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Abstract—This paper addresses the challenge of forming  However, existing techniques are not sufficient when the
appropriate heterogeneous robot teams to solvéghtly-coupled, capabilities of the robot team members not only vary from

potentially multi-robot tasks, in which the robot capabilities L S
may vary over the environment in which the task is being robot to robot, but also vary within an individual robot

performed. Rather than making use of a permanent tightly- depending upon the environmental characteristics. Exasnpl
coupled robot team for performing the task, our approach of this type of task include landmark-based localization,

aims to recognize when tight coupling is needed, and then only jn which sufficient landmarks within the field of view
form tight cooperative teams at those times. This results in are needed to properly achieve localization; camera-based
important cost savings, since coordination is only used when the S . . . S . ' .
independent operation of the team members would put mission nav'lg'atlon, in which sufficient Ilghtlr!g IS ne_eded to 'av0|d
success at risk. Our approach is to define a new semantic Collisions; or wheel-based locomotion, which requires a
information type, called environmentally dependent informatjon relatively smooth surface for motion. Thus, a task may at
which allows us to capture certain environmentally-dependent times require the tight coupling of multiple robots working
perceptual constraints on vehicle capabilities. We define loca- together, while at other times, a different coalition of ot

tions at which the robot team must transition between tight and inal bl bot Ki | . ded
weak cooperation ascritical junctures Note that these critical Or even a single more capable robot working alone, IS neede

juncture points are a function of the robot team capabilities and ~ t0 achieve the task. By automatically determining whenttigh
the environmental characteristics, and are not due to a change cooperation is need during the task, the robot team can avoid

in the task itself. We calculate critical juncture points by making the permanent use of high-cost coalitions of robots Working

use of our prior ASyMTRe approach, which can automatically y,gether, restricting those solutions to segments of thk ta
configure heterogeneous robot team solutions to enable sharing that cannot otherwise be solved

of sensory capabilities across robots. We demonstrate these - X
concepts in experiments involving a human-controlled blimp This paper addresses this class of robot tasks. In par-
and an autonomous ground robot in a target localization task. ticular, we focus orweakly-decomposable taskshich we

define to be tasks such as “search”, “coverage”, “forage”,
| INTRODUCTION or “path following” that must be performed in continuous

space and time, and which cannot be trivially be subdivided

In many heterogeneous robot teams, some robot ©3ff}, giscrete subtasks independently of the environment
members are unable to perform certain tasks without d|re8} robot team. Note that such tasks could be subdivided
help from other teammates. This limitation in team membep, separate routes that fully-capable teams could egecut
capabilities leads to the need for robots to form coalititins independently to achieve the overall task, such as differen
help_each other solve tasks. Typically, these tasks ared:a"paths for covering different parts of the workspace; howeve
multi-robot taskgper the taxonomy of Gerkey [4]) that must,ose gyhdivisions are typically made independently of the
be solved usingightly-coupledcooperation [7]. HOWeVer, .,y canailities, and cannot be trivially assigned tooteb
this categorization of a task asnaulti-robot taskpresumes \iuhout considering the characteristics of the environtnen
that the designation is independent of the robot team membgr ¢ iha robots themselves. Our objective is to develop an
capabilities. In reality, whether a task can be performeaby ;5nr0ach that allows robots with limited, environmentally

single robot, or requires multiple robots, is in fact depEmid o endent capabilities to perform such tasks autonomously

on the capabilities of th.e robot team members. Prior vyorhy teaming with other robots at the appropriate time and
(e.g., [11]) has resulted in approaches that can autoniigitica

; lace. In this paper, we focus primarily on robots’ percaptu
construct solutions for tasks that are dependent upon tﬁﬁpabilities that may vary across the environment.

capabilities of the team members. In this paper, we first define the concepeafironmentally
This work is funded in part by Lockheed Martin Advanced Tealbgy dependent .mformat'onWh'Ch provides a way tQ qes_cr'be
Laboratories and in part by the National Science Foundatioter Grant ~ certain environmentally-dependent perceptual limitesiof
Intelligence Laboratory, Department of Electrical Engitregand Computer hich th . tal . f the task wh
Science, The University of Tennessee, 203 Claxton Complaaxidlle, ~WNICH are those enwronmen_a regions o : € task where
Tennessee 37996-3450, USartai | : par ker @ecs. utk. edu, the robot team must transition between tight and weak
creardon@tk. edu). H. Choxi and C. Bolden are with Lock- cogperation. To reason with this information to determine
heed Martin Advanced Technology Laboratories, 3 Execu@ampus, . L. .
Cherry Hill, NH 08002, USAémai | :© hchoxi @t | . | nco. com appropriate teams of robots at each critical juncture, wieema

cbol den@t | . I nco. com. use of our prior ASyMTRe architecture [11] for configuring



robot team solutions that make use of sensor sharing wheanalitions. However, as noted in [17], many of the multi-
needed. agent approaches to coalition formation cannot be directly
We illustrate these new ideas in a target localization task;ansferred to multi-robot applications, since robot dzlpa
which requires the team to explore an indoor area arfies and sensors are situated directly on the robots and are
localize targets found in the environment. We present expenot transferable between robots. Lundh, et al., [8] present
iments in which a human-piloted Unmanned Aerial Vehiclean approach to configuring groups of robots based on their
(UAV) (specifically, a blimp), and an autonomous mobilefunctionalities and using knowledge-based techniques. Their
(ground) robot work together in this target localizatioska work is different from ours, in that they plan for a series of
Coordination occurs between the autonomous mobile groumiiscrete actions to achieve a goal, rather than addressing a
robot with sophisticated localization capabilities (dmited weakly-decomposable task.
target detection capabilities) and the human-controlladb In prior work, we have developed the ASyMTRe approach
with only limited localization capabilities (but more capa [11] for automatically configuring heterogeneous robotrtea
ble target detection capabilities). Our experiments campasolutions for solving a given task. Rather than pre-defining
independent robot operations with approaches that eithartask to be a single-robot task or a multi-robot task, the
(1) pre-plan the critical juncture regions, or (2) readiive ASyMTRe approach determines what the best solution to the
recognize critical juncture points at run time. Our resultéask would be by exploiting the sensing, computation, and
show that it is indeed possible to automatically identifg th motor schema capabilities of the robot team members. The
critical junctures for when tightly-coupled coordinatige resulting solution for a task could either require only agkn
needed between vehicles, and that teams employing thésam member, or it could require multiple team members
tightly-coupled cooperative behaviors during criticai¢gture  working together to share their sensing, computational, an
regions exhibit improved performance over non-coopegativeffector capabilities to achieve the given task. Our ASyMTR
teams. Our results further indicate that pre-planningoaiit approach differs from other prior work in that it abstracts t
regions is not always preferred over a reactive approach. problem at theschemalevel, rather than the task level, per-
mitting more flexibility in the solution approach. ASyMTRe
Il. RELATED WORK can use this abstraction to generate alternative combirsati
of robot capabilities (i.e., schemas that generate reduire
A significant body of research has addressed the subjdaformation) that can accomplish the task, and does not
of coordination in heterogeneous entity teams (see [10] feissume a fixed list of capabilities (or even information g)pe
an overview of the field). Research specific to heterogeneotisat are needed to accomplish a task. By abstracting the
robots often focuses on the issuetask allocation which  task using schemas and information requirements, rather
is the problem of determining a suitable mapping betweethan specific solutions based on specific sensors, we believe
robots and tasks. A formal analysis of this problem i®SyMTRe generates more flexible solution strategies for
presented in [4]. Several approaches to robot team task allpwulti-robot coalition formation that are not dependent mpo
cation have been developed. Typically, a task is decomposadfixed list of capabilities or resources required for each
into independent subtasks [9], hierarchical task treel 8 task. The work described in this paper extends this prior
roles [6], [13], [15] either by a general autonomous plannefork of ASyMTRe by defining robot capabilities that are
or by the human designer. Independent subtasks or roles ag#pendent upon the local environment, rather than being
be achieved concurrently, while subtasks in task trees afiged for that robot. Further, we show how the critical region
achieved according to their interdependence. An example gquiring tight cooperation between robots can be detexdhin
a behavior-based approach to multi-robot task allocation automatically.
ALLIANCE [9]. After Smith [16] first introduced the Con-
tract Net Protocol (CNP), many market-based approaches !ll. APPROACH TO SYNERGISTIC CONTROL
addressing multi-robot cooperation through negotiatiemev ~ Our fundamental ideas for achieving synergistic control
developed, including M+ [1], TraderBots [2], [18], andare based on two concepts. First, we develop a representatio
Hoplites [7]. In these approaches, a task is divided intéor environmentally-dependent, sensor-generated irdition
subtasks or hierarchical subtask trees (in the case of [18hat robots must use to achieve certain tasks; we call this
for the robots to bid and negotiate to carry out the subtaskiformationenvironmentally dependent informati¢or EDI).
In other work, Fua and Ge [3] also address the problerBecond, we defineritical juncturesin which environmental
of multi-robot tasks using the COBOS cooperative backoi¢haracteristics change the perceptual capabilities obtrob
adaptive scheme. However, these prior approaches do neam members, thus requiring a new team composition. The
include a concept of environmentally dependent infornmatiofollowing subsections describe these concepts in moréldeta
or capability. _ )
Other work related to this research effort is work in Environmentally Dependent Information
coalition formation (e.g., [14]). In these systems, agemés In defining the perceptual capabilities of a robot, our
organized into coalescent teams to achieve a higher-levegbproach is to focus on thmmformation that is obtained
goal [5]. Shehory [14] describes a method of allocating #om a combination of sensors plus computation, rather
set of interdependent tasks to a group of agents by formirtgan focusing on the sensor resource alone. This focus on



information flow emphasizes the use of the sensor towawmtiditional descriptive content identifies the environraént
some objective, rather than just the presence of the senstraracteristics necessary to generate the informatioes& h
alone. Thus, to achieve a task, a robot (or coalition of r@botcharacteristics must then be used in planning the required
must have a required flow of information from sensor t@oalitions for different regions of the environment. More
motor control. As an example, consider the task of locadizinformally, the approach is as follows. Each generated swiuti
a target. The required information needed to localize aetargfor robot R; will contain a set of environmental sensors
might be a scanned map of the environment, the curreand perceptual schema combinations JEBS), for all
global position of the robot within the environment, and thg environmental schemas used in the solution for robot
relative position of the target within the field of view. In R;. Each of these combinations generates a required type
turn, some of this information may itself be dependent upoof information OS5/ < F. It is these combinations of
yet other information. For example, determining the currersensors and perceptual schemas that can be dependent upon
global position of the robot may require a combination otertain environmental characteristics. Thus, corresiognit
a laser scanner and a Monte Carlo Localization algorithihese pairs of sensors and perceptual schema processes must
for finding the most likely position of the robot in the givenbe additional information on environmental constraints fo
map. Or, alternatively, the current global position coutdl busing that combination, if any. Thus, we define constraints,
calculated using a combination of a camera and two or moﬂel};;j‘, which specify ther environmental constraints on a
known landmarks within the field of view. The particulargiven (ES,, PS,) combination. Environmental constraints
combination of sensor and perceptual computation negessarre defined as conditions (i.e., propositional variablbs} t
to generate the required information will vary from robotmust be either true or false for a set of pre-determined,
to robot. Indeed, some information can come from othegpplication-dependent environmental variables. Exampfe
robots, thus enabling coalitions of robots to work togethesuch H conditions include fange < 2nt, “lighting-level >
to solve the given task. In any case, as long as the requiréd footcandles “ 3 landmarks of type x within range 3n7,
information is available, regardless of the source, thetobetc. If the environmental constraints are not met in a given
can calculate the global position of the target and mark itsnvironmental region, then ASyMTRe must discard this
position on the map of the environment. combination of sensors and schemas as a possible solution.
This perspective of the problem in terms of the information
flow through the robot system, regardless of the source of As an example of a practical definition of an EDI, consider
the information, is the basis of the ASyMTRe approach itthe task of indoor localization for the purpose of targetlec
our earlier work [11]. To simplify the automatic reconfigura ization. For autonomous robots in static indoor environtsien
bility of the approachschemasare used as basic building localization can typically be achieved by making use of a
blocks, consisting of environmental sensors (ES), pevegpt laser scanner, a scanned map of the environment, and a
schemas (PS), communication schemas (CS), and motocalization algorithm. However, a less-capable vehicidnw
schemas (MS). The inputs and outputs of these schemassophisticated sensors (such as a human-controlled blimp
are defined in terms of their semantic information contentyith only a crude camera onboard) may only be able to
where the set of possible information types is given byerform localization if known landmarks, corresponding to
F = {F, Fy,...}. For a schemas; (which is one of the known positions on the map, are within line of sight of the
available ES, PS, CS, or MS schemas on a roBgf, remote camera. In this example, the EDI is defined to be
IS and O% C F represent the input and output sets of distinct corner landmark that is useful to the human for
S;, respectively. The output of a schema can be connectpdrforming global localization; this EDI is associated hwit
to the input of another schema as long as their semantice (ES, PS) combination oftdmera global localization
information types match. The: robots on the team are schem@ Figure 1 shows the corner EDIs thus defined for
defined ask = {Ri, Ra, ..., R, }. The task to be performed an example application environment in the target search
is defined ag” = {MS,, MS,, ...}, which is the set of motor task. As long as these landmarks are within sight, and they
schemas that define the group-level task to be achieved.c&n be mapped to a global position in the environment,
robot R; is represented bRR; = (ES;, S;), in which ES isa then a trained human should be able to localize targets
set of environmental sensors that are installednwhere in the image, within some error bounds. However, if no
OFS! c F is the output of E$ (that is, thejth ES on identifiable landmarks are within view, then the human needs
robot R;). A solution to the task is given by a combinationan alternative reference point in order to localize targets
of schemas that can satisfy the required information flomthe environment. To illustrate this idea in our experiments
to meet the task requirements. Different configurations dhe alternative reference point is the autonomous ground
schemas can solve a given task in different ways, eitheobot itself, which, when needed by the human to localize
within an individual robot, or across multiple robots. Whera seen target, moves to the general proximity of the blimp
alternative solutions exist, the preferred approach isctetl and reports its precise position to the human (via radio).
using a supplied utility function. The human can then approximate the relative position of
To incorporate the idea ofnvironmentally-dependent the blimp to the ground robot, and use this information
information (EDI) into this concept, we must add addi-to localize the visible target. This cooperation between th
tional descriptive content to the required informationisth autonomous ground robot and the human-controlled blimp
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Fig. 2. Critical (or cooperative) regions, demarcated byi€xi Junctures,
indicating where tightly-coupled cooperation is needast tb the lack of
EDI information.

Fig. 1. Environmentally Dependent Information (EDI) (i.earmer land-
marks) in the test environment for a target localization task.

is the type of tightly-coupled cooperation illustrated iaro gyfficiently dense, relative to the workspace, so that mbot
experiments. can provide assistance to each other when needed without
incurring an excessive overhead cost. Future research will
be aimed at relaxing these assumptions.

Our hypothesis is that the cost of using tightly-coupled i
coordination can be minimized by using independent bés: USing ASyMTRe and EDIs to Compute CJs
haviors when possible and tightly-coupled coordinatiolyon Our approach can either pre-compute critical junctures,
when independent behaviors would otherwise fail. We user determine reactively when a critical juncture has been
the termcritical junctures(CJs) to describe the starting pointreached. As previously stated, for pre-computed critical
in a weakly-decomposable task where independent behavigusictures, we assume that a separate process (not addressed
will fail and tightly-coupled coordination is required;ish in this paper) has preplanned paths for fully capable robot
term is also used to describe ending points during a tasloalitions. As an example, Figure 2 shows example paths
where tightly-coupled coordination is no longer requiredfor a UAV and a ground robot for a target search task,
The time between these critical juncture points is called which requires the robot team to search the entire workspace
critical region, or cooperative region for targets of interest. These paths are then sampled at

In our current approach, we make some important asegular intervals, with the spacing along the paths depende
sumptions affecting critical junctures. First, we assuimg t upon the sensing range of the robots. At each sampled
the environment in which the robots operate is known iposition, ASyMTRe is run as a subroutine to generate a task
advance, so that advanced planning techniques can be usetltion for that position. A different set of robot schema
for calculating critical junctures. If this assumption doe configurations will be generated depending on whether the
not hold, meaning that the environment is not knoan area is within range of a required EDI. When the generated
priori, then it is still possible to identify critical junctures task solution changes between an independent solution and
using reactive planning. Second, we assume that robots @rcooperative solution, that point is identified as a critica
coalitions of robots) performing the tasks of interest.{i.e juncture. Segments of the paths that are between critical
search, coverage, etc.) do so by following a path (or, mojanctures are identified as critical regions, which reqtight
precisely, a set of paths) through the environment that operation between robots. Figure 2 shows example paths
(are) generated by a separate computational process. Theé¢he UAV and ground robot, with the cooperative regions
paths define the routes that fully-capable robot teams mugtoxed in black) overlaid on the EDI map from Figure 1.
take in order to achieve the task in a cooperative fashion. Of course, it is clear that the optimal paths of the robots
By assuming that robot teams are given paths to follow tare dependent on which regions of the environment require
achieve the given task, critical juncture points can be -asstightly-coupled cooperation; thus, in the general case, ou
ciated with locations along the path at which environmentalecoupled approach of considering the paths separatety fro
characteristics change the required composition of thetrobthe cooperative regions will not find optimal paths. However
team. Finally, we assume that the available robot assets dreis also well-known that the general multi-robot path

B. Critical Junctures and Regions



planning problem is intractable (specifically, PSPACEehar
so it is a non-trivial problem to generate optimal solutions
to this problem. Nevertheless, in future work we plan to [
consider tractable methods of coupling the multi-robotpat
planning step with the consideration of the critical jumeti
For reactive detection of critical junctures, the robots
periodically rerun the ASyMTRe configuration algorithm to
determine if the current configuration is still valid, ornift,
to determine an alternative configuration of robot capaddi B¢
that can address the task in the current area of the envi
ronment. When the best alternative solution requires fghtl 1 1
coupled cooperation between robots, the robots commuenicat L @ Selected position, high
with each other to initiate the tightly-coupled coopemtio E | | ¢ 'Salacted position;Tow

: Area only accessible by blimp
IV. PHYSICAL ROBOT EXPERIMENTS -

To illustrate our concepts, we implemented a physical
robot solution to the indoor target localization task. The
heterogeneous team for this task consisted of a human-
controlled aerial blimp and an autonomous ground robot.
The following subsections describe the task, the robotd, an
the test scenarios we used to evaluate our approach.

Fig. 3. Example target locations.

mobile robot used for these experiments was a Pioneer 3
A. Target localization task DX robot. This robot includes an onboard computer, a SICK
The objective of the target localization task is to visit@ser range finder, a Canon VC-C4 camera (tilted dawh

all of the identified indoor workspace in search of targetdfom horizontal), and 802.11 wireless. Software behaviors
and to note the location of the identified targets on a ma@Perating on the robot include self-localization, navigat
The team is provided with a map of the environment irommunication, and target detection and localization.
advance (which, in this case, was autonomously generatedThe behavior of the vehicles for target detection is as
by the ground robot in advance of the target localizatiofpllows. The autonomous ground robot moves along a pre-
task). In the physical robot experiments, targets wereamosplanned path, and, at periodic waypoints along that path, it
to be solid green balloons of size 30 cm in diameter, whichtops and conducts 360° visual sweep of the area with
have the beneficial characteristics of being spherical (ariie camera, looking for targets. The human-controlled UAV,
thus present the same two-dimensional profile from anf§jeing less-precisely controllable than the autonomousrgto
angle), easy to detect in our indoor test area, inexpensiv@bot, follows its predefined path and, as deemed necessary
lightweight, and easy to manage. (The images in Figure lay the human pilot, rotates and changes altitude to visually
show several balloon targets.) Targets are uniformly digscan the surrounding area for targets. Upon detecting attarg
tributed in the environment at two possible heights (“highthe robot or UAV then localizes the target to the best of
and “low”), using an automated process that selects thettargts ability. For the ground robot, this involves using the
locations, followed by manually placing the targets at thdirection and size of the target in the image, combined
generated locations. A total of 12 targets were used in thiith self-location and orientation to determine a precisg
experiments reported in this paper, in an environment g¢fosition of the target. Because the robot's camera is fixed in
size of approximately 450t yielding approximately a 4- a slightly downward-facing position, the robot is not capab
5m spacing between targets. Figure 3 shows an examgléseeing “high” targets; thus, all-axis values reported by
of the test environment and the selected target positiori§ie robot are set at the ground level, or “low”. For the UAV,
Note that in this environment, the area in the lower left otarget localization involves a human operator using self-
the workspace, marked by a dashed rectangle, is an afegalization, determined by position and orientation tieéa
accessible only by the blimp; this is a lunch area with man{ a corner EDI or the ground robot (whose global position

tables and chairs that block the ground robot’s path. is communicated to the UAV operator when requested),
. combined with the direction and size of the target, to viual
B. Robots and behaviors estimate and record the position of the target. The human

The human-operated blimp used in these experiments wagerator identifies ther,y position as well as a value
a custom-built, 180cm long envelope controlled by a star{either “high” or “low”) per target.
dard, two stick, hobby-type transmitter/receiver for réeno  Because of the way the targets are distributed and the
control. The blimp carries an Eyecam 2.4GHz color micranformation types defined for the environment, the UAV
wireless video camera, whose output is displayed on a prand robot are expected to have different levels of success
jector, for use by the human controller. More details on théocalizing targets for different target locations. For exde,
blimp design are available in [12]. The autonomous grountirgets placed at a high elevation in the environment are



UAV, as well as its state as being ready to proceed to the next
point at the UAV’s request. The UAV then uses the robot's
communicated position to perform relative localization of
any nearby targets. After searching that area for targess, t
UAV sends the command to proceed to the robot. When
navigating outside of a cooperative region, the robot and
UAV proceed searching along their paths independently. If
either the robot or the UAV reaches a CJ that denotes the
beginning of a cooperative region before the other, they wai
for the other team member. This cooperative behavior allows
the UAV to localize all targets in the environment.

In the Cooperative Reactivecenario, the CJs are identified
algorithmically as needed during experiment runtime, in
reaction to the EDI information available to the blimp dgrin
the experiment. In this scenario, the robot and UAV proceed
exactly as they would in the independent scenario, except th
when the human-driven UAV realizes that EDI information
needed to localize a seen target is missing, the human UAV
operator communicates a message to the robot to proceed
to a roughly approximated position near the UAV and the
detected targét Upon receipt of this request, the robot
proceeds to the position requested by the UAV. Once there,
. on th A . ) d robot for logafi the robot communicates its presence and exact position to
zls%isﬁénce.nOtnethtgpk:;otttc?mL,Jé;]/eV\I{(a)‘g(S)tO;s;is?sgtrr?: rljJA\r/Oino:n'uogrlia tarlgo(;. the _UAV' Then’_ the human opera_tor of the UAV is abl_e

to visually localize the target relative to the robot. Atsthi
point, the UAV communicates a message to resume previous

un|ike|y to be detected by the ground robot, whereas targel@@haViOI' to the robot, and the robot returns to its pI'EViOUS
in areas outside the range of EDIs are unlocalizable to th¥aypoint position and to the independent search behavior.
UAV without assistance. In these experiments, while ther&his scenario is included in our experiments to determine
are targets that are detectable only by the UAV, there are wéhether it streamlines the need for cooperative behavior,
targets only detectable by the robot. While in this speciaéca Py only invoking tightly-coupled cooperation at CJs where
a solution could be designed where the robot is dedicated i@gets are detected, rather than at all CJs.
assisting the UAV, such a solution would work only for this
special case. The solutions described here are genetalizab V. RESULTS AND DISCUSSION
and as such will also work in the case where there are targetsrive sets of three experiments each were run. Experiments
localizable only by the robot. We therefore only present angithin the same set used the same randomly generated target
evaluate the solutions in that context. positions. The three runs within each set were for the three
C. Scenarios scena_rios outlined in the prior _section. Thus, a total of 15
) ) _experimental runs on the physical robots were conducted.

We validated our proposed approach in three scenarigsigyre 4 shows two snapshots of the robots during these
each representing an alternative approach to identifying eriments. To evaluate the performance of the behavioral
critical regions: Independent, Cooperative Planned, and Cynnroaches, we defined three metrics: Target Localization
operative Reactive. _ Accuracy, Task Completion Time, and Aggregate System

In the Independenscenario, the UAV and robot each per-g,n Time. Target Localization Accuracy is the ratio of the
form the task independently, without any cooperation. Thi§,mper of targets localized to the number of actual targets.
represents a base case for comparison, where no cooperatjgay completion Time is the maximum of the robot and UAV
is attempted. Note the differing capabilities of the robodia |, times for a single run. Aggregate System Run Time is
the UAV in this scenario: the robot, with its short height andhe sum of the run time of the robot and UAV for a single
fixed camera, cannot localize “high” targets, while the UAV,
cannot localize any targets outside of the range of an EDI.

In the Cooperative Plannedcenario, the CJs are planned !in our experiments, it is assumed that the human UAV operator can
algorithmically in advance at the start of the task. In titis-s roughly identify an approximate position in the vicinity ofsicurrent

. . ocation to which the robot should move. The camera on the bliep h

nario, the paths of the robot and UAV coincide at segmen fficient range that if the robot gets within the vicinithethuman can
where cooperation is required. Critical juncture pointb@th  see it. For more accurate positioning, the human and robot tesate

the robot and UAV path are preplanned using ASyMTRéP move the robot into closer range of the blimp, in case theiraig
proximated position is too far for accurate target loedi@n. For more

L . . a
When navigating thrO.UQh sucha COOp_erat'Ve_ reglon.,.the rObggneral applications, we would like to enable the robot tekseut the
stops at each waypoint and communicates its position to tlémp, based on the roughly approximated position providedhleyhuman.
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Fig. 5. (a) Mean Target Localization Accuracy, per scendtip Mean Task Completion Time, per scenario; (c) Mean Agge&ystem Run Time, per
scenario. The error bars indicate the standard deviatidheofesults

Figure 5(a) shows the results of these experiments meacalizing; this assistance sometimes requires a longdoun
sured in terms of mean Target Localization Accufadoth trip for the robot from its search path to wherever the UAV
of the cooperative approaches performed better as a systesqguests assistance. It is worth noting that the longer Task
localizing a significantly greater percentage of targegmtim  Completion Time of the Cooperative Reactive approach is di-
the Independent approach. This is as expected, sincercertegctly related to the maximum speed of the standard Pioneer
subsets of the overall task can only be accomplished viabot; with a much faster robot, the Task Completion Time
cooperation. In the general case, the performance of tloé Cooperative Reactive should approach that of Cooperativ
Independent approach is clearly bounded by the number Bfanned.
tasks that can be accomplished independently. In this caseFigure 5(c) shows the results measured in terms of Ag-
this is total number of targets minus those targets that aggegate System Run TirheThis value is interesting because
located high and outside the range of an EDI, which rendeiscan be used as a very rough approximation of the energy
those targets viewable by only the UAV, but not localizableconsumption of the team. In these experiments, the robot is

Figure 5(b) shows the results measured in terms of Task nearly constant motion, and, while one might think that
Completion Timé. In these experiments, the Task Complethe UAV would be idle when waiting for the robot in the
tion Time happens to be equal to the run time of the groun@ooperative scenarios, the reality of blimp navigatiorhist t
robot, since the UAV can move much faster through thén any real-world environment, there is a constant need to
environment than the ground robot. However, while the threexpend a non-negligible amount of energy simply to remain
approaches are significantly different, the relative diffeees in a stationary position, as drafts and temperature changes
are small. The Independent approach is the fastest, as #ne constantly affecting the UAV’s position. The Indepamde
robot only has to navigate and search along its own patlalue represents the sum of the times that it takes each team
without any interaction or interruption to cooperate withmember to navigate and search along its respective path. The
the blimp. Interestingly, the Cooperative-Planned apgmoa Cooperative-Planned approach has a much higher Aggregate
is only slightly (5% on average) longer than the Independem®un Time than the other approaches (nearly 75% more than
approach; this can be attributed to the fact that, becautedependent), since this approach involves the UAV and
the UAV was significantly faster than the robot, the UAVrobot navigating their paths in synchronization, proaggsi
is always at each CJ at the same time as the robot. Theach CJ at the same time. Because of this, the much faster
the UAV only has to take a few seconds to localize anyJAV must wait on the robot at each point; therefore, the
nearby targets before issuing a “resume” command to théAV’s run time is much longer in the Cooperative-Planned
robot, thus impacting the robot run time only a small amounscenario. The Cooperative-Reactive approach is around 28%
The Cooperative Reactive approach takes the longest (abdariger on average than the Independent, but much less than
18% longer than Independent), since during each run the@ooperative-Planned. This is a because the CJs are gaherate
are at least a few targets that the UAV requires assistanoeactively as the UAV encounters a target outside of the EDI

range; thus, while the UAV does have to wait for the robot

2Assuming a normal distribution of these results, the Studetitést to arrive and assist at some points, it does not have as many
confirms that the differences between the Independent antivtheooper- ; i i
ative approaches are statistically significant, with caerfimke levels of 95% points at which to wait.
and 97.5%, respectively. There is no significant differebbesveen the two
cooperative approaches. 4The Student’s t-test shows that the differences betweerpaits of

3The Student's t-test shows that all pairs of scenarios ayeifsiantly  scenarios are statistically different, with a confidencll@bove 99.95%,
different, with a confidence of 99.5%, assuming a normal distion. assuming a normal distribution.



To compare the approaches in terms of these findings, theln future work, we plan to extend the concept of Envi-
Cooperative Reactive and Planned approaches both perforammentally Dependent Information to a broader class of
the task of target localization equally well in terms of Tarinformation constraints that affect robot capabilitieddi
get Localization Accuracy, and better than the Independetionally, we plan to investigate the coupling of the motion
approach. In essence, if there is any benefit at all to be hathnning for multi-robot teams with the need for tightly-
from cooperation, the cooperative behaviors will obvigusl coupled cooperation during critical regions, to determifne
realize this benefit whereas the Independent will not. Imger tractable methods for approximating coupled solutions are
of Task Completion Time, Cooperative Planned performpossible. We further plan to conduct extensive simulations
slightly better than Cooperative Reactive, with the cavedb confirm our physical robot experiments, and to conduct

that the magnitude of the performance increase is directBxperiments and simulations with larger, fully autonomous
related to the speed difference between the robots. Howevesbot teams.

if one takes into account the energy expended by the robots
by considering the Aggregate Run Time, Cooperative Reac-
tive is superior to Cooperative Planned. When choosing afil
approach for a particular situation, it may also be necgssar
to consider the relative values placed on human time and
robot time. For example, in some situations, human timd?2l
may be highly valued, so an approach that minimizes the
human-controlled UAV run time may be favored. [3]
These results suggest that in any scenario that (1) involves
a task that would benefit from cooperation; (2) human antz14
robot time are valued equally; and (3) there is a deman
for the most rapid completion of the task possible, then
the Cooperative Planned approach should be employed.
the other hand, if (a) energy consumption or the aggregate
run time of the robots is a concern; or (b) in a situation 6l
where a planned approach is not possible, then a Cooperative
Reactive approach might be best. In a scenario where human
time is valued much higher than robot time, a Cooperativd’]
Reactive approach might be preferred because it reduces
Aggregate Run Time by reducing the human-controlled UAV
run time. We also observe that for some mission config48l
urations, especially those with a high number of critical
junctures, the increased cost of a reactive cooperationldho [9]
be taken into account, leading to the possibility that the
Planned Cooperative approach is best. [10]

VI. CONCLUSIONS

In this work we defined the concepts of environmentaII)Lll]
dependent information and critical junctures. These cpisce
were used to identify critical points at which tightly-cdeg
cooperation benefits a heterogeneous team of less-thign-ful
capable robots performing a weakly-decomposable task. Thi
work shows how to identify these critical points algorith-
mically, botha priori and reactively during task execution. 13]
In this work, the need for tightly-coupled cooperation was
driven by environmentally dependent information, whicH4
caused certain robot/vehicle perceptual capabilitiesay v ;¢
across the environment. We have validated the benefit of
cooperation at these critical junctures in real-world expe
imentation. While botha priori Planned cooperation and
Reactive cooperation have been shown to perform identical
well in terms of the target localization task, we have ex-
amined differences that distinguish Planned versus Reacti (171
including (1) Task Completion Time, where Planned slightlyisg]
outperforms Reactive and (2) Aggregate System Run Time,
by which Reactive performs better than Planned.

[12]
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