) shows the results of these experiments mea-
sured in terms of mean Target Localization Accuracy2. Both
of the cooperative approaches performed better as a system,
localizing a significantly greater percentage of targets than in
the Independent approach. This is as expected, since certain
subsets of the overall task can only be accomplished via
cooperation. In the general case, the performance of the
Independent approach is clearly bounded by the number of
tasks that can be accomplished independently. In this case
this is total number of targets minus those targets that are
located high and outside the range of an EDI, which renders
those targets viewable by only the UAV, but not localizable.

Figure 5(b) shows the results measured in terms of Task
Completion Time3. In these experiments, the Task Comple-
tion Time happens to be equal to the run time of the ground
robot, since the UAV can move much faster through the
environment than the ground robot. However, while the three
approaches are significantly different, the relative differences
are small. The Independent approach is the fastest, as the
robot only has to navigate and search along its own path
without any interaction or interruption to cooperate with
the blimp. Interestingly, the Cooperative-Planned approach
is only slightly (5% on average) longer than the Independent
approach; this can be attributed to the fact that, because
the UAV was significantly faster than the robot, the UAV
is always at each CJ at the same time as the robot. Thus,
the UAV only has to take a few seconds to localize any
nearby targets before issuing a “resume” command to the
robot, thus impacting the robot run time only a small amount.
The Cooperative Reactive approach takes the longest (about
18% longer than Independent), since during each run there
are at least a few targets that the UAV requires assistance

2Assuming a normal distribution of these results, the Student’s t-test
confirms that the differences between the Independent and thetwo cooper-
ative approaches are statistically significant, with confidence levels of 95%
and 97.5%, respectively. There is no significant differencebetween the two
cooperative approaches.

3The Student’s t-test shows that all pairs of scenarios are significantly
different, with a confidence of 99.5%, assuming a normal distribution.

localizing; this assistance sometimes requires a long round-
trip for the robot from its search path to wherever the UAV
requests assistance. It is worth noting that the longer Task
Completion Time of the Cooperative Reactive approach is di-
rectly related to the maximum speed of the standard Pioneer
robot; with a much faster robot, the Task Completion Time
of Cooperative Reactive should approach that of Cooperative
Planned.

Figure 5(c) shows the results measured in terms of Ag-
gregate System Run Time4. This value is interesting because
it can be used as a very rough approximation of the energy
consumption of the team. In these experiments, the robot is
in nearly constant motion, and, while one might think that
the UAV would be idle when waiting for the robot in the
Cooperative scenarios, the reality of blimp navigation is that
in any real-world environment, there is a constant need to
expend a non-negligible amount of energy simply to remain
in a stationary position, as drafts and temperature changes
are constantly affecting the UAV’s position. The Independent
value represents the sum of the times that it takes each team
member to navigate and search along its respective path. The
Cooperative-Planned approach has a much higher Aggregate
Run Time than the other approaches (nearly 75% more than
Independent), since this approach involves the UAV and
robot navigating their paths in synchronization, processing
each CJ at the same time. Because of this, the much faster
UAV must wait on the robot at each point; therefore, the
UAV’s run time is much longer in the Cooperative-Planned
scenario. The Cooperative-Reactive approach is around 28%
longer on average than the Independent, but much less than
Cooperative-Planned. This is a because the CJs are generated
reactively as the UAV encounters a target outside of the EDI
range; thus, while the UAV does have to wait for the robot
to arrive and assist at some points, it does not have as many
points at which to wait.

4The Student’s t-test shows that the differences between allpairs of
scenarios are statistically different, with a confidence level above 99.95%,
assuming a normal distribution.



To compare the approaches in terms of these findings, the
Cooperative Reactive and Planned approaches both perform
the task of target localization equally well in terms of Tar-
get Localization Accuracy, and better than the Independent
approach. In essence, if there is any benefit at all to be had
from cooperation, the cooperative behaviors will obviously
realize this benefit whereas the Independent will not. In terms
of Task Completion Time, Cooperative Planned performs
slightly better than Cooperative Reactive, with the caveat
that the magnitude of the performance increase is directly
related to the speed difference between the robots. However,
if one takes into account the energy expended by the robots
by considering the Aggregate Run Time, Cooperative Reac-
tive is superior to Cooperative Planned. When choosing an
approach for a particular situation, it may also be necessary
to consider the relative values placed on human time and
robot time. For example, in some situations, human time
may be highly valued, so an approach that minimizes the
human-controlled UAV run time may be favored.

These results suggest that in any scenario that (1) involves
a task that would benefit from cooperation; (2) human and
robot time are valued equally; and (3) there is a demand
for the most rapid completion of the task possible, then
the Cooperative Planned approach should be employed. On
the other hand, if (a) energy consumption or the aggregate
run time of the robots is a concern; or (b) in a situation
where a planned approach is not possible, then a Cooperative
Reactive approach might be best. In a scenario where human
time is valued much higher than robot time, a Cooperative
Reactive approach might be preferred because it reduces
Aggregate Run Time by reducing the human-controlled UAV
run time. We also observe that for some mission config-
urations, especially those with a high number of critical
junctures, the increased cost of a reactive cooperation should
be taken into account, leading to the possibility that the
Planned Cooperative approach is best.

VI. CONCLUSIONS

In this work we defined the concepts of environmentally
dependent information and critical junctures. These concepts
were used to identify critical points at which tightly-coupled
cooperation benefits a heterogeneous team of less-than-fully-
capable robots performing a weakly-decomposable task. This
work shows how to identify these critical points algorith-
mically, botha priori and reactively during task execution.
In this work, the need for tightly-coupled cooperation was
driven by environmentally dependent information, which
caused certain robot/vehicle perceptual capabilities to vary
across the environment. We have validated the benefit of
cooperation at these critical junctures in real-world exper-
imentation. While botha priori Planned cooperation and
Reactive cooperation have been shown to perform identically
well in terms of the target localization task, we have ex-
amined differences that distinguish Planned versus Reactive,
including (1) Task Completion Time, where Planned slightly
outperforms Reactive and (2) Aggregate System Run Time,
by which Reactive performs better than Planned.

In future work, we plan to extend the concept of Envi-
ronmentally Dependent Information to a broader class of
information constraints that affect robot capabilities. Addi-
tionally, we plan to investigate the coupling of the motion
planning for multi-robot teams with the need for tightly-
coupled cooperation during critical regions, to determineif
tractable methods for approximating coupled solutions are
possible. We further plan to conduct extensive simulations
to confirm our physical robot experiments, and to conduct
experiments and simulations with larger, fully autonomous
robot teams.
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