
J Intell Robot Syst
DOI 10.1007/s10846-012-9783-5

A Decentralized Architecture for Multi-Robot Systems
Based on the Null-Space-Behavioral Control
with Application to Multi-Robot Border Patrolling

Alessandro Marino · Lynne E. Parker ·
Gianluca Antonelli · Fabrizio Caccavale

Received: 20 April 2012 / Accepted: 11 September 2012
© Springer Science+Business Media Dordrecht 2012

Abstract This paper presents a control architec-
ture for multi-robot systems. The proposed ar-
chitecture has been developed in the framework
of the Null-Space-based-Behavioral (NSB) con-
trol, a competitive-collaborative behavior-based
control approach. The standard NSB statically
determines a set of suitably defined elementary

The manuscript is based on three conference papers of
the same authors, namely, Marino et al. [27–29].

A. Marino (B)
Dipartimento di Ingegneria Elettronica e Ingegneria
Informatica, Università degli Studi di Salerno,
Via Ponte Don Melillo, 84084, Fisciano, SA, Italy
e-mail: almarino@unisa.it

L. E. Parker
Department of Electrical Engineering and Computer
Science, The University of Tennessee,
1122 Volunteer Blvd, Knoxville, TN 37996-3450, USA
e-mail: leparker@utk.edu

G. Antonelli
DIEI - Dipartimento di Ingegneria Elettrica
e dell’Informazione, Università di Cassino
e del Lazio Meridionale, Via G. Di Biasio 43,
03043, Cassino, FR, Italy
e-mail: antonelli@unicas.it

F. Caccavale
Scuola di Ingegneria, Università degli Studi della
Basilicata, Viale dell’Ateneo Lucano 10,
85100, Potenza, Italy
e-mail: fabrizio.caccavale@unibas.it

tasks (behaviors) and their priorities, i.e., they
cannot be dynamically changed according to mis-
sion requirements and environmental constraints.
In this paper, a three layer architecture has been
designed in order to avoid such a drawback. The
single robotic unit (agent) performing the mis-
sion is placed on the lower layer. In the middle
layer, suitably defined elementary behaviors are
defined; these elementary behaviors are then com-
bined, via the NSB approach, in more complex
actions. The upper layer is a Supervisor in charge
of dynamically selecting the proper action to be
executed. As further contribution, the architec-
ture has been applied to the multi-robot border
patrolling mission to generate a decentralized, de-
terministic and non-communicative solution that
is robust to faults, and prevents collisions, even in
the case of high robot density. Finally, the simula-
tions on a team composed by a large number of ro-
bots, and experiments on a real setup, composed
by three Pioneer-3DX robots, are provided.

Keywords Behavioral control · Null-space based
behavioral approach · Multi-robot systems ·
Swarm robotics · Border patrol

1 Introduction

Collaborative multi-robot teams have great po-
tential to add capabilities and minimize risks,

J Intell Robot Syst

especially in the security domain. In fact, robots
are increasingly used in performing patrolling,
surveillance and military tasks. Today, such robots
are not able to carry out a mission on their own,
due to limited autonomy; hence, most of them are
remotely controlled by human operators. This is
due also to the risks connected to robots’ failures
in highly dynamic scenarios.

Of course, multi-robot systems require a co-
ordination mechanism to accomplish the mission.
Although several paradigms have been developed
in the last decades, behavior-based robotics has
been proven to be a successful technique [9].

Arbitration mechanisms are usually adopted
for selection of active behaviors on the basis of
mission and system requirements. An example is
the subsumption architecture, in which a priority
is assigned to each behavior, and behaviors with
higher priorities are allowed to override the out-
put of behaviors with lower priority [9]. However,
multiple non-conflicting behaviors cannot be acti-
vated simultaneously.

Command fusion mechanisms try to establish
a sort of cooperation between behaviors. For ex-
ample, the motor schema allows the output of
multiple behaviors to be combined [7]. However,
it suffers from the problem of local minima and
command averaging without explicit handling of
conflicting behaviors.

The traditional NSB approach requires the
definition of a set of elementary behaviors [4].
The mission achievement is obtained by properly
combining the elementary behaviors via the null-
space projection mechanism.

Thus, the NSB can be defined as a competitive-
cooperative approach, that overcomes the dis-
advantages of the above approaches, allows the
activation of several behaviors at once and prop-
erly handles the conflicts among them. A compari-
son of the NSB approach with the other paradigms
cited above can be found in Antonelli et al. [5].
However, the behaviors and their priorities are
statically determined, i.e., they cannot be changed
dynamically according to mission requirements
and environment constraints. Hence, the standard
NSB approach can be effectively applied only
to relatively simple missions. Thus, it is worth

further extending this mechanism to handle dy-
namic changes of behaviors and their priorities.

In this paper, the NSB approach for multi-
robot systems has been extended with respect
to previous published papers. Namely, a mission
whose complexity cannot be effectively handled
by the standard NSB approach is first decom-
posed into several sub-missions (or sub-goals).
Each sub-mission requires the activation of mul-
tiple behaviors, each characterized by its pri-
ority, and their combination according to the
Null-Space-Behavioral approach. Such a combi-
nation of behaviors is called action. Finally, a
higher level (i.e., the Supervisor) is needed to
dynamically select the action to be activated. In
addition, the classic NSB has a centralized struc-
ture, i.e., a central computing unit or a leader
agent is in charge of collecting the system’s state
and calculating the agents’ motion commands.
Here, a different perspective is used. Namely, a
completely decentralized architecture is proposed
to overcome this limitation.

The proposed architecture has been applied
to the multi-robot patrolling mission. The over-
all patrolling architecture in the NSB framework
is able to perform the mission in very critical
conditions and under strong requirements (see
Section 3.1). In detail, a suitable set of elemen-
tary behaviors is defined, on the basis of typical
patrolling mission requirements. Then, these be-
haviors are composed, via NSB, into more mean-
ingful and complex actions, which represent given
sub-goals. Once the set of actions is defined, the
Supervisor selects the action to be performed by
each robot in order to achieve mission goals.

The proposed control architecture can be
adopted by multi-robot systems to perform dif-
ferent classes of missions, by properly formulating
the set of behaviors and actions. For the sake
of clarity, in this paper the designed procedure
has been presented by direct application to the
patrolling mission that is a challenging scenario
that helps to understand the main features of
the approach.

The paper has been organized as follows. In
Section 2, the contributions of the paper are
strengthened and summarized, while in Section 3,

J Intell Robot Syst

an overview of the patrolling mission is carried
out and the main assumptions and requirements
are determined. A description of the designed
architecture is given in Section 4. A short review
of the NSB approach together with the definition
of the elementary behaviors and actions is given
in Section 5. The supervisor in charge of select-
ing the proper action to execute is described in
Section 6. Simulations and experimental results
are presented in Sections 8 and 9. Finally, conclu-
sions are drawn in Section 10.

2 Main Contributions and Novelty

The contribution of the paper aims to be twofold.
First, a framework has been designed that allows
handling complex missions by means of a three-
layered architecture. This objective is achieved
thanks to the use of the NSB in the middle layer,
that allows building a set of well-structured be-
haviors and actions, whose output is fully pre-
dictable. Moreover, the NSB framework allows
the designer to focus on the design of the top
level rather than on the low level effects. Second,
the feasibility of the approach has been demon-
strated by showing a practical example of how the
proposed architecture can be used to accomplish
the patrolling task. In addition, experiments have
been run on a real setup composed by three fully
autonomous vehicles.

3 The Patrolling Mission: Main Requirements
and Assumptions

As stated above, the mission to accomplish is
the surveillance of a given area, i.e., a border or
any military and civil facility. An early example
of a robotic surveillance system is the Mobile
Detection Assessment and Response System-
Exterior (MDARS-E) [19] whose goal is to
provide multiple mobile platforms that perform
random patrols within assigned areas of ware-
houses. Sandia National Laboratories has de-
veloped the Surveillance And Reconnaissance
Ground Equipment (SARGE) robotic vehicle for

the US Department of Defense [35]. SARGE is
a teleoperated robot for battlefield surveillance
applications without computing power, aimed
at supporting autonomous navigation or vision
processing.

Recently, commercial border patrol applica-
tions have been proposed as well, such as
Guardium [21] and the unmanned autonomous
speed boat Protector manufactured by Ltd [36].

Perimeter surveillance algorithms form the ba-
sis for effective execution of monitoring tasks in
a number of applications fields, e.g., monitoring
of oil spills [15], contaminant clouds, algae bloom
[8], forest fires [12] and border security [23].

In Machado et al. [26], an analysis of the main
patrolling task issues and some multi-agent-based
solutions are presented. Several features (agent
type, agent communication, coordination scheme,
agent perception and decision-making) are evalu-
ated by using different criteria.

In Kingston et al. [25], a decentralized solution
to the multi-robot perimeter surveillance is pre-
sented, where changes of both the shape of the
perimeter and the number of robots are taken
into account; moreover, critical coordination in-
formation is exchanged to optimize some perfor-
mance index. In Agmon et al. [1], the authors
analyze non-deterministic paths for a group of
homogeneous mobile robots patrolling a frontier,
under the assumption of a hostile agent trying to
enter the area, where the latter has full knowledge
of the algorithm.

In this paper, a linear border to be patrolled
was considered. The border may be any imaginary
(like in the case of aerial vehicles as in [25]) or
real line surrounding strategical facilities or even
countries’ borders. In a real mission scenario, the
first task the vehicles have to be able to perform
is to get to the border itself from, for example, a
base station. After the border has been reached,
the vehicles have to move along the border while
keeping staying on the border. In addition, sta-
tic or dynamic obstacles need to be considered.
Obstacles can be represented by other teammates
or natural obstacles close to the border. Finally,
the case of a friend vehicles that try to enter
the border can be of interest. A friend vehicle

J Intell Robot Syst

is any agent that is allowed entering the area to
be patrolled and that has not to be stopped by
patrolling vehicles.

In the following, the main requirements and as-
sumptions related to the border patrolling mission
are listed.

3.1 Requirements

A patrolling mission requires a high degree of
autonomy and robustness. Several aspects and
constraints might affect the mission achievements,
e.g., occurrence of robot faults, large number of
patrolling robots, presence of friends or intruders
interfering with patrolling robots, limited commu-
nication range and computational capabilities. For
these reasons, the following requirements need to
be met.

Requirement 1: Decentralization The control ar-
chitecture needs to be fully decentralized, i.e.,
there is not a central unit in charge of computing
the patrolling robots’ motion commands, by gath-
ering information from them.

Requirement 2: Communication Explicit com-
munication between patrolling robots is forbid-
den. This requirement is devoted to supply more
robustness to the control architecture as well as
to enhance security, since, in certain applications,
encryption of communications would be needed,
at the expense of an increased software complex-
ity. Moreover, in some scenarios (e.g., underwater
environments and/or wide areas to be patrolled)
reliable communications could be not available.
Moreover, even in the case that explicit commu-
nications can be assumed, the gathered data may
require significant time to transmit (e.g., complete
video footage). Of course, this requirement is not
independent from the previous one, since, without
any form of communication, a centralized archi-
tecture cannot be implemented.

Requirement 3: Collision avoidance It is obvious
to require that each patrolling robot must avoid
collisions with other teammates, friends or intrud-
ers, even in the case of a large number of robots.
In addition, in the case of a large number of
robots, interference phenomena must be avoided,

i.e., the adoption of a large number of patrolling
robots must not lead to mission failure or other
unexpected and undesired events.

Requirement 4: Robustness Patrolling missions
are usually performed in challenging environ-
ments. Hence, it is mandatory to deal with robot
faults, by providing a suitable degree of tolerance
to faults of the single agents in the patrolling team.
More generally, sudden changes in the number of
patrolling robots (due, e.g., to an increase of the
available robots or failures of single robots) must
be taken into account.

Requirement 5: Computational burden Usually,
in multi-robot systems, relatively simple robots
are employed to achieve a given mission. Thus, the
computational burden of the control algorithms
versus the available computational power of the
single robotic units must be taken into account.

3.2 Assumptions

The following assumptions are adopted to de-
velop the proposed solution to the multi-robot
border patrolling problem, according to the above
defined requirements.

Assumption 1: Border geometry The general
perimeter surveillance problem is reduced to the
linear surveillance problem, by assuming that the
perimeter to be monitored is homeomorphic to a
line, and thus it can be represented as a single path
between two points. In addition, closed perimeters
are allowed.

Assumption 2: Visibility range It is assumed that
each robot has a limited visibility range, where
it recognizes the presence of other agents and
detects the border. For the sake of simplicity,
the visibility area is modeled as a circle around
the robot. This is not an unrealistic assumption,
since it well approximates the case of pan-tilt-
zoom camera sensors, laser range finders or omni-
directional cameras.

Assumption 3: Localization capabilities It is as-
sumed that each robot is able to localize it-
self in the environment and knows a local (i.e.,

J Intell Robot Syst

limited to its visibility range) geometric descrip-
tion of the border (or is able to locally estimate
the geometry of the border). Localization and, in
general, Simultaneous Localization and Mapping
(SLAM) [38] are well-established problems in the
literature and will be not addressed in this paper.
Indeed, each robot needs to estimate only its posi-
tion with respect to the border and other agents
that are in its visibility range. How this goal is
achieved highly depends on the available sensors
and the practical goals to be faced. A notable
example is given in Bruemmer et al. [10], where
a swarm is able to locate and surround a water
spill using social potential fields implemented via
IR, chirps and light sensing; moreover, in Clarka
and Fierro [15], cameras are used to locate the
perimeter of the area to patrol. Finally, it assumed
that each robot is able to follow the border [40].

Assumption 4: Safety area Each robot must be
characterized by its own safety area, in which
other agents are not allowed to enter. The safety
area is a circle around the robot (smaller than the
visibility area). Such an assumption is necessary to
meet the collision avoidance requirement, partic-
ularly in the case of teams composed by a large
number of robots, where conflicts and interfer-
ences may arise.

Assumptions 5: Awareness Each robot does not
know the exact number of patrolling robots. How-
ever, it is aware of the existence of other agents
(other patrolling robots, friends or intruders). As
described in the following, the awareness assump-
tion will be implicitly taken into account by prop-
erly defining the elementary behaviors.

4 Control Architecture

4.1 Paradigm

By taking into account the requirements defined
in Section 3.1, an approach belonging to the
swarm robotics class has been adopted. In swarm
robotics (see Dorigo and Sahin [16] for a sur-
vey and Dudek et al. [17] for a taxonomy),
the achievement of the mission is the result of
the cooperation of independent agents forming

the swarm. The swarm intelligence aims at de-
veloping robust task solving by minimizing the
complexity of the individual units; its central idea
is to distribute the control over a group of numer-
ous minimalist robots rather than gathering and
redistributing information with the help of a cen-
tral unit. There are two main advantages of this
approach: first, scalability from a few to thousands
of units, second, increased system robustness, not
only through unit redundancy but also through the
unit simple design. In this approach, the overall
behavior is generally emergent, i.e., each unit does
not have a global cognition of the assigned mission
and reacts to external stimuli via simple behaviors,
where, in general, the stimuli-behaviors couples
are organized in such a way that the cooperation
implicitly arises from the interaction among ro-
bots and with the environment.

Moreover, this approach is clearly modular,
since new emergent behaviors at the swarm level
can be obtained and, in general, more com-
plex missions could be accomplished by properly
defining new behaviors at the level of the single
unit. There are, of course, some drawbacks con-
nected to this approach. Namely, formal methods
are still not available that can generate (starting
from a suitable description of the overall mis-
sion) a set of stimuli-behaviors couples, whose
interaction leads to task accomplishment. This
is true especially in the presence of dynamically
changing environments.

4.2 Outline of the Control Architecture

Since the approach is completely decentralized
and disallows any form of communication, the
control architecture described in the following
must refer to the single robot in the patrol-
ling team.

As it can be seen in Fig. 1, the control ar-
chitecture is composed by three layers. Starting
from the top layer, they are the Supervisor Level,
the Action Level and the Robot Level. The first
two levels are abstract levels. In particular, the
Action Level, described in detail in Section 5,
defines the set of actions the robot can undertake.
Clearly, the set of actions depends on the mission
to be achieved, involving different skills. As al-
ready stated, this means that the architecture does

J Intell Robot Syst

Fig. 1 Sketch of the control architecture

not depend on the particular mission, but can be
applied to different missions by properly defining
the action set. Once the actions have been defined,
each robot chooses the proper action to perform,
according to its internal state and environmental
information. To this aim, a Supervisor needs to be
designed. Finally, the Robot Level comprises the
computing hardware/software and the mechanical
features of the single robot; the structure of this
layer depends on the adopted robotic platform
and is primarily concerned with the available sen-
sors and actuators.

A description of the platform used to test the
proposed approach is given in Section 9. In the
following, the architecture will be detailed with
reference to the patrolling mission

5 Behaviors and Actions

In this section, the set of behaviors required by
the patrolling mission is defined. Then, these
behaviors are combined into more complex and
meaningful actions by means of the Null-Space-
based-Behavioral (NSB) approach.

5.1 Review of the NSB Approach

A complex mission for a robotic system can be
encoded via different basic tasks (behaviors) to be
properly combined to achieve mission goals. As
already stated, the NSB approach can be defined
as a competitive-cooperative approach, trying to
overcome the disadvantages of arbitration and
command fusion approaches; it is based on the

task-priority control approach for robotic manip-
ulators [32]; it has been experimentally compared
to the layered-control system and motor-schema
control in the case of a wheeled mobile robot [5],
and successfully applied to control of a platoon of
ground vehicles [6].

Let us consider the task function σ ∈ �m which
is the mathematical representation of a generic
task to be achieved by a robotic system. It is
assumed that

σ = σ (p) ∈ �m, (1)

where p ∈ �n is a vector describing the system
configuration (e.g., in case of a team of robots,
p is the vector containing the positions of all the
vehicles) and m is the dimension of the task space.
Assuming that σ is a differentiable function, it is
useful to consider the relationship between the
first derivatives of σ and p

σ̇ = ∂σ (p)

∂ p
ṗ = J(p)v, (2)

where J ∈ �m×n is the task Jacobian matrix.
Equations 1 and 2 represent the so-called di-
rect task model of the system, i.e., the equations
needed to compute the value of the task func-
tion, σ , given the system configuration, p. The
inverse task model problem is defined as the de-
termination of the desired system’s configuration,
pd, corresponding to a desired task function, σ d.
It can be easily recognized that the inverse task
model problem is of the utmost importance, since,
by means of the desired task function, the de-
sired high level aggregate behavior of the sys-
tem is specified, while the corresponding desired
configuration represents the set of commands to
be delivered to the actuators. A possible solution
to the inverse task model problem can be sought
at the differential level, by inverting the (locally
linear) mapping (Eq. 2); this solution has been
widely studied in robotics (see, e.g., [37] for a tuto-
rial). A typical requirement is to pursue minimum-
norm velocity in a closed loop version, leading to

vd = J†(σ̇ d + �σ̃
)
, (3)

where J† = JT (
J JT)−1

is the pseudo-inverse of
the Jacobian matrix, � is a suitable positive-

J Intell Robot Syst

definite matrix gain and σ̃ = σ d − σ is the
task error.

It can be easily shown that Eq. 3 leads to the
following asymptotically stable error system

˙̃σ + �σ̃ = 0. (4)

When dealing with complex missions, several
tasks need to be handled. If N tasks (encoded by
functions σ d,1, . . . , σ d,N) are considered, the NSB
solution to the task combination can be formu-
lated in a recursive way, by computing the series
of velocity vectors as follows

⎧
⎨

⎩
vd,i = J†

i

(
σ̇ d,i + �σ̃ i

)

v(i) = vd,i + Ns,iv
(i+1) ,

i = 1, 2, · · · N , (5)

where Ji is the i-th task Jacobian, v(N+1) = 0, vd =
v(1) and the matrix

Ns,i = I − J†
s,i J

T
s,i

is a projector onto the null-space of Js,i (i.e., its
columns form a basis of the null space of Js,i). The
matrix Js,i is obtained by stacking the matrices Jk

with k = 1, 2, · · · , i. In the case of two tasks σ 1 ∈
�m1 and σ 2 ∈ �m2 , as will be the case in this paper,
Eq. 5 becomes

⎧
⎪⎪⎨

⎪⎪⎩

vd,1 = J†
1

(
σ̇ d,1 + �σ̃1

)

vd,2 = J†
2

(
σ̇ d,2 + �σ̃2

)

vd = vd,1 + N1vd,2.

(6)

In sum, the commanded velocities corresponding
to a lower priority task are projected onto the
null-space of the immediately higher priority task;
then, eventually conflicting velocity components
are cut off before being added to the higher pri-
ority task velocity components. In this way, lower
priority behaviors are executed only in their com-
ponents not affecting higher priority behaviors.
Convergence to zero of task errors can be guaran-
teed for properly defined tasks [3]. On the other
hand, a differentiable analytic expression of the
defined behaviors is required, so as to compute
the required Jacobian matrices.

5.2 Elementary Behaviors and Actions

In the case of the border patrolling of a linear
border, a set of elementary behaviors is defined:

• Reach Frontier
• Patrol Frontier Clockwise
• Patrol Frontier Counter-Clockwise
• Teammate Avoidance
• Friend Avoidance

whose semantics and analytical expressions are
given in Appendix A.1.

As motivated above, it is appropriate to com-
pose the elementary behaviors into more com-
plex behaviors; the latter are sometimes defined
as behavior sets in the literature. Similar to the
concept of behavior set, here a higher abstraction
layer is introduced: the action. An action is given
by the proper composition, achieved via NSB,
of several elementary behaviors and represents a
macroscopic attitude of the robotic system. Only
one single action can be active at once.

For the specific case of the border pa-
trolling task, the following set of actions is ob-
tained by combining the elementary behaviors
defined above:

• Action Reach Frontier
• Action Keep Going
• Action Patrol Clockwise
• Action Patrol Counter-Clockwise
• Action Teammate Avoidance
• Action Friend Avoidance

According to the definitions in Appendix A.2,
each action is given by elementary behaviors
arranged in priority; e.g., the Reach Frontier
action properly combines the elementary
behaviors Reach Frontier and Teammate
Avoidance, depending on the sensed presence
of other patrolling robots in the visibility range
and the distance from the border. It is worth
noticing that such actions require that each robot
is able to recognize other agents and their nature
(friends or teammates).

5.3 Behaviors Compatibility

In the NSB framework it is possible to define
conditions for behavior compatibility [3], allowing

J Intell Robot Syst

the robot to properly handle conflicts among
different behaviors (algorithmic singularities). Is-
sues related to singularities are deeply discussed
in Chiaverini [14], where a singularity-robust task-
priority strategy, in the case of two tasks, is de-
rived. According to this technique, a secondary
task is fulfilled if it does not conflict with a
higher level task, while it is released in the case
it is conflicting. The more general case of com-
patibility of three or more tasks handled in the
NSB framework has been discussed in Antonelli
[3], by resorting to a Lyapunov-based analysis.
A straightforward application of the results of
the above mentioned papers guarantees proper
definition of all the actions used in this paper; in
particular, collisions between robots and between
robots and obstacles are avoided. Compatibility of
the behaviors combined in actions is discussed in
the Appendix.

6 The Supervisor

The set of actions defines the robot’s skills needed
to react to situations encountered in the envi-
ronment. Hence, each robot has to be equipped
with a Supervisor that is in charge of selecting the
action to be executed, according to the robot’s
internal state and/or external stimuli. According
to the assumptions and requirements defined in
Section 3, the Supervisor of each robot decides
the next action to be performed, based only on
locally available information. Although several
paradigms might be used, two appealing tools for
the design of the Supervisor are represented by
Finite State Automata and Fuzzy Logic Engines.
The Finite State Automata Supervisor [27] will
be described in the following, while details on the
Fuzzy Logic Supervisor can be found in Marino
et al. [29].

A comprehensive description of hierarchical
state machines and of their properties is car-
ried out in Alur and Yannakakis [2]. Finite
state machine action selection mechanisms as-
sume that [11]:

• there are only a limited number of salient
situations the agent can find itself in,

• these situations are mutually exclusive,

• actions to be performed can be easily mapped
to situations.

To build a Finite State Automata, two sets must
be determined:

• the sets of the states the agent can be in,
• the sets of causes forcing the agent to change

its state.

The structure of the supervisor that selects the
proper action is shown in Fig. 2.

As it can be seen, the supervisory layer is
arranged in a hierarchical way, by defining three
levels. At the top level two scenarios have been
identified. The first one corresponds to the situ-
ation where a friend agent is in the safety area

Fig. 2 Sketch of the supervisor

J Intell Robot Syst

of the patrolling robot. In the second scenario
no friend agents are in the visibility area of pa-
trolling agents. The second level defines four
macro-states: MS0, for the first scenario, MS1, MS2
and MS3 for the second scenario. At each time
instant the robot can be in one of the macro-states.
In macro-state MS0, Action Avoid Friend is
active. On the other hand, if no friend agents are
present (second scenario), one of the states MS1,
MS2 or MS3 is active. In the macro-state MS1, the
robot tries to reach the border (and, at the same
time, avoid the teammates). In the macro-state
MS2 the robot behaves as if it is patrolling the
border (while avoiding teammates); however, in
this state, the robot still cannot be considered as
performing the patrolling mission. In the macro-
state MS3, the robot performs the patrolling mis-
sion and does not allow robots approaching the
border to influence its motion.

The reason for the distinction between macro-
states MS2 and MS3 is that, in the case of a
large number of patrolling robots, interference
between robots can be effectively counteracted.
In fact, when a robot is in the macro-state
MS3, it cannot be influenced by other team-
mates that are not in the same macro-state; the
avoidance of other teammates that are in the
macro-state MS3 is achieved by activating Action
Patrol Clockwise and/or Action Patrol
Counter-Clockwise.

In detail, the supervisor acts as described in
the following.

Scenario 1 One or more friend agents are in the
safety area of the robot

• Macro-State MS0:

– Action Avoid Friend is active

Scenario 2 No friend agents are in the safety area
of the robot

• Macro-State MS1: The distance between the
robot and the border is larger than the
Visibility Range

– if no teammate is in the safety area then
Action Reach Frontier is active,

– if one or more teammates are in the safety
area then Action Avoid Teammate
is active.

• Macro-State MS2: The distance between the
robot and the border is smaller than the Vis-
ibility Range and larger than a given thres-
hold, ζFS

– if no teammate is in the safety area then
Action Keep Going is active,

– if one or more teammates are in the safety
area then Action Avoid Teammate
is active.

• Macro-State MS3: The distance between the
robot and the border is smaller than a given
threshold, ζFS

– if no teammate is in the visibility range
then Action Keep Going is active,

– if there is a teammate on the left then
Action Patrol Clockwise is active,

– if there is a teammate on the right then
Action Patrol Counter-Clockwise
is active.

Finally, it is worth noticing that, when the sys-
tem has enough degrees of mobility, a more ad-
vanced Supervisor could be designed to further
combine, via NSB, the actions’ outputs in order
to achieve more sub-goals at once. For instance,
when a Fuzzy Logic Supervisor is used, several
actions can fire at once with different degrees of
activation. These can be used as priority of the
fired actions in the NSB approach.

7 Analysis

The FSA has been designed according to guide-
lines described in Murphy [31, pp. 163–209]. The
main properties that have been considered and
checked are the consistency and completeness [33].
Namely, a FSA is said to be consistent if only a sin-
gle transition rule can be enabled at the same time
for all the states. By considering the structure of
the supervisor, it can be verified that this property
holds.

Proposition 7.1 The FSA shown in Fig. 2 is
consistent.

J Intell Robot Syst

Proof Since the supervisor is arranged in a hierar-
chal way with three levels (Fig. 2), with scenarios
at the top layer, macro tasks in the middle layer
and actions at the lowest layer, it is required to
prove that in each time instant:

1. only one scenario can be active,
2. for each scenario, only one macro task can

be active,
3. for each macro-task, only one action can

be active.

1) Consistency of the Scenario Layer
With regards to the scenarios, the following
transition has been defined:

• C0: there is a friend in the safety area of
the considered robot;

this condition, essentially, identifies two situ-
ations depending on whether a friend vehicle
is close or not to the given patrolling vehicle.
Since the two conditions are mutually exclu-
sive, it is obvious that only one scenario can
be active at a time.

2) Consistency of the Macro-Task Layer
With regards to the macro-tasks, there is only
a macro-task in the first scenario (MS0), thus,
no conflict occurs in this scenario. With re-
gards to the second scenario, the following
transitions for the macro-tasks (MS1, MS2,
MS3) have been defined:

• C1: the distance from the border is smaller
than the visibility range,

• C2: the distance from the border is
smaller than the threshold ζFS defined in
Section 6.

From each of the considered macro-tasks, only
one output transition is defined, thus, conflicts
cannot occur.

3) Consistency of the Actions Layer
In the case of the actions in each macro-
state, the following situations have to
be considered:

• the macro-state MS0 is active. In this case,
only the action Action Avoid Friend
can be active;

• the macro-state MS1 is active. Two ac-
tions might be active (Action Reach
Frontier and Action Avoid Team-
mate). Only one transition rule, namely
c1, is present; this means that conflicts do
not arise;

• the macro-state MS2 is active. Two ac-
tions might be active (Action Keep
Going and Action Avoid Teammate).
Also in this case, only one transition,
namely c1, is present; thus, any conflict
is avoided;

• the macro-state MS3 is active. Three ac-
tions might be active (Action Keep
Going, Action Patrol Clockwise
and Action Patrol Counter-Clock-
wise). Three transition rules are present,
namely c2, c3, c4. Because c2 and c3
cannot both be true at same time, the
following combinations are admitted:

c2 c3 c4=!c2 ∧ !c3
1 0 0
0 1 0
0 0 1

this implies that only one transition rule is
active at a time. In addition, each action
is characterized by only one output transi-
tion. Thus the consistency is proved. ��

Moreover, a FSA is said to be complete [33]
if it operates correctly for all possible input/
state sequences.

Proposition 7.2 The FSA shown in Fig. 2, com-
bined with the behavior-action level and the prop-
erties of the NSB approach, is complete.

Proof Completeness can be inferred from the
main NSB properties. In the environmental model
that has been considered, in each time instant
the inputs a vehicle takes into account are the
distance from the border, the distance from the
friend vehicles and the distance from teammates
or other obstacles. Based on the macro state
MSi (i=0,1,2,3), any sequence of the consid-
ered inputs is admissible for the designed FSA.

J Intell Robot Syst

In fact, any sequence of the following situations
is admissible:

• a friend is in the visibility area. In this case, the
macro state MS0 is active and then the Action
Avoid Friend. As stated in Section A.2.5,
this action guarantees that no collision bet-
ween friends occurs;

• no friend and no obstacle is in the vis-
ibility area. In this case, either the vehi-
cle is in the macro states MS1 or MS2.
Thanks to the Action Reach Frontier
(see Section A.2.1) it is ensured that the
vehicle gets to the border and starts the
patrolling mission;

• an obstacle is in the visibility area. In this
case, the robot is either in the macro state
MS1 or MS2. The Action Avoid Teammate
in Section A.2.4 guarantees that no collision
occurs, since the collision avoidance has the
highest priority task in the NSB sense. Thus
completeness is proven. ��

In sum, in the case of one robot, the FSA
ensures the robot reaches the border and starts
the patrolling mission (in macro-state MS3). In
fact, whatever is the starting macro-state, since
Reach Frontier is always the primary behav-
ior (in the absence of obstacles or other team-
mates), the robot is forced to reach the border
(i.e., the FSA is in the macro-state MS3). In the
case of multiple robots (but in the absence of
friends), the transition towards MS3 occurs if there
is enough space along the border to let the robot
stay on it. The behavior of robots left out of the
border (whose supervisor is in macro-states MS1
or MS2), thanks to the distinction between macro-
state MS2 and MS3, do not affect the patrolling
robots. In the presence of friend vehicles and inde-
pendently from the other conditions, the macro-
state MS0 becomes active. In this case, the Reach
Frontier Behavior is not the primary behav-
ior; hence, the robot reaches the border only after
the friend vehicles have crossed it (the behav-
iors composing Action Avoid Friend are not
compatible [3]).

7.1 Advantage of the use of NSB

The considered task priority algorithm guarantees
that the higher priority tasks are not affected
by the lower ones. For the generic task, in fact,
it has been demonstrated that its error con-
verges to zero within the null-space of the higher
ones and it is not affected by the lower ones
[5]. The actions used in this paper are prop-
erly defined as discussed in the Appendix; in
addition, tuning of the feedback gains is ex-
tremely simplified with respect to cooperative
behavioral approaches. In fact, the NSB decou-
ples the tasks spaces, meaning that the parameter
tuning can be done for each task independently
from the remaining ones and independently from
its priority. This property is a significant ad-
vantage with respect to any cooperative behav-
ior approach. In fact, the coupling among the
tasks/behavior is done by selecting the priority,
thus at a higher level, and not by selecting the
gains.

8 Simulations

Several simulations, performed in the presence of
both closed and open borders with different sizes
and shapes, have been carried out by using both
Matlab [30] and Player/Stage [39] environments.
A video of the simulation can be downloaded at
the footnote link.1

8.1 Simulations in the Presence of a Large
Number of Robots

In order to test the approach in the presence
of a large number of robots in the team, a
free environment with a closed border has been
considered in a numerical simulation. The team
is composed by 60 robots, with visibility and
safety areas equal to 20 m. The matrix gains in
Eqs. 10–12 of Appendix A.1 have been chosen

1A video of the simulation is available at: http://webuser.
unicas.it/lai/robotica/video/SimPatrolling.avi.

http://webuser.unicas.it/lai/robotica/video/SimPatrolling.avi
http://webuser.unicas.it/lai/robotica/video/SimPatrolling.avi

J Intell Robot Syst

Fig. 3 Sample frames at
different time instants of
robots performing a
patrolling mission without
friend agents

[m
]

[m]

[m
]

[m]

[m
]

[m]

[m
]

[m]

time = 0.4s time = 4s

time = 7s time = 25s

-200

-200

-200

-200

-200

-200

-200

-200

-100

-100

-100

-100

-100

-100

-100

-100

0

0

0

0

0

0

0

0

100

100

100

100

100

100

100

100

200

200

200

200

200

200

200

200

as λr f = 5I, λcw = 8I, λccw = 8I, λta = 10I and
λ f a = 10I. The gains have been selected by set-
ting the desired velocities to be assumed when
approaching and patrolling the border, as well as
when escaping from teammate and friend agents.
Friend vehicles are not present in this simulation.

Figure 3 shows the robot positions at four
different time instants. Robots are represented by
green points surrounded by their visibility ranges;
the continuous blue line represents the closed
border to be patrolled. As it can be seen, the
task is executed in four different phases (each
corresponding to a frame in Fig. 3):

• in the first phase, all robots are trying to reach
the border, while avoiding teammates;

• in the second phase, some robots reach the
border and start patrolling the border;

• in the third phase, most of the robots are
patrolling the border,

• in the fourth phase, the robots reach the max-
imum density along the border, and the pa-
trolling robots are not affected by other agents
trying to reach the border.

It is useful to remark that a swarm approach
should also prevent robot collisions in critical con-
ditions like this one. To this aim, in Fig. 4 (top), the

time history of the minimum value of the distances
among all possible robot pairs is depicted, i.e.:

dr,min(t) = min
∀i �= j i, j∈Nr

‖ pi,r(t) − pj,r(t) ‖, (7)

18

Minimum distance between robots

Coverage Index

[m
]

[s]

[s]

6

8

12

14

16

22

5

5

10

10

10

15

15

20

20

20

25

25

30

30

0.2

0.4

0.6

0.8

1

[
]

Fig. 4 Top: time history of minimum of distances between
all possible robot pairs. The dashed line represents the ra-
dius of the safety area. Bottom: time history of the coverage
index over time

J Intell Robot Syst

Fig. 5 Sample frames at
different time instants of
robots performing a
patrolling mission with
friend agents. Dashed
vehicles are the friend
agents

−200 −150 −100 −50 0 50 100 150 200

time = 1

m

−200 −150 −100 −50 0 50 100 150 200

−200

−150

−100

−50

0

50

100

150

200
time = 20

m

m

−200 −150 −100 −50 0 50 100 150 200

time = 56.2

m

−200 −150 −100 −50 0 50 100 150 200

−200

−150

−100

−50

0

50

100

150

200
time = 63.5

m

m

−200

−150

−100

−50

0

50

100

150

200

m

−200

−150

−100

−50

0

50

100

150

200

m

where pi,r(t) is the position of the i-th robot at
instant t, and Nr is the set of patrolling robots.

As it can be seen in Fig. 4 (top), even in the case
of a large number of robots, collisions are avoided.
Moreover, the structure of the supervisor avoids
interference between robots. In fact, the fourth
frame in Fig. 3 shows that robots still approaching
the border do not affect the motion of robots
already performing the patrolling mission (i.e.,
robots in the macro-state MS3). In Fig. 4 (bottom),
the time history of a coverage index of the border
(defined as the ratio between the portion of bor-
der that is in the visibility area of the patrolling
robots and the overall length of the border) is
shown. As it can be seen, it monotonically ap-
proaches the maximum value 1.

8.2 Simulations in the Presence of Friend
Vehicles

Simulations showing the approach performance in
the presence of 10 friend agents (trying to enter
the border) are carried out. The team is composed
by 60 robots with visibility and safety areas equal
to 20 m. The gains are the same as in the previous
simulations. Figure 5 shows the robot positions at
different time instants. As in the previous case, the

different phases (each corresponding to a frame in
the figure) are the following:

• in the first phase, robots are randomly dis-
tributed and try to reach the border, while
avoiding other teammates;

0 5 10 15 20 25 30
0

5

10

15

20

25

[s]

[m
]

MinimumDist

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

[s]

[m
]

MinimumDistFriend

Fig. 6 Top: time history of minimum of distances between
all possible robot pairs. The dashed line represents the
radius of the safety area. Bottom: time history of the mini-
mum of distances between all robot-friend pairs

J Intell Robot Syst

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

[s]

[]

CoverageIndex

Fig. 7 Time history of the coverage index over time in the
presence of several friend vehicles

• in the second phase, some robots have
reached the border and start to perform the
patrolling mission, activating Action Keep
Going and Action Patrol Clockwise
(or Patrol Counterclockwise);

• in the third phase, friend agents, represented
by cross markers surrounded by their safety
areas (dash-dot circles), start to approach the
border and cross it, without any collision with
patrolling robots;

• in the fourth phase, friends gain the cen-
ter of the bordered zone; in this situation,
patrolling robots are no longer affected by
friends’ motion.

In Fig. 6 (top), the time history of the minimum
value of the distances among all the possible robot
pairs, computed according to Eq. 7, is depicted.

In Fig. 6 (bottom), the minimum distance over
time of all the possible robot-friend pairs is
shown, i.e.:

d f,min(t) = min
∀i∈Nr, j∈N f

‖ pi,r(t) − pj, f (t) ‖, (8)

where pj, f (t) is the position of j-th friend agent
at the time instant t and N f is the set of friend

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

[s]

[]

CoverageIndex

Fig. 9 Time history of the coverage index over time in the
case of several faults

agents. Friend agents cross the border between
15 s and 24 s; even during border crossing the
safety distance (dashed line) is not violated. Thus,
the proposed architecture is capable of avoiding
collisions, and the mission is safely accomplished.

In Fig. 7, the time history of the coverage index
is shown. Again, since interference situations do
not occur, the coverage index monotonically ap-
proaches 1; the index decreases only when friends
cross the border.

8.3 Simulations in the Presence of Friend
Vehicles and Multiple Sudden Faults

In this simulation case study, the initial conditions
and the parameter values are the same as in the
previous one. In addition, robot failures occur.
Namely, 50 % of the initial patrolling robots sud-
denly fail. As in the previous simulations, at the
beginning, robots are randomly distributed and
reach a final configuration corresponding to the
fourth frames of Figs. 3 and 5. Starting from this
configuration, Fig. 8 (left) shows the configuration
of robots immediately after the occurrence of
the faults. The second frame shows that the

Fig. 8 In the left frame,
several robots fail. In the
right frame, the remaining
robots automatically
redistribute around
the border

−200 −150 −100 −50 0 50 100 150 200

−200

−150

−100

−50

0

50

100

150

200 time = 21.2

m

m

−200 −150 −100 −50 0 50 100 150 200

−200

−150

−100

−50

0

50

100

150

200 time = 26.4

m

m

J Intell Robot Syst

Fig. 10 The experimental
setup at the Distributed
Intelligence Laboratory
of University of
Tennessee. Left: a
Pioneer-3DX mobile
robot. Right: the team
used in the experiments

surviving robots redistribute along the border af-
ter the failures, thus keeping the mission objec-
tive. In Fig. 9, the time history of the coverage
index is shown. Initially, the index almost reaches
the value 1; at 15.5 s, when 50 % of the robots
suddenly fail, the remaining robots redistribute to
maximize the coverage index.

8.4 Discussion

The numerical simulations have been designed
in order to stress the algorithm in severe tests.
Dozens of different case studies with different
simulation parameters such as, e.g., the number of
robots, the visibility range, the robot speed, etc.,
have been run. The results show that, even in the
presence of a large number of robots, collisions
and interference between robots are avoided. The
results confirm that the approach is capable of
achieving nearly optimal values of the adopted
performance indexes. The presence of a generic
number of friend robots in a cloud configuration is
also handled in a proper way, while ensuring satis-
factory performance. Finally, simultaneous faults
of several robots affect significantly the perfor-
mance only during a transient phase; the expected
values for the given number of working robots are
then promptly reached.

9 Experiments

The proposed control architecture has been im-
plemented on an experimental setup composed
of three Pioneer-3DX mobile robots (Fig. 10),

available at the Distributed Intelligence Labora-
tory of University of Tennessee. Videos about the
experiments can be downloaded at the footnote
links.2

The Pioneer-3DX robot has a 0.44 m ×
0.38 m × 0.22 m aluminum body with 0.165 m
diameter. This differential drive platform is non-
holonomic and can rotate in place by moving both
wheels, or it can swing around a stationary wheel
on a circle of 0.32 m radius. A rear castor balances
the robot. In addition to motor encoders, the
robot base includes eight ultrasonic transducers
(range-finding sonar) arranged to provide a 180-
degree forward coverage at a sampling rate of
25 Hz. The computational board includes a 32-bit
RISC-based controller running Linux. Additional
hardware includes ethernet communication, a
Wi-Fi radio turret for remote control, a Pan-Tilt-
Zoom color camera and a laser rangefinder. Since
the orientation θ of the robot is not of interest and
our aim is not to solve the control problem for
non-holonomic systems, the following direct task
model has been considered

ṗb =
[

ẋb

ẏb

]
=

[
cos(θ) −b sin(θ)

sin(θ) +b cos(θ)

] [
v

ω

]
, (9)

where pb is a point whose distance from the
wheels’ axis is equal to b . Taking into account
the velocities generated by the control algorithm,
the dimensions and the maximum linear and an-
gular velocities of the Pioneer-3DX robots, b has

2The videos of the experiments on an open and closed bor-
der are available at: http://webuser.unicas.it/lai/robotica/
video/ExpOpenBorder.avi and http://webuser.unicas.it/lai/
robotica/video/ExpClosedBorder.avi.

http://webuser.unicas.it/lai/robotica/video/ExpOpenBorder.avi
http://webuser.unicas.it/lai/robotica/video/ExpOpenBorder.avi
http://webuser.unicas.it/lai/robotica/video/ExpClosedBorder.avi
http://webuser.unicas.it/lai/robotica/video/ExpClosedBorder.avi

J Intell Robot Syst

been chosen equal to 0.1 m. This value prevents
saturation of the actuators and ensures a control
point located inside the robot chassis.

The Player/Stage environment [39] has been
used to implement the proposed architecture.
Player/Stage is based on a client-server paradigm;
it provides a set of tools to simulate the sys-
tem (Stage), as well as the software primitives
for communicating with the robotics hardware
(Player). In Fig. 11 (left) a portion of the patrolled
area is shown, together with its representation in
Player/Stage (right); in addition, an open (top)
and closed (bottom) borders have been consid-
ered. The blue line represents the border, the red,
green and cyan polygons represent the robots,
together with their visibility ranges (assumed to
be equal to the corresponding safety areas). The
open border (top) is 10 m long; the closed border
(bottom), composed by segments joined by arcs,
has an overall length of 51 m. The results in the
following refer to the closed border; nevertheless,
similar results have been obtained for the open
border. The robots know the exact description of
the border and they approach it at a speed of
0.3 m/s (λr f = 0.3), patrol at a speed of 0.35 m/s
(λcw = λccw = 0.35) and escape other teammates

at a speed of 0.3 m/s (λta = 0.3). Localization in
the environment is achieved via a pre-built map
and a localization driver based on an adaptive
particle filter [20], available within the Player
software. The visibility range and safety area are
equal to 2.5 m, the threshold value ζFS for the
transition between macro-states MS2 and MS3 is
0.6 m. Moreover, if a robot is in the patrolling
state, every 30 s it can decide to invert its motion
direction or to keep going in the same one, accord-
ing to a random variable.

Figure 12 (top) shows the time history of
the distance from the border for the three ro-
bots. In normal operating conditions (i.e., in the
absence of faults), the mutual distances are within
0.1 m, this value is acceptable for the experimental
conditions and assumed requirements. Moreover,
peaks are reached during rotation movements due
to sensor noise and, above all, to the neglected
robot dynamics in the control law.

When a fault occurs to robot number 2, after
28 min from the mission start, the robot is manu-
ally driven far from the border and is reactivated
at minute 41. Two faults occur to robot number 3,
after 15 and 33 min from the mission start. As can
be noticed in Fig. 12, thanks to the decentralized

Fig. 11 Left: a portion of
the environment. Right:
environment
representation in
Player/Stage, the path
and the three
patrolling robots

J Intell Robot Syst

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Distance between consectuvise robot

t [min]

m

Desired value
Rob.1 and Rob.2
Rob.2 and Rob.3
Rob.1 and Rob.3
Width of Safety area

0 10 20 30 40
−0.2

0
0.2
0.4

t [min]

m
Tracking error of the border

Robot1

0 10 20 30 40
−0.2

0
0.2
0.4

t [min]

m

Robot2

0 10 20 30 40
−0.2

0
0.2
0.4

t [min]

m

Robot3

Fig. 12 Top: distance from the border. Bottom: distance
between two consecutive robots

structure of the control law, faults do not affect
the overall behavior of the swarm. For the sake
of clarity, it is worth showing the time history
of the distance between two consecutive robots
(Fig. 12, (bottom)).

9.1 Discussion

In addition to intensive tests based on numerical
simulation, the approach has been also validated
by performing experiments with 3 robots. The
experiments, even if involving a limited number
of robots, have been conducted without particular
shortcuts (e.g., an ad-hoc localization method).
The faults have been emulated by turning on/off
the robots during the patrolling of the remaining
ones. The experiments’ duration has been limited

only by battery life. The achieved results clearly
show that the proposed approach is also practi-
cally viable.

According to Chevaleyre [13], at each time in-
stant, the distance between two consecutive ro-
bots should be one third of the overall border
length; moreover, all robots should move in the
same direction. On the contrary, according to
Agmon et al. [1], robots should move synchro-
nously but in a nondeterministic way, so as to
maximize the probability of intercepting an in-
truder. Both cases require a centralized supervisor
or information exchanges between robots, so it
is straightforward to imagine that the proposed
approach can be characterized by better perfor-
mance only by increasing the number of vehicles
or by removing some constraints.

10 Conclusion

A higher layer above the traditional Null-Space-
Behavioral (NSB) approach has been designed.
At the basis of the developed architecture, there
is the concept of action, obtained by combin-
ing elementary behaviors in the NSB framework.
Once the set of actions has been defined, a Su-
pervisor can be designed that chooses the action
to be executed. The developed architecture has
been applied to the challenging border patrolling
mission. To this aim, a set of constraints and re-
quirements have been formulated and the mission
achieved thanks to the designed architecture. The
algorithm is fully scalable; the computational load,
in fact, is simply independent of the number of ro-
bots as no communication occurs between robots
and the control strategy of each robot does not
depend on the number of robots. The robustness,
in a wide sense, has been designed by avoiding the
need for a central computational unit or dead-lock
communication among the robots. This intrinsic
robustness of the approach has been confirmed
by simulation and experimental results. Future
work will be devoted to the application of the
developed architecture to different missions, e.g.,
coverage and flocking, by properly redefining the
behavior and action sets. Moreover, it would be of
utmost importance to test the approach by adopt-
ing different classes of vehicles (e.g., unmanned

J Intell Robot Syst

underwater vehicles and/or unmanned aerial ve-
hicles) and in the case of heterogeneous teams
of robots.

Comparison of control strategies for unstruc-
tured robotics is an open issue in the robot-
ics community. The European network EURON
has a specific committee [18] and the American
NIST (National Institute of Standards and tech-
nologies) has a specific annual conference on it
(PERMIS, Performance Metrics for Intelligent
Systems Workshop: Permis [34]). Hence, future
work might be devoted at investigating compari-
son metrics in this compelling case study.

Appendix

A.1 Elementary Behaviors

In the following the elementary behaviors for the
patrolling mission are defined and described in the
framework of the NSB. Definition of behaviors
depends, of course, on the mission to be exe-
cuted. In this paper, therefore, they will be deter-
mined by identifying the elementary components
required by patrolling missions.

A.1.1 Reach Frontier

This behavior pushes the robot towards the bor-
der to be patrolled (Fig. 13).

Then, given the robot position pr ∈ �2 and the
border B, pB ∈ �2 is the closest point to pr be-
longing to B. The behavior is then encoded by the
function σr f

⎧
⎪⎪⎨

⎪⎪⎩

σr f = ‖ pr − pB‖, σr f,d = 0,

Jr f = rT
r f , J†

r f = rr f , Nr f = I2 − rr f rT
r f ,

vr f = −λr f rr f σr f ,

(10)

where σr f,d is the desired value of the task func-
tion, rr f = (

pr − pB

)
/‖ pr − pB‖, Jr f is the task

Jacobian, I2 is the (2 × 2) identity matrix, Nr f is

Fig. 13 Graphical
representation of
the Reach
Frontier Behavior

the null-space projection matrix, λr f is a positive
scalar gain and vr f is the commanded velocity.

It is worth noticing that the computation of
the point on the border closest to the robot, pB,
is needed. Hence, a discretization of the border
and/or a proper analytical approximation of its
shape [1] are required.

Of course, boundary detection and boundary
tracking capabilities are required to accomplish
this behavior. However, such problems are behind
the scope of this paper and were widely discussed
in other works (e.g., [22, 24, 40]).

A.1.2 Patrol Frontier Clockwise
(Counter-Clockwise)

Once the robot is close to the border, it should
move according to the border shape. To this aim,
given the border B and a point pB belonging
to B, rcw is the unit vector tangent to the bor-
der in pB and oriented in the clockwise direc-
tion of the border. The behavior is, then, directly
defined as:
⎧
⎪⎪⎨

⎪⎪⎩

vcw = λcwrcw,

Jcw = rT
cw

Ncw = I2 − rcwrT
cw,

(11)

where vcw is the velocity vector encoding the be-
havior, rT

cw plays the role of the task Jacobian,
Ncw is the null-space projection matrix and λcw

is a positive scalar gain. It is worth noticing that
the behavior simply commands the robot to move
along the direction determined by the border tan-
gent (Fig. 14), no matter what the robot posi-
tion is (along the border or out of the border).
If the vector tangent to the border is oriented
in the counter–clockwise direction we can define
Patrol Frontier Counter-Clockwise be-
havior (by replacing λcw and rcw with λccw and rccw

in Eq. 11, vccw and Nccw are easily obtained).

Fig. 14 Graphical
representation of
the Patrol
Clockwise Behavior

J Intell Robot Syst

A.1.3 Teammate Avoidance

In order to avoid collisions between robots, a
suitable behavior has to be defined. Let pr, be
the robot position, pt the position of the closest
teammate to the robot and dt the safety distance,
i.e., the radius of the circular safety area. The
behavior is, then, defined as follows:
⎧
⎪⎪⎨

⎪⎪⎩

σta = ‖ pr − pt‖, σta,d = dt,

Jta = rT
ta, J†

ta = rta, N ta = I2 − rtarT
ta,

vta = λtarta (dt − σta) ,

(12)

where σta,d denotes the desired value of the be-
havior function, rta = (

pr − pt

)
/‖ pr − pt‖, Jta is

the task Jacobian, N ta is the null-space projection
matrix, λta is a positive scalar gain and vta is the
commanded robot velocity.

Hence, this behavior allows the robot to keep
the other teammates out of the border of its own
safety area (Fig. 15).

A.1.4 Friend Avoidance

A friend is an agent that moves independently
from patrolling robots and that is allowed to cross
the border. Therefore, when a friend tries to cross
the border, patrolling robots should keep a de-
sired distance from it, without affecting its mo-
tion. This behavior is similar to the Teammate
Avoidance behavior; then, given the robot po-
sition, pr, the friend position, p f , and a safety
distance d f , the behavior is defined as follows

⎧
⎪⎪⎨

⎪⎪⎩

σ f a = ‖ pr − p f ‖, σ f a,d = d f ,

J f a = rT
f a, J†

f a = r f a, N f a = I2 − r f arT
f a,

v f a = λ f ar f a
(
d f − σ f a

)
,

(13)

Fig. 15 Graphical
representation of the
Teammate Avoidance
Behavior. The dashed
line represents the border
of the safety area

where σ f a,d denotes the desired value of the be-
havior function, λ f a is a positive scalar gain, N f a

is the null-space projector matrix and v f a is the
commanded robot velocity. Similarly to the previ-
ous case, this behavior, keeping the robot far from
the friend agent, allows it to move without being
affected by patrolling agents.

A.2 Actions

The above defined behaviors are not yet suitable
to accomplish the patrolling mission, since they
only encode simple atomic tasks. For example,
the Reach Frontier behavior allows the ro-
bot to reach the border, while the two Patrol
Frontier behaviors only allow the robot to
move in a direction tangent to the border, but
not necessarily on the border. Then, once the set
of actions is defined, it is necessary to combine
them to produce a set of more complex and mean-
ingful actions. This combination is obtained via
NSB, in order to obtain a predictable output; thus,
priorities among the elementary behaviors are to
be assigned.

A.2.1 Action Reach Frontier

This action allows the robot to reach the bor-
der, e.g., when it is far from it. In this case, the
definition of the action simply coincides with the
elementary behavior Reach Frontier:

vAr f = vr f . (14)

This action is useful when the robot is particularly
far from the border. In such a situation, the only
objective of the robot is to reach the frontier be-
fore starting other behaviors; hence, no secondary
tasks are present.

A.2.2 Actions Patrol Clockwise
(Counter-Clockwise)

This action allows the robot to stay on the border,
while covering it in the clockwise direction. To this
aim, two behaviors are needed. The primary be-
havior is Reach Frontier, while the secondary

J Intell Robot Syst

one is Patrol Frontier Clockwise, leading
to

vApcw = vr f + Nr f vcw. (15)

By activating this action, the robot is able to reach
or keep on the border while patrolling it. As will
be shown in Section 5.3, since the two elementary
behaviors composing the action are compatible in
the NSB sense, the priority of behaviors can be
exchanged. In Fig. 16, a typical robot motion un-
der the effect of Action Patrol Clockwise
is shown.

While, in the case of Action Patrol
Counter-Clockwise the action is obtained
considering the Patrol Frontier Counter-
Clockwise behavior as secondary behavior.
With regards the compatibility in the NSB sense
of the defined behaviors, it easy to show that the
compatibility condition [3] Jr f J†

cw = 0 (Jr f J†
ccw =

0) globally holds.

A.2.3 Action Keep Going

This action allows the robot to stay on the border,
while covering it in the clockwise or counter–
clockwise direction. This action is obtained
by combining the Reach Frontier and the
Patrol Frontier Clockwise (or Patrol
Frontier Counter-Clockwise) behaviors in
the NSB sense, i.e.,

vAkg = vr f + Nr f v p, (16)

where v p is the vector tangent to the border at the
closest point belonging to the border. The value
of the velocity vector v p is decided according to
some criteria. For example, it can be varied, de-
pending on the value of a random variable, every
T seconds and set equal to vcw or vccw. This can be
useful for conferring some unpredictability to the

Fig. 16 Typical robot
motion under the effect
of Action Patrol
Clockwise

mission. The compatibility of the two behaviors
can be demonstrated via the same arguments used
for the previous action.

A.2.4 Action Teammate Avoidance

A teammate entering the safety area of a robot
must be avoided, while the robot tries to stay on
the border or to reach it; in this way, it can restart
the patrol mission once the teammate vehicle is
far enough. This action can be obtained by com-
bining the behaviors Teammate Avoidance and
Reach Frontier in the NSB sense, i.e.,

vAta = vta + N tavr f . (17)

In Fig. 17, a typical path generated by this action
is shown.

Differently from the previous action, it is not
possible to ensure task compatibility in all situ-
ations. In fact, it is not possible to ensure that
the compatibility condition Jr f J†

ta = 0 does not
hold in general. Only the velocity components of
the secondary behavior that do not conflict with
the primary behavior will be executed, leading
to the robot moving on the border of the team-
mate safety area (Fig. 17).

A.2.5 Action Friend Avoidance

This action is similar to Action Teammate
Avoidance. In the case a friend vehicle enters
the safety area of a robot, the friend must be
avoided, while trying to stay on the border, so that
it can restart the patrol mission once the friend
is far enough. This action can be obtained by

Fig. 17 Typical robot motion under the effect of Action
Teammate Avoidance; pr is the position of the robot, pt
is the position of the teammate closest to the robot, and pB
is the point on the border closest to the robot

J Intell Robot Syst

combining the Friend Avoidance and Reach
Frontier behaviors

vAfa = v f a + N f avr f . (18)

Since Reach Frontier is the secondary be-
havior, only its velocity components that do not
conflict with the primary task will be executed.
Also in this case, as in the previous one, it is not
possible to ensure that Jr f J†

f a = 0 holds in any
condition; nevertheless, it is guaranteed that no
collision happens being the Friend Avoidance
the highest priority behavior.

References

1. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot
perimeter patrol in adversarial settings. In: Proceedings
2008 IEEE International Conference on Robotics and
Automation. Pasadena, CA, pp. 2339–2345 (2008)

2. Alur, R., Yannakakis, M.: Model checking of hierarchi-
cal state machines. ACM Trans. Program. Lang. Syst.
23(3), 273–303 (2001)

3. Antonelli, G.: Stability analysis for prioritized closed-
loop inverse kinematic algorithms for redundant ro-
botic systems. IEEE Trans. Robot. 25(5), 985–994
(2009)

4. Antonelli, G., Chiaverini, S.: Kinematic control of pla-
toons of autonomous vehicles. IEEE Trans. Robot.
22(6), 1285–1292 (2006)

5. Antonelli, G., Arrichiello, F., Chiaverini, S.: The null-
space-based behavioral control for autonomous robotic
systems. J. Intell. Serv. Robot. 1(1), 27–39 (2008)

6. Antonelli, G., Arrichiello, F., Chiaverini, S.: Exper-
iments of formation control with multirobot sys-
tems using the null-space-based behavioral control.
IEEE Trans. Control Syst. Technol. 17(5), 1173–1182
(2009)

7. Arkin, R.: Motor schema based mobile robot naviga-
tion. Int. J. Rob. Res. 8(4), 92–112 (1989)

8. Bertozzi, A.L., Kemp, M., Marthaler, D.: Determining
environmental boundaries: asynchronous communica-
tion and physical scales. In: Proceedings of the Block
Island Workshop on Cooperative Control, vol. 309,
pp. 25–42 (2004)

9. Brooks, R.: A robust layered control system for a
mobile robot. IEEE J. Robot. Autom. 2(1), 14–23
(1986)

10. Bruemmer, D.J., Dudenhoeffer, D., Anderson, M.O.,
McKay, M.D.: A robotic swarm for spill finding and
perimeter formation. In: Spectrum 2002: International
Conference on Nuclear and Hazardous Waste Manage-
ment, Reno, Nevada, USA (2002)

11. Bryson, J.J.: Action selection and individuation in
agent based modelling. In: Proceedings of Agent 2003:
Challenges of Social Simulation, pp. 317–330 (2003)

12. Casbeer, D.W., Kingston, D.B., Beard, A.W., Mclain,
T.W., Li, S., Mehra, R.: Cooperative forest fire sur-
veillance using a team of small unmanned air vehicles.
Int. J. Syst. Sci. 37, 360 (2006)

13. Chevaleyre, Y.: Theoretical analysis of the multi-
agent patrolling problem. In: Procedings of the
IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, Beijing, China, pp. 302–308,
20–24 Sept 2004

14. Chiaverini, S.: Singularity-robust task-priority redun-
dancy resolution for real-time kinematic control of ro-
bot manipulators. IEEE Trans. Robot. Autom. 13(3),
398–410 (1997)

15. Clarka, J., Fierro, R.: Mobile robotic sensors for
perimeter detection and tracking. ISA Trans. 28, 3–13
(2007)

16. Dorigo, M., Sahin, E.: Swarm robotics—special issue
editorial. Auton. Robots 17, 115–147 (2004)

17. Dudek, G., Jenkin, E., Wilkes, D.: A taxonomy for
swarm robots. In: In Proceedings of 1993 IEEE In-
ternational Conference on Intelligent Robots and Sys-
tems, pp. 441–447 (2003)

18. Euron: Special interest group in good experimental
methodology and benchmarking (2008). http://www.
euron.org/activities/benchmarks/index. Accessed 6
May 2009

19. Everett, H.R., Laird, R.T., Gilbreath, G., Heath-
Pastore, T.A., Inderieden, R.S., Grant, K., Jaffee,
D.M.: Multiple resource host architecture for the mo-
bile detection assessment and response system. In:
Technical Document 3026, Space and Naval Warfare
Systems (1998)

20. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte
carlo localization: efficient position estimation for mo-
bile robots. In: Proceedings of the National Conference
on Artificial Intelligence, pp. 343–349 (1999)

21. GNIUS: Autonomous unmanned ground vehicles
(2005). http://www.defense-update.com/products/g/
guardium. Accessed 6 Dec 2009

22. Hsieh, M.A., Loizou, S.G., Kumar, V.: Stabilization of
multiple robots on stable orbits via local sensing. In:
ICRA, Rome, Italy, pp. 2312–2317 (2007)

23. Inderieden, R., Everett, H., Heath-Pastore, T., Smurlo,
R.: Overview of the mobile detection assessment and
response system. In: DND/CSA Robotics and KBS
Workshop, St. Hubert, Quebec (1995)

24. Kalantar, S., Zimmer, U.R.: Distributed shape control
of homogeneous swarms of autonomous underwater
vehicles. Auton. Robots 22, 37–53 (2007)

25. Kingston, D., Beard, R., Holt, R.S.: Decentralized
perimeter surveillance using a team of UAVs. IEEE
Trans. Robot. 24(6), 1394–1404 (2008)

26. Machado, A., Ramalho, G., Zucker, J., Drogoul, A.:
Multi-agent patrolling: an empirical analysis of alterna-
tive architectures. In: Multi-Agent Based Simulation,
pp. 155–170 (2002)

27. Marino, A., Parker, L., Antonelli, G., Caccavale, F.:
Behavioral control for multi-robot perimeter patrol:
a finite state automata approach. In: Proceedings
2009 IEEE International Conference on Robotics and
Automation. Kobe, J. (2009)

http://www.euron.org/activities/benchmarks/index
http://www.euron.org/activities/benchmarks/index
http://www.defense-update.com/products/g/guardium
http://www.defense-update.com/products/g/guardium

J Intell Robot Syst

28. Marino, A., Parker, L., Antonelli, G., Caccavale, F.: A
fault-tolerant modular control approach to multi-robot
perimeter patrol. In: IEEE International Conference
on Robotics and Biomimetics (ROBIO 2009), Guilin,
China (2009)

29. Marino, A., Parker, L., Antonelli, G., Caccavale,
F.: A fuzzy-based multiple robots border patrol. In:
Proceedings 2009 17th Mediterranean Conference on
Control and Automation, Thessaloniki, Greece (2009)

30. Matlab: http://www.mathworks.com (2010). Accessed 11
Aug 2010

31. Murphy, R.R.: Introduction to AI Robotics, 1st edn.
MIT Press, Cambridge (2000)

32. Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Task-
priority based redundancy control of robot manipula-
tors. Int. J. Rob. Res. 6(2), 3–15 (1987)

33. Ouimet, M., Lundqvist, K.: Automated verification of
completeness and consistency of abstract state machine
specifications using a SAT solver. In: Electronic Notes
in Theoretical Computer Science. Proceedings of the
Third Workshop on Model Based Testing (MBT 2007),
vol. 190(2), pp. 85–97 (2007)

34. Permis: Performance metrics for intelligent systems
workshop (2004) www.isd.mel.nist.gov/research_

areas/research_engineering/Performance_Metrics/past_
wkshp.html. Accessed 8 July 2009

35. Pletta, J.B., Sackos, J.: An advanced unmanned vehicle
for remote applications. Sandia National Laboratory
Report (1998)

36. Rafael Armament Development Authority Ltd:
http://www.rafael.co.il (2006). Accessed 3 Feb
2009

37. Siciliano, B.: Kinematic control of redundant robot ma-
nipulators: a tutorial. J. Intell. Rob. Syst. 3(3), 201–212
(1990)

38. Thrun, S., Leonard, J.J.: Springer handbook of ro-
botics. In: Siciliano, B., Khatib, O. (eds.), Simultane-
ous Localization and Mapping, Ch. 37, pp. 871–889
Springer, Heidelberg, Germany (2008)

39. Vaughan, R.T., Gerkey, B., Howard, A.: The player/
stage project: tools for multi-robot and distributed sen-
sor systems. In: Proceedings of the 11th International
Conference on Advanced Robotics, (ICAR), Coimbra,
Portugal, pp. 317–323 (2003)

40. Zhang, F., Haq, S.: Boundary following by robot for-
mations without gps. In: Proceedings of 2008 Interna-
tional Conf. on Robotics and Automation, Pasedena,
CA, pp. 152–157 (2008)

http://www.mathworks.com
http://www.isd.mel.nist.gov/research_areas/research_engineering/Performance_Metrics/past_wkshp.html
http://www.isd.mel.nist.gov/research_areas/research_engineering/Performance_Metrics/past_wkshp.html
http://www.isd.mel.nist.gov/research_areas/research_engineering/Performance_Metrics/past_wkshp.html
http://www.rafael.co.il

	A Decentralized Architecture for Multi-Robot Systems Based on the Null-Space-Behavioral Control with Application to Multi-Robot Border Patrolling
	Abstract
	Introduction
	Main Contributions and Novelty
	The Patrolling Mission: Main Requirements and Assumptions
	Requirements
	Assumptions

	Control Architecture
	Paradigm
	Outline of the Control Architecture

	Behaviors and Actions
	Review of the NSB Approach
	Elementary Behaviors and Actions
	Behaviors Compatibility

	The Supervisor
	Analysis
	Advantage of the use of NSB

	Simulations
	Simulations in the Presence of a Large Number of Robots
	Simulations in the Presence of Friend Vehicles
	Simulations in the Presence of Friend Vehicles and Multiple Sudden Faults
	Discussion

	Experiments
	Discussion

	Conclusion
	Appendix
	Elementary Behaviors
	Reach Frontier
	Patrol Frontier Clockwise (Counter-Clockwise)
	Teammate Avoidance
	Friend Avoidance

	Actions
	Action Reach Frontier
	Actions Patrol Clockwise (Counter-Clockwise)
	Action Keep Going
	Action Teammate Avoidance
	Action Friend Avoidance

	References

