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Abstract

A large application domain for multi-robot teams
involves task-oriented missions, in which potentially
heterogeneous robots must solve several distinct tasks.
Previous research addressing this problem in multi-
robot systems has largely focused on issues of effi-
ciency, while ignoring the real-world situated robot
needs of fault tolerance and adaptivity. This paper
addresses this problem by developing an architecture
called L-ALLIANCE that incorporates task-oriented
action selection mechanisms into a behavior-based sys-
tem, thus increasing the efficiency of robot team per-
formance while maintaining the desirable characteris-
tics of fault tolerance and adaptivity. We present our
investigations of several competing control strategies
and derive an approach that works well in a wide vari-
ety of multi-robot task-oriented mission scenarios. We
provide a formal model of this technique to illustrate
how it can be incorporated into any behavior-based sys-
tem.

1 Introduction

Consider the following problem: a team of hetero-
geneous mobile robots is required to perform a task-
oriented mission. Each robot on the team is pro-
grammed with the capabilities necessary to perform
a subset of the tasks required by the current mission.
In order to reduce the effects of bottlenecks and sin-
gle points of failure, the robots are designed to over-
lap in the tasks they are able to accomplish, although
they may demonstrate different levels of performance
in accomplishing the same task due to robot hetero-
geneity. The capabilities of the robots in such a mis-
sion may change over time, due either to robot subsys-
tem failure, or perhaps due to robot action learning.
The problem we are to solve, then, is that of enabling
these heterogeneous robot team members to select the
proper actions to perform during a mission so as to
maintain a high level of fault tolerance and adaptiv-
ity while not sacrificing the efficiency of the mission
performance.

A real-world instance of this type of problem is a
material handling mission involving multiple types of
containers and multiple types of robots that have het-
erogeneous abilities to carry or to push the containers
from point to point. The robots need to be able to
select which container to move based upon their own
capabilities and the capabilities of their functioning
teammates.

Traditional solutions to this type of task-oriented
multi-agent system would likely employ one of two
approaches. Either, (1) the robots would be prepro-
grammed to always move containers in a fixed order,
or (2) the system would employ a planning and hier-
archical problem decomposition process, followed by
allocation of tasks to agents (either through a cen-
tralized assignment, or through a negotiation/bidding
process), and then agent execution; if an agent were to
fail at its task, then a replanning process would occur
that seeks to remedy the problem by reassigning the
task(s).

However, these solutions are unsatisfactory for
most real robot systems, since the first solution is quite
inflexible (e.g. what if a new type of robot were added
to the system with a different capability profile, or if
the robots were frequently moved from one material
handling job to another, working with different types
of robots) and the second solution is prone to single-
point failure (e.g. due to communication failure, robot
failure, central planning failure, etc.), leading to the
severe disruption or total breakdown of the system.

In previous research [3], it has been shown that
behavior-based systems provide a high level of fault
tolerance and adaptivity that is generally difficult
to demonstrate in systems using a more traditional
AT approach. Thus, researchers in multi-robot sys-
tems have commonly used behavior-based systems to
achieve cooperative control (see the following section
for a review). However, the majority of these tech-
niques are not well-suited for task-oriented problems,
in which various distinct tasks must be accomplished
by the robot team.

Our objective is to extend the usefulness of cooper-
ative behavior-based systems by developing a method-
ology that takes advantage of the fault-tolerant, adap-
tive characteristics of behavior-based systems while
also enabling efficient task-oriented solutions by multi-
agent teams. In this paper, we introduce a method
called L-ALLIANCE that achieves this objective. Our
approach is built upon an earlier system we have de-
veloped, called ALLIANCE, for fault tolerant multi-
robot control. In the next section, we briefly describe
related work in this area. Section 3 then describes
the L-ALLTANCE approach, first discussing the NP-
hardness of the problem we are addressing, then intro-
ducing several potential approaches to incorporating
task-oriented efficiency into the ALLIANCE behavior-

based multi-robot system. Experimental results are



presented in section 4 that compare the effectiveness
of these strategies in simulation. In section 5, we dis-
cuss these results and briefly describe the implemen-
tation of our derived approach on a real robot team
to verify its applicability. We conclude the paper in
section 6.

2 Related Work

A significant amount of previous research has been
accomplished in the areas of multi-robot systems and
optimal task allocation/scheduling; research interest
in multi-agent learning systems has also grown in re-
cent years. The multi-robot systems work can be
loosely divided into two categories: swarm coopera-
tion and intentional cooperation. The largest body of
this research is in swarm cooperation, which deals with
the study of large numbers of (usually) homogeneous
robots (e.g., [2, 4, 9, 10, 11, 13, 14, 15, 20, 21, 22]).
The difficult problem addressed in these systems is
predicting the global behavior of the collective from
the design of the control laws in the individual agent.
Such approaches usually rely on mathematical conver-
gence results (such as the random walk theorem [6])
that indicate the desired outcome over a sufficiently
long period of time.

The “intentional” cooperation research employs a
more directed type of cooperation that usually re-
quires several distinct tasks be performed. These
missions usually require a smaller number of pos-
sibly heterogeneous mobile robots than the swarm-
type of applications. Key issues in these systems
include robust task allocation, efficient team perfor-
mance, and multi-robot coordination. Nearly all of the
previous work on heterogeneous physical robots (e.g.
[1, 5, 7, 16]) uses a traditional artificial intelligence
approach, which breaks the robot controller into mod-
ules for sensing, world modeling, planning, and acting
rather than the functional decomposition of behavior-
based approaches. However, although the need for
fault tolerance is often noted in this intentional coop-
eration research, the approaches are typically vulner-
able to single-point failures, and are largely limited in
their ability to deliver real-time performance in a dy-
namic world because they do not adequately address
the situatedness and embodiment of physical robots.

A huge amount of research in optimal task allo-
cation and scheduling has been accomplished previ-
ously (e.g. [8]). However, these approaches alone are
not directly applicable to multi-robot missions, since
they do not address multi-robot performance in a dy-
namic world involving robot heterogeneity, sensing un-
certainty, and the nondeterminism of robot actions.

Previous work in multi-robot learning is currently
limited, although the topic is gaining increased inter-
est. See [19] for several recent efforts in this area.
Our work is different from most of this earlier work in
that it applies multi-robot learning in behavior-based
systems to task-oriented missions.

3 Approach
To achieve efficiency in task-oriented multi-robot

systems, we built upon our behavior-based architec-
ture, called ALLIANCE [17, 18], that facilitates the

execution of task-oriented missions by teams of het-
erogeneous mobile robots. We implemented a learn-
ing mechanism in this architecture through the use
of parameter tuning. Since the problem we are ad-
dressing is NP-hard, we investigated several heuristic
approaches and tested and compared them extensively
in simulation. We then validated our results in a sim-
ple robot application to verify its applicability in real
robot systems.

We begin this section by showing that the efficient
action selection problem addressed in this paper is
NP-hard, even if all information is known in advance
(which is not generally true). We then present the
L-ALLTANCE mechanism and describe the heuristic
approaches we studied for achieving efficiency in task-
oriented behavior-based systems.

3.1 NP-Hardness

To understand the difficulty of our action selection
problem, we now show that even a simplified version
of this problem, in which the performance capabilities
of all robots are known in advance, is NP-hard.

Let R = {ry,re,..,ry} represent the set of n
robots on a cooperative team, and the set T =
{tasky, tasks, ..., task,, } represent the m independent
tasks required in the current mission. Each robot
in R has a number of high-level task-achieving func-
tions that it can perform, represented by the set
A; = {an,a;2,...}. Since different robots may have
different ways of performing the same task, we de-
fine the set of n functions H, where H : A; — T,
H = {hi(a1x), ha(agk), ..., hn(ank)}, and hi(a;;) re-
turns the task task; that robot r; is working on when
it performs the higfl—level function a;y.

We denote the metric evaluation function as ¢(a;;),
which returns the “quality” of the action a;; as mea-
sured by a given metric. Here, we consider the metric
of average task completion time, although many other
metrics could be used. Finally, we define the tasks a
robot r; elects to perform during a mission as the set
U; = {aij|robot r; performs task h;(a;;) during the
current mission}.

In the most general form of this problem, distinct
robots may have different collections of capabilities;
thus, we do not assume that Vi.Vj.(A; = A;). Further,
if different robots can perform the same task, they may
perform that task with different qualities; thus, we do
not assume that if h;(a;;) = hj(a;y), then ¢(a;,) =
q(ajy). For the simplified case, we will assume that
these robot performance measurements are known in
advance. The formal Heterogeneous Robot Action Se-
lection Problem (HRASP) can then be stated for each
robot r; as follows: Given T, A;, and h;(a;;), deter-
mine the set of actions U; such that Vi.U; C A; and
Vj.3i.3k.((task; = hi(air)) and (a;x € U;)) and the
following is minimized, according to the time perfor-
mance metric: maxi(ZaikeUﬂ(aik))'

It can be easily shown that the efficiency prob-
lem, HRASP, is NP-hard by restriction to the well-
known NP-complete problem PARTITION [12]. (See
[18] for the proof.) Thus, since this heterogeneous ac-
tion selection problem is NP-hard, we cannot expect
the robot team to be able to derive an optimal action



selection policy in a reasonable length of time. We
look instead to heuristic approximations to the prob-
lem that work well in practice.

3.2 ALLIANCE Overview

The foundation of our approach to task-oriented
multi-robot learning in behavior-based systems is the
ALLIANCE architecture, which has been reported
earlier in [17, 18]. ALLIANCE is a behavior-based,
fully distributed architecture for multi-robot cooper-
ative control in robot missions involving loosely cou-
pled, largely independent tasks. Robots under this
architecture possess a variety of high-level functions
(modeled as behavior sets) that they can perform dur-
ing a mission, and must at all times select an appropri-
ate action based on the requirements of the mission,
the activities of other robots, the current environmen-
tal conditions, and their own internal states. Since
cooperative robotic teams often work in dynamic and
unpredictable environments, this software architecture
allows the team members to respond robustly and re-
liably to unexpected environmental changes and mod-
ifications in the robot team that may occur due to
mechanical failure, the learning of new skills, or the
addition or removal of robots from the team by human
intervention. This is achieved through the interaction
of mathematically modeled motivations of behavior,
such as impatience and acquiescence, within each in-
dividual robot. These motivations allow robots to take
over tasks from other team members (i.e., become im-
patient) if those team members do not demonstrate
their ability — through their effect on the world — to
accomplish those tasks. Similarly, they allow a robot
to give up its own current task (i.e., acquiesce) if its
sensory feedback indicates that adequate progress is
not being made to accomplish that task. The rate
at which robots become impatient or acquiesce is de-
pendent upon control parameter settings. It is these
control parameters that are automatically updated by
the L-ALLTANCE mechanism to achieve increased ef-

ficiency in robot team performance.

3.3 L-ALLIANCE Mechanism

In this subsection, we describe our approach to
the development of a task-oriented multi-robot control
architecture that increases robot team performance
without sacrificing the desirable characteristics of fault
tolerance and adaptivity. We first state two assump-
tions under which we developed our methodology, fol-
lowed by a description of the performance monitors in-
corporated into L-ALLIANCE. We then describe the
various control strategies we studied to increase the ef-
ficiency of multi-robot team performance in terms of
the L-ALLIANCE formal model. The formal model
derived as a result of our studies is given in the Ap-
pendix.

In the L-ALLIANCE approach, we make two as-
sumptions: (1) a robot’s average performance in ex-
ecuting a specific task over a few recent trials is a
reasonable indicator of that robot’s expected perfor-
mance in the future, and (2) if robot r; is monitoring
environmental conditions C' to assess the performance
of another robot 7y, and the conditions C' change, then
the changes are attributable to robot ry.

The L-ALLIANCE Architecture
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Figure 1: The L-ALLIANCE architecture.

3.3.1 Performance Monitors

Figure 1 illustrates the L-ALLIANCE architecture.
This architecture extends the ALLIANCE architec-
ture by incorporating the use of performance moni-
tors for each motivational behavior within each robot.
Each monitor is responsible for observing, evaluating,
and cataloging the performance of any robot team
member (including itself) whenever it performs the
task corresponding to that monitor’s respective behav-
ior set. Formally, robot r;, programmed with the b be-
havior sets A = {a;1,a;2,...,a: }, also has b monitors
MON; = {mon;1,mon;a, ...,mon }, such that moni-
tor mon;; observes the performance of any robot per-
forming task h;(a;;), keeping track of the time of task
completion (or other appropriate performance quality
measure) of that robot. Monitor mon;; then uses the
mechanism described below to update the control pa-
rameters of behavior set a;; based upon this learned
knowledge. It is important to note that a robot r; does
not keep track of the task completion times for capa-
bilities of other robots that r; does not share. This
allows the L-ALLIANCE architecture to scale favor-

ably as the mission size increases.

3.3.2 Two L-ALLIANCE Control Phases

If robot team members are on a #raining mission,
whose sole purpose is to allow robots to become famil-
iar with themselves and with their teammates, then
they can explore their capabilities without concern
for possible mission failure. On the other hand, if
the robots are on a live mission, then the team has
to ensure that the mission is completed as efficiently
as possible. Even so, as they perform a live mission,
the robots should take advantage of the opportunity
to learn about the robot capabilities that are demon-
strated. Thus, one of two high-level control phases are
utilized for robot team members under L-ALLIANCE,



depending upon the type of the team’s mission. Dur-
ing training missions, the robots enter the active learn-
ing phase, whereas during live missions, they enter the
adaptive learning phase. In the active learning phase,
each robot selects its next action randomly from those
actions that are: (1) currently incomplete, as deter-
mined from the sensory feedback, and (2) currently
not being executed by any other robot, as determined
from broadcast communication messages. While they
perform their tasks, the robots are maximally patient
and minimally acquiescent, meaning that a robot nei-
ther tries to preempt another robot’s ongoing task,
nor does it acquiesce its own current action to another
robot. During the active learning phase, each moni-
tor mon;; in each robot r; monitors and catalogues
the performance of all robots r; that are performing
task hi(a;;), as well as updates the appropriate control
parameters.

When a robot team is applied to a “live” mission, it
enters the adaptive learning phase, in which the robots
acquiesce (give up tasks) and become impatient (take
over tasks) according to their learned knowledge and
the control strategies described in the remainder of
this paper, rather than being maximally patient and
minimally acquiescent as they are in the active learn-
ing phase. However, the monitors within each robot
continue to monitor and catalog robot performances
during this phase, updating their control parameters
based upon these performances.

3.3.3 Parameter Update Strategies

Once the robot performance data has been obtained,
it must be input to some control mechanism that al-
lows the robot team to improve its efficiency over time
while not sacrificing the fault tolerant characteristics
of the behavior-based ALLIANCE architecture. This
control problem translates into two related subprob-
lems: (1) dynamic task reallocation — how an indi-
vidual robot determines whether to interrupt the task
currently being performed by another robot (i.e. be-
come impatient), or whether it should acquiesce its
own current task and (2) task ordering  how an in-
dividual robot selects from among a number of in-
complete tasks that no other team member is cur-
rently performing. These issues are modeled in the
L-ALLIANCE formalism (shown in detail in the Ap-
pendix) as three control parameters:

° 6_fast,l-j(t): the rate of impatience of r; at time
t concerning the behavior set a;; when no other
robot is performing task h;(a;;)

o 6_slow;;(k,t): the rate of impatience of r; at time
t concerning the behavior set a;; when robot ry
is performing task hi(a;;)

o (t): the time r; will maintain a;;’s activity be-
fore acquiescing to another robot

To study these issues, we identified three potential
control strategies for the two dynamic task realloca-
tion parameters (6_slow;;(k,t) and ¢;;(t)), and three

Strategy | Impatience (§_slow;;(k,t)) | Acquiescence (1p;;(1))
1 own time own time
11 own time min. time of team
111 time of robot own time
performing hi(a;;)

Table 1: The impatience and acquiescence parameters are
functions of the values shown in the table, for each of three
dynamic task reallocation strategies.

potential control strategies for the task ordering pa-
rameter, 6_fast;; (t). These potential control strategies
for parameter learning are discussed below.

Dynamic Task Reallocation Strategies

The three dynamic task reallocation strategies that
we tested for task-oriented multi-agent learning are
summarized in Table 1. The first dynamic task real-
location strategy, which we call Strategy I: “Distrust
Performance Knowledge about Teammates”, takes a
minimalist approach to the problem by requiring a
robot to use only the knowledge it learns about its
own performance. Under strategy I, r; becomes impa-
tient with any other robot r; that does not complete
hi(aij) in the same length of time required for r; to
complete h;(a;;).

The second strategy, which we call Strategy II: “Let
the Best Robot Win”, endows the robot team with the
character of “striving for the best”. Under this strat-
egy, a robot holds itself to the performance standard
of the best robot it knows about in the group, for each
task to be accomplished. Thus, if r; has learned that
the quickest expected completion time required by a
team member for a task h;(a;;) is ¢, then r; will acqui-
esce task h;(a;;) to another robot if r; has attempted
hi(a;;) for a time longer than ¢. On the other hand, r;
will become impatient with r performing task h;(a;;)
only after r; has attempted the task for a longer pe-
riod of time than r; believes that it, itself, needs to
accomplish h;(a;;).

The third dynamic task reallocation strategy, called
Strategy III: “Give Robots a Fighting Chance”, results
in a robot team that judges performances of robot
team members based on each team member’s own in-
dividual expected performance, rather than its com-
parison to other team members’ performances. Under
strategy III, r; becomes impatient with r;’s perfor-
mance only after r; begins performing worse than its
(r’s) normal abilities. Additionally, each robot is un-
willing to acquiesce its own action until it believes it
has had a fair chance to accomplish the task, accord-
ing to its own expected performance requirements.

Task Ordering Strategies

We also investigated three task ordering strategies
(i.e. how an individual robot selects from among a
number of incomplete tasks that no other team mem-
ber is currently performing)in which each robot’s next
action selection is either a greedy choice based upon
the expected execution time of the tasks it is able to
perform, or is a random choice of actions. The follow-
ing paragraphs describe these three task ordering ap-




proaches, called Longest Task First, Modified Shortest
Task First, and Modified Random Task Selection.

In the multi-processor scheduling community, a
centralized greedy approach called Descending First
Fit has been shown to result in mission completion
times within 22% of optimal [12] for identical proces-
sors. In this approach, the tasks are assigned to pro-
cessors in order of non-increasing task length. Thus,
we first attempted a distributed version of Descending
First Fit to determine its effectiveness for the multi-
robot application domain. The distributed version,
which we call Longest Task First, requires each robot
to select as its next task that which is expected to take
the robot the longest length of time to complete.

As a logical next step, we studied the dual of the
Longest Task First approach in which each robot to se-
lects its next action as that which it expects to perform
the quickest. The centralized version of this greedy ap-
proach for identical multi-processors has been shown
to result in minimizing the mean flow of the mission,
which means that the average completion time of the
tasks in the mission is minimized [8]. Here, we mod-
ify the pure Shortest Task First technique somewhat
(hence, the name Modified Shorted Task First) to com-
pensate for the fact that heterogeneous robots have
different sets of tasks which they are able to pursue.
We thus require a robot to first select from among
those actions which it expects to perform better than
any other robot on the team.

Finally, as a baseline against which to compare the
other task ordering approaches, a random selection of
tasks was also studied, which we call Modified Ran-
dom Task Selection. In this case, the robots divide the
tasks into the same two categories used in the Mod-
ified Shortest Task First approach. However, in this
case, the tasks are randomly selected, initially from
the first category, and then from the second category.

4 Results

To determine the relative merits of these strategies,
we executed a large number of test runs in simula-
tion, comparing the results of all of the combinations
of the dynamic task reallocation and task ordering
strategies in terms of the time required to complete
the mission. We collected performance data by vary-
ing the number of robots on the team (n) from 2 to
20, the number of tasks the team must perform (m)
from 1 to 40, the task coverage ! from 1 to 10, the
degree of heterogeneity? from 0 percent to 3200 per-
cent, and the value of the Progress When Working
(PWW) condition® as either true or false. For this

IThe task coverage is a measure of the total number of ca-
pabilities on the robot team that may allow a team member to
achieve a given task — see [18].

2In this context, degree of heterogeneity refers to a relative
comparison of ¢(a;;) and g(ag;), in which hi(a;;) = hg(ag);
in other words, r; and r; can both perform the same task, but
with different levels of performance.

3We define the Progress When Working condition as follows
(see also [18]). Let z be the finite amount of work remaining to
complete a task w. Then whenever robot r; activates a behavior
set corresponding to task w, either (1) r; remains active for a

study, the missions were composed of completely in-
dependent subtasks involving no ordering constraints,
the capabilities were distributed uniformly across the
robots based upon the given task coverage, and the
same task coverage was assumed for all tasks in the
mission. For each 5-tuple (n, m, task_coverage, het-
erogeneity, PWW) of a given run of the simulation,
which we call a scenario, 200 randomly generated test
runs were executed. The average over these 200 runs
was then considered the characteristic performance of
that scenario.

Our studies revealed that all of the above variables
have an impact on the relative performances of the
parameter learning strategies. Limited space in this
paper prohibits a thorough analysis of these results;
instead, we focus here on the most important, high-
level results. (Refer to [18] for a more detailed analy-
sis.) The relative performance results comparing the
three dynamic task reallocation strategies for the fixed
task ordering strategy of Modified Shortest Task First
are shown succinctly in figure 2. In this figure, the
numbers I, II, and III in large parentheses indicate
the relative performance of the three dynamic task
reallocation strategies in each of the regions, where
the top row indicates the best performer(s). When
more than one set of values are given (e.g., in regions
2 and 3), the relative performances depend upon the
Progress When Working (PWW) condition. The four
points noted with small black squares are exemplar
missions of their corresponding regions. The three
values in the small parentheses by each of these four
points describe the corresponding cooperative scenario
by giving the number of robots, the number of tasks,
and the task coverage used in the exemplar. As can
be seen, the relative performances of the various pa-
rameter update strategies vary depending upon the
particular scenario being investigated. In this fig-
ure, “highly” heterogeneous means roughly a degree
of heterogeneity above 600%, whereas “mildly” het-
erogeneous means a degree of heterogeneity between
approximately 300% and 600%.

We then compared the impact on these task reallo-
cation strategies when changing the task order strat-
egy from Modified Shortest Task First to the Longest
Task First and Modified Random Task Selection ap-
proaches. OQur results led to a quick dismissal of
the distributed Longest Task First approach, since it
turned out to be disastrous for heterogeneous coop-
erative teams in which robot failures can occur — in
general, this approach caused each task in the mission
to be attempted by the robot team member with the
worst ability to accomplish that task. Clearly, this
does not result in collectively efficient task execution.

Our experiments showed that the relative perfor-
mances of the three dynamic task reallocation strate-
gies change when using a Modified Random Task Se-
lection task ordering approach instead of the Modi-

sufficient, finite length of time € such that z is reduced by a finite
amount which is at least some constant é greater than 0, or (2)
r; experiences a failure with respect to task w. Additionally, if
z ever increases, the increase is due to an influence external to
the robot team.
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Figure 2: Summary of time usage for the dynamic
task reallocation strategies using a fixed task ordering
strategy (Modified Shortest Task First). (Refer to the

text for an explanation of this figure.)

fied Shortest Task First approach, regardless of the
scenario’s region in figure 2. A typical result of com-
paring the relative performances of the three dynamic
task reallocation strategies under the Modified Ran-
dom Task Selection task ordering approach instead
of with the Modified Shortest Task First approach is
shown in figure 3 for one of the exemplar scenarios.
As this figure shows, although the Random Task Se-
lection approach degrades the performance of teams
controlled by strategies I and III as heterogeneity in-
creases, it actually improves the performance of teams
controlled with strategy II (Let the Best Robot Win).

We discuss the significance of these results in the
next section.

5 Discussion

Our goal in this work is to derive a single approach
to multi-robot action selection that performs well re-
gardless of the particular instantiation of the robot
team and mission. We do not want to require a hu-
man system designer to perform extensive analysis of
specific multi-robot applications to determine the ap-
propriate multi-robot learning strategy. Thus, we now
analyze the results of the previous section to attempt
to find a general approach that performs well in any
of the situations studied.
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Figure 3: Typical change in mission completion time
when using the Modified Random Task Selection or-
dering approach instead of the Modified Shortest Task
First approach.

Combining the results of figures 2 and 3 leads first
to the conclusion that strategy II (Let the Best Robot
Win) is the favored strategy for experimental scenarios
in regions 1 and 4, as well as in regions 2 and 3 when
the Progress When Working condition is true, regard-
less of whether the Modified Random or the Modified
Shortest Task First ordering approach is used. Strat-
egy III (Give Robots a Fighting Chance) is preferred
over strategy II only when using the Modified Short-
est Task First ordering approach and when the PWW
condition is false in the following regions: region 3, and
in region 2 for “mildly” heterogeneous teams. Strat-
egy I (Distrust Performance Knowledge about Team-
mates) is never a superior strategy.

Returning to figure 3, let us now determine why
strategy II performs so much better under the Mod-
ified Random approach than the Modified Shortest
Task First approach. The reason for this perfor-
mance improvement relates to the theoretical advan-
tages mentioned earlier of using the Longest Task
First selection strategy. The Longest Task First ap-
proach theoretically results in shorter mission comple-
tion times for homogeneous robot teams because the
longer tasks are pursued first while available robots
perform the shorter tasks in parallel. Of course, we
dismissed this approach for heterogeneousrobot teams
which can perform the same tasks with different qual-
ities, since it caused each task to be pursued by the
robot with the longest task completion time. However,
if we allow robots to divide their tasks into two cate-
gories (1) those which the robot expects to be able
to perform quicker than any other robot, and (2) all
remaining tasks that robot can perform  and then
use a Longest Task First mechanism to select among
the first category and a Shortest Task First mechanism
for selecting among the second category, the problem
of heterogeneity is circumvented. What we find in fig-
ure 3 is that the Random Task Selection approach for
strategy II actually moves the robot control toward a



Longest Task First approach, since any random selec-
tion of an action must result in a longer task than that
chosen with the Shortest Task First approach.

This then leads to the following general task ori-
ented learning mechanism for this application domain,
under which each robot r; does the following:

1. Divide the tasks into two categories:

(a) Those tasks which r; expects to be able to
perform better than any other team mem-
ber, and which no other robot is currently
performing.

(b) All other tasks r; can perform.

2. Repeat the following until sensory feedback indi-
cates that no more tasks are left:

(a) Select tasks from the first category according
to the longest task first approach, unless no
more tasks remain in the first category.

(b) Select tasks from the second category ac-
cording to the shortest task first approach.

If a robot has no learned knowledge about team mem-
ber capabilities, all of its tasks fall into the second
category.

The implementation of this control strategy in
terms of the control parameters of the L-ALLIANCE
architecture is formally presented in the Appendix.

Since this action selection problem is NP-hard, it is
very difficult to empirically compare the performance
of the L-ALLIANCE approach to the theoretically op-
timal result. The optimal solution becomes impracti-
cal to calculate directly, even for small values of n and
m. However, the optimal result can be directly calcu-
lated for many small problems in which the value of
n™ is reasonable. We thus experimentally compared
the results of the derived L-ALLIANCE control strat-
egy with the optimal solution for those problems in
which we could derive the optimal result. What we
discovered, for a total of 496 scenarios in regions 1, 2,
and 3, is that L-ALLIANCE performs within 20% of
the optimal solution for these smaller scenarios, which
is certainly acceptable. Of course, the key issue is
how seriously the performance of L-ALLIANCE will
degrade as the size of the problem increases. This is
a topic of future research.

To validate the results of our empirical studies
in simulation, we successfully implemented this L-
ALLTANCE control strategy in a cooperative box
pushing demonstration on real mobile robots. This
demonstration was useful, because if offered a simple
and straight-forward illustration of the key character-
istics of the L-ALLIANCE architecture: fault tolerant,
adaptive, and efficient control. This demonstration
was implemented using a heterogeneous robot team of
two R-2 robots and a Genghis-II robot. It successfully
illustrated how the L-ALLIANCE architecture endows
robot team members with fault tolerant and efficient
action selection in the midst of robot failures and team
heterogeneity. Space limitations prohibit a discussion
of these results; refer to [18] for more details.

6 Conclusions

Most previous work in multi-robot systems has ad-
dressed either the need for fault tolerance in a cooper-
ative system, or the need for efficiency in multi-robot
systems. Very little previous research has addressed
a combination of these two issues for task-oriented
multi-robot control. We have addressed this problem
by developing a mechanism called L-ALLIANCE that
allows teams of heterogeneous robots to improve their
task efficiency without sacrificing the desirable charac-
teristics of fault tolerance and adaptivity. This mecha-
nism is based upon the ALLIANCE architecture, and
was developed through extensive testing of compet-
ing strategies in simulation. We validated our results
on a team of physical robots performing a simple ma-
nipulation task. Future research in this area includes
comparing our results to the results of a evolutionary
search approach, as well as deriving analytical proofs
of the theoretical effectiveness of our approximate so-
lution.
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Appendix: Formal Model of L-ALLIANCE

The formal definition of the L-ALLIANCE cooperative robot architecture, including mechanisms for learning
and efficiency considerations, is provided below.

Given €, which is the threshold of activity of a behavior set, and strategy, which is the current impa-
tience/acquiescence update strategy, seven sources of input affect the motivation to perform a particular behavior
set. These inputs are defined as:

Sensory feedback:

1 if sensory feedback in robot r; at time ¢t indicates that behavior a;; is applicable
sensory_feedbackij(t) = { 0 otherwise i ij pp

Inter-robot communication:
pi = Rate of messages per unit time that robot r; sends concerning its current activity

1 if robot r; has received message from robot rj
comm _recetved (i, k, j, t1,t2) = concerning task h,-(aij) in the time span (t1,t2), where t; < to
0 otherwise

7; = Maximum time robot r; allows to pass without hearing from a particular
robot before assuming that that robot has ceased to function

robots_present(i,t) = {k|3j.(comm_received (i, k,j,t — 7;,t) = 1)}
Suppression from active behavior sets:
activity _suppression ;(t) =

J

0 if another behavior set a;; is active, k # j, on robot r; at time ¢
1 otherwise

Learned robot influence:

0 if ( Z comm _recewved (i, z,J,0,t)) # 0
z€robots_present(i,t)
1 otherwise

learning -impatience ;; (t) =
ft = Number of trials over which task performance averages and standard deviations are maintained

task_time;(k,j,t) = (average time over last u trials of r4’s performance of task h;(a;;))
+ (one standard deviation of these p attempts), as measured by r;

1 if (task-time(, j,t) = kembomrg}igsem(“) task _time(k, j,t))
task_category;; (t) = and (( Z comm _received (i, x,j,t — 7;,t)) = 0)

z€robots_present(i,t)
2 otherwise

boredom _threshold; = level of boredom at which robot r; ignores the presence of
other robots able to perform some task not currently being executed

boredom _rate; = Rate of boredom of robot r;

bored _J 0 fort =10
oredom ;(t) = (I1; activity_suppression; (1)) x (boredom ;(t — 1) + boredom _rate;) otherwise
0 if (boredom;(t) < boredom _threshold;) and (task_category,;(t) = 2)

learned_robot_influence; ;(t) :{ 1 otherwise

J

Robot impatience:

¢Z~j(k, t) = Time during which robot r; is willing to allow robot 74’s communication
message to affect the motivation of behavior set a;;.
_ task_time;(k, j,t) if (strategy = III)
- task_time;(7,7,t) if (strategy = II)



6_slow;;(k, t) = Rate of impatience of robot r; concerning behavior set a;; after
discovering robot rj performing the task corresponding to this behavior set

= —2

 du(kY)
man_delay = minimum allowed delay maz -delay = maximum allowed delay
high = maxtask_time;(k, j, t) low = Tintask_timei(k‘,j, t)
scale_factor = m“z-d;ll,‘;z;’l'?;’-del“y
6_fastij(t) = Rate of impatience of robot r; concerning behavior set a;; in the

absence of other robots performing a similar behavior set

0 : . _
{ min _delay+(task _time; (1,5 ,t) —low) X scale_factor if tGSk‘categOTyU (t) =2
0

otherwise

maz _delay —(task _time; (i,5,t) —low) X scale_factor

(comm _recewved (i, k, J,0,t — ¢;;( 0)
b-fast,;(t) otherwise

0 if 3k.((comm_received (i, k, j, t — 6t,t) = 1) and
(comm _recetved (i, k, j,0,t — 6t) = 0)
where 6t = time since last communlcatlon check
1 otherwise

ming (6_slow;;(k,t)) if (comm_received (i, k, j,t — 73, 1) = 13 and
impatience ;;(t) = { k,t)

impatience_resety; (t) =

Robot acquiescence:

¥;j(t) = Time robot r; wants to maintain behavior set a;;’s activity before yielding to another robot.
task_time; (i, j, 1) if (strategy = I11)
= min task _time;(k, j,t) if (strategy = II)
k€E€robots_present(i,t)

Aij(t) = Time robot r; wants to maintain behavior set a;;’s activity before giving
up to try another behavior set
0 if [(behavior set a;; of robot r; has been active for more
than ;;(t) time units at time ¢) and
(Fz.comm_received (i, x, j, t — 7i,t) = 1)]
acquiescence ;;(t) = or
(behavior set a;; of robot r; has been active for more
than A;;(t) time units at time )
1 otherwise
Motivation calculation:

The motivation of robot r; to perform behavior set a;; at time ¢ is calculated as follows:
DURING ACTIVE LEARNING PHASE:
random_increment <« 6 x (a random number between 0 and 1)
'mij(O) = 0
mij(t) = [mij(t —1) + random_increment] x sensory_feedback ;;(t)

X activity_suppression,;;(t) x learning _impatience ;;(t)

The motivation to perform any given task thus increments at some random rate until it crosses the threshold,
unless the task becomes complete (sensory_feedback), some other behavior set activates first (activity_suppression),
or some other robot has taken on that task (learning_impatience).

When the robots are working on a “live” mission, their motivations to perform their tasks increment according
to the robots’ learned information. The motivations are thus calculated as follows:

DURING ADAPTIVE PHASE:
m;;(0) = 0
mij(t) = [m;(t — 1)+ impatience,;;(t)] x sensory_feedback ;;(t)
X activity_suppression ;;(t) x impatience_reset,;(t)

x acquiescence ;;(t) x learned_robot_influence,;(t)



