
Multi-Robot Learning in an Inherently Cooperative TaskLynne E. Parker and Claude TouzetCenter for Engineering Siene Advaned ResearhComputer Siene and Mathematis DivisionOak Ridge National Laboratory, Oak Ridge, TN 37831-6355 USAABSTRACTAn important need in multi-robot systems is the development of mehanisms that enable robot teams to autonomouslygenerate ooperative behaviors. This paper �rst briey presents the Cooperative Multi-robot Observation of Mul-tiple Moving Targets (CMOMMT) appliation as a rih domain for studying the issues of multi-robot learning ofnew behaviors. We disuss the results of our hand-generated algorithm for CMOMMT, and then desribe our re-searh in generating multi-robot learning tehniques for the CMOMMT appliation, omparing the results to thehand-generated solutions. Our results show that, while the learning approah performs better than random, naiveapproahes, muh room still remains to math the results obtained from the hand-generated approah. The ultimategoal of this researh is to develop tehniques for multi-robot learning and adaptation that will generalize to ooper-ative robot appliations in many domains, thus failitating the pratial use of multi-robot teams in a wide varietyof real-world appliations.Keywords: Multi-robot learning, ooperative robotis, inherently ooperative tasks, distributed robotis1. INTRODUCTIONResearh in multi-robot ooperation has grown signi�antly in reent years. Before multi-robot teams will everbeome widely used in pratie, however, we believe that advanes must be made in the development of mehanismsthat enable the robot teams to autonomously generate ooperative behaviors and tehniques. With the urrentstate of the art, the implementation of ooperative behaviors on physial robot teams requires expert behaviorprogramming and experimentation, followed by extensive tuning and revision of the ooperative ontrol algorithms.It is unlikely that a signi�ant real-world impat of ooperative robot teams will our as long as the urrent levelof e�ort is required to implement these systems.Researhers have reognized that an approah with more potential for the development of ooperative ontrolmehanisms is autonomous learning. Hene, muh urrent work is ongoing in the �eld of multi-agent learning (e.g.,1).Brooks and Matari2 identify four types of learning in roboti systems:� Learning numerial funtions for alibration or parameter adjustment,� Learning about the world,� Learning to oordinate behaviors, and� Learning new behaviors.Our researh has examined several of these learning areas. In the �rst area { learning for parameter adjustment { wehave developed the L-ALLIANCE arhiteture,3 whih enables robots to adapt their behavior over time in responseto hanging team apabilities, team omposition, and mission environment. This arhiteture, whih is an extensionof our earlier work on ALLIANCE,4 is a distributed, behavior-based arhiteture aimed for use in appliationsonsisting of a olletion of independent tasks. The key issue addressed in L-ALLIANCE is the determination ofwhih tasks robots should selet to perform during their mission, even when multiple robots with heterogeneous,ontinually hanging apabilities are present on the team. In this approah, robots monitor the performane oftheir teammates performing ommon tasks, and evaluate their performane based upon the time of task ompletion.Further author information: E-mail: parkerle�ornl.gov; phone: (865) 241-4959; fax: (865) 574-0405; URL:http://saturn.epm.ornl.gov/~parkerle



Robots then use this information throughout the lifetime of their mission to automatially update their ontrolparameters aording to the L-ALLIANCE update mehanism. We note, however, that the parameter updatestrategy used by L-ALLIANCE is dependent upon the assumption of independent subtasks whose performane anbe evaluated based upon the time of task ompletion. This assumption does not hold for the CMOMMT appliationdomain that we desribe in this paper.This paper disusses our researh in the learning of new behaviors in multi-robot teams. The types of appliationsthat are typially studied for this area of multi-robot learning vary onsiderably in their harateristis. Some ofthe appliations inlude air eet ontrol,5 predator/prey,6,7 box pushing,8 foraging,9 and multi-robot soer.10,11Partiularly hallenging domains for multi-robot learning are those tasks that are inherently ooperative. By this, wemean that the utility of the ation of one robot is dependent upon the urrent ations of the other team members.Inherently ooperative tasks annot be deomposed into independent subtasks to be solved by a distributed robotteam. Instead, the suess of the team throughout its exeution is measured by the ombined ations of the robotteam, rather than the individual robot ations. This type of task is a partiular hallenge in multi-robot learning,due to the diÆulty of assigning redit for the individual ations of the robot team members.Of these previous appliation domains that have been studied in the ontext of multi-robot learning, only themulti-robot soer domain addresses inherently ooperative tasks with more than two robots while also addressingthe real-world omplexities of embodied robotis, suh as noisy and inaurate sensors and e�etors in a dynamienvironment that is poorly modeled. To add to the �eld of hallenging appliation domains for multi-robot learning,we have de�ned and have been studying a new appliation domain { the Cooperative Multi-robot Observation ofMultiple Moving Targets (CMOMMT) { that is not only an inherently ooperative task, but, unlike the multi-robotsoer domain, is also a domain that must deal with issues of salability to large numbers of robots. In12 we presentedthe motivation for using this domain for multi-robot learning. In this paper, we briey review this motivation, andthen desribe a hand-generated solution to this problem, along with the results we obtained with this approah. Wethen de�ne a learning approah to enable robot teams to autonomously generate viable solutions to the CMOMMTappliation and ompare the results to the hand-generated approah. The �nal setion of the paper onludes withsome summary remarks. 2. THE CMOMMT APPLICATIONThe appliation domain that we are studying for use as a multi-robot learning testbed is the problem we entitleCooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT). This problem is de�ned as follows.Given: S : a two-dimensional, bounded, enlosed spatial regionV : a team of m robot vehiles, vi; i = 1; 2; :::m, with 3600 �eld ofview observation sensors that are noisy and of limited rangeO(t) : a set of n targets, oj(t), j = 1; 2; :::; n, suh that target oj(t) isloated within region S at time tWe say that a robot, vi, is observing a target when the target is within vi's sensing range. De�ne an m�n matrixB(t), as follows: B(t) = [bij(t)℄m�n suh that bij(t) = 8<: 1 if robot vi is observing targetoj(t) in S at time t0 otherwiseThen, the goal is to develop an algorithm, whih we all A-CMOMMT, that maximizes the following metri A:A = TXt=1 nXj=1 g(B(t); j)Twhere: g(B(t); j) = � 1 if there exists an i suh that bij(t) = 10 otherwise



That is, the goal of the robots is to maximize the average number of targets in S that are being observed by atleast one robot throughout the mission that is of length T time units. Additionally, we de�ne sensor overage(vi)as the region visible to robot vi's observation sensors, for vi 2 V . Then we assume that, in general, the maximumregion overed by the observation sensors of the robot team is muh less than the total region to be observed.That is, Svi2V sensor overage(vi)� S: This implies that �xed robot sensing loations or sensing paths will not beadequate in general, and instead, the robots must move dynamially as targets appear in order to maintain theirtarget observations and to maximize the overage.The CMOMMT appliation is an exellent domain for embodied multi-robot learning and adaptation. CMOMMTo�ers a rih testbed for researh in multi-robot ooperation, learning, and adaptation beause it is an inherentlyooperative task. In addition, many variations on the dynami, distributed sensory overage problem are possible,making the CMOMMT problem arbitrarily more diÆult. For example, the relative numbers and speeds of the robotsand the targets to be traked an vary, the availability of inter-robot ommuniation an vary, the robots an di�erin their sensing and movement apabilities, the terrain may be either enlosed or have entranes that allow objetsto enter and exit the area of interest, and so forth. Many other subproblems an also be addressed, inluding thephysial traking of targets (e.g. using vision, sonar, IR, or laser range), predition of target movements, multi-sensorfusion, and so forth. 3. A HAND-GENERATED SOLUTION TO CMOMMTWe have developed a hand-generated solution to the CMOMMT problem that performs well when ompared to variousontrol approahes. This solution has been implemented on both physial and simulated robots to demonstrate itse�etiveness. The hand-generated solution, whih we all A-CMOMMT, is desribed briey as follows. Robots useweighted loal fore vetors that attrat them to nearby targets and repel them from nearby robots. The weightsare omputed in real time by a higher-level reasoning system in eah robot, and are based on the relative loationsof the nearby robots and targets. The weights are aimed at generating an improved olletive behavior aross robotswhen utilized by all robot team members.The loal fore vetors are alulated as follows. The magnitude of the fore vetor attration of robot vl relativeto target ok, denoted j flk j, for parameters 0 < do1 < do2 < do3, is:j flk j= 8>><>>: �1do1 for d(vl; ok) � do11do2�do1 for do1 < d(vl; ok) � do2�do2do3�do2 for do2 < d(vl; ok) � do30 otherwisewhere d(a; b) returns the distane between two entities (i.e., robots and/or targets). The magnitude of the forevetor repulsion of robot vl relative to robot vi, denoted j gli j, for parameters 0 < dr1 < dr2, is:j gli j= 8<: �1 for d(vl; vi) � dr11dr2�dr1 for dr1 < d(vl; vi) � dr20 otherwiseDetermining the proper setting of the parameters do1; do2; do3; dr1, and dr2 is one approah to solving theCMOMMT multi-robot learning task using an a priori model-based tehnique.Using only loal fore vetors for this problem neglets higher-level information that may be used to improvethe team performane. Thus, the hand-generated approah enhanes the ontrol approah by inluding higher-levelontrol to weight the ontributions of eah target's fore �eld on the total omputed �eld. This higher-level knowledgean express any information or heuristis that are known to result in more e�etive global ontrol when used by eahrobot team member loally. The hand-generated approah expresses this higher-level knowledge in the form of aweight, wlk, that redues robot rl's attration to a nearby target ok if that target is within the �eld of view of anothernearby robot. Using these weights helps redue the overlap of robot sensory areas toward the goal of minimizing thelikelihood of a target esaping detetion.The higher-level weight information is ombined with the loal fore vetors to generate the ommanded diretionof robot movement. This diretion of movement for robot vl is given by: Pnk=1 wlkflk +Pmi=1;i6=l gli, where flk is



Figure 1. Simulation results of three robots and six targets (�rst image), and �ve robots and twenty targets (seondimage), with the robots using the hand-generated solution to CMOMMT, and the targets moving randomly.

Figure 2. Robot team exeuting hand-generated solution to CMOMMT. The �rst photo shows robots operating inan area with no obstales. The seond photo shows the robots amidst randomly distributed obstales.the fore vetor attributed to target ok by robot vl and gli is the fore vetor attributed to robot vi by robot vl. Togenerate an (x; y) oordinate indiating the desired loation of the robot orresponding to the resultant fore vetor,we sale the resultant fore vetor based upon the size of the robot. The robot's speed and steering ommands arethen omputed to move the robot in the diretion of that desired loation.4. RESULTS FROM HAND-GENERATED SOLUTIONFigure 1 shows two of the simulation runs of the hand-generated algorithm (out of over 1,000,000 simulation testruns). Figure 2 shows snapshots of two of the physial robot experiments (out of over 800) in whih the the robotsperform the task either with no obstales in the work area or with randomly distributed obstales.The results of the hand-generated approah to CMOMMT vary depending upon a number of fators, inludingthe relative numbers of robots and targets, the size of the work area, the motions of the targets (i.e., whether randomor evasive), and the setting of the weights. In general, the A-CMOMMT algorithm performed best for a ratio oftargets to robots greater than 1/2. We ompared the hand-generated A-CMOMMT approah with a non-weightedloal fore vetor approah, as well as two ontrol ases in whih robots either maintained �xed positions or aremoved randomly. Figure 3 gives a typial set of these omparative results.
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(c)    n/m = 1, Targets move randomly
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(d)   n/m = 4, Targets move randomly
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SituationFigure 4. Lazy learning: randomly sampled situation-ation pairs in the lookup table are used by the situationmather to selet the ation to exeute in the urrent situation. The reinforement funtion quali�es the ationsproposed, helping to selet the best one.5. LEARNING IN THE CMOMMT APPLICATIONWe have studied the CMOMMT problem from a learning perspetive without the assumption of an a priori model.This approah uses a ombination of reinforement learning, lazy learning, and a Pessimisti algorithm able toompute for eah team member a lower bound on the utility of exeuting an ation in a given situation. Thehallenges in this multi-robot learning problem inlude a very large searh spae, the need for ommuniation orawareness of robot team members, and the diÆulty of assigning redit in an inherently ooperative problem.In this learning approah, lazy learning13 is used to enable robot team members to build a memory of situation-ation pairs through random exploration of the CMOMMT problem. A reinforement funtion gives the utility ofa given situation. The pessimisti algorithm for eah robot then uses the utility values to selet the ation thatmaximizes the lower bound on utility. The resulting algorithm is able to perform onsiderably better than a randomation poliy, although it is still signi�antly inferior to the hand-generated algorithm desribed in the previoussetion. However, even with a performane less than that of the hand-generated solution, this approah makes animportant ontribution beause it does not assume the existene of a model (as is the ase in the Partially ObservableMarkov Deision Proess (POMDP) domain), the existene of loal indiators that help individual robots performtheir tasks, nor the use of symboli representations. The following subsetions desribe this approah and its resultsin more detail.5.1. Lazy learning and Q-learningLazy learning13 { also alled instane-based learning { promotes the priniple of delaying the use of the gatheredinformation until the neessity arises (see Fig. 4). The same pool of information (i.e., memory) is used for di�erentbehavior syntheses. The lazy memory provides a good way of reduing the duration of any roboti learning ap-pliation. In the ontext of reinforement learning, lazy learning provides an instantaneous set of situation-ationpairs (after the initial and unique sampling phase). Lazy learning samples the situation-ation spae aording to arandom ation seletion poliy, storing the suession of events in memory and, when needed, probes the memoryfor the best ation. The exploration phase is performed only one. By storing situation-ation pairs, a lazy memorybuilds a model of the situation transition funtion.In order to express a behavior, the memory must be probed. To do this probing, we use a modi�ed version of thetehnique proposed in.14 In14 the objetive is to provide a method for prediting the rewards for state-ation pairswithout expliitly generating them. For the urrent real world situation, a situation mather loates all the states inthe memory that are within a given distane. If the situation mather has failed to �nd any nearby situations, theation omparator selets an ation at random. Otherwise, the ation omparator examines the expeted rewards



assoiated with eah of these situations and selets the ation with the highest expeted reward. This ation is thenexeuted, resulting in a new situation. There is a �xed probability (0.3) of generating a random ation regardless ofthe outome of the situation mather. New situation-ation pairs are added to the memory, along with a Q-valueomputed in the lassial way.15 Among similar situation-ation pairs in the memory, an update of the storedQ-values is made. However, there is a limit to the generality of this lazy memory beause the Q-values assoiatedwith the situation-ation pairs only apply for a partiular behavior. With the desire of reduing the learning time asmuh as possible, as well as preserving the generality of the lazy memory, we modi�ed the algorithm as follows: (1)the situation mather always proposes the set of nearest situations { no maximum distane is involved, (2) there is norandom seletion of ations by the ation omparator, and (3) the Q-values are not stored with the situation-ationpairs, but are omputed dynamially as the need arises.5.2. The Pessimisti AlgorithmWe de�ne a Pessimisti Algorithm for the seletion of the best ation to exeute for a given robot in its urrent loalsituation as follows: �nd the lower bounds of the utility value assoiated with the various potential ations that maybe onduted in the urrent situation, then hoose the ation with the greatest utility. A lower bound is de�ned asthe lowest utility value assoiated with a set of similar situations.The idea behind the Pessimisti Algorithm is that a loal robot situation is an inomplete observation of the truestate of the system. Thus, instead of trying to solve the observation problem by ompleting the observation (usualPOMDP approah), we are only interested in ranking the utility of the ations. If we use a unique instane of thememory to obtain the utility of the situation, then hanes are that the utility attributed to this loal situation is duein fat to other robot's ations. This probability dereases proportionally with the number of similar situations thatare taken into aount. If a large number of situations are onsidered, then there must be at least one for whih thereward diretly depends on the loal situation. By taking the minimum utility value of the set of similar situations,we are guaranteed that, if the value is null, then the situation ahieved does not imply loosing target(s).The Pessimisti Algorithm is then given as follows:� Let M be the memory, a lookup table of situation-ation pairs gathered during anexploration phase -- M = [(s(1); a(1)); :::; (s(t); a(t)); (s(t + 1); a(t+ 1)); :::℄.� Let sit be the urrent situation.� Find S(sit), the set of n situations of M similar to sit.� Let Sfollow(sit) be the set of the situations that diretly follows eah situation ofS(sit).� Compute the lower bound (LB) of the utility value (U) assoiated with eahsituation s(k) 2 Sfollow(sit):{ LB(s(k)) = min(U(s(m))), for s(m) 2 S(s(k)), the set of situations similar tos(k).� Exeute the ation that should take the robot to the new situation s�: s� =max(LB(s)) and s 2 Sfollow(sit).The utility U assoiated with a given situation an be omputed in many ways. It an be the exat value of thereinforement funtion for this partiular situation-ation pair, or it an be a more elaborate variable. For example,in our experiene we store the situation-ation pairs, plus the number of targets under observation in the lookuptable (M). However, the value that is used as utility is +1 if one or more targets have been aquired ompared tothe previous situation, -1 if one or more targets have been lost, or 0 otherwise. An exat Q value requires runningthe Q-learning algorithm with the samples stored in the memory.5.3. Results of learning approahWe studied the eÆieny of the Pessimisti Algorithm by omparing the performane of a team of robots with a purelyrandom ation seletion poliy, a user-de�ned non-ooperative poliy and A-CMOMMT. In these experiments, eahrobot situation is a vetor of two times 16 omponents. The �rst 16 omponents ode the position and orientationof the targets. It simulates a ring of 16 sensors uniformly distributed around the robot body. Eah sensor measures
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Figure 5. Performanes of the Pessimisti lazy Q-learning approah ompared to a random ation seletion poliy,a user-de�ned non-ooperative poliy and the hand-generated solution A-CMOMMT, for 10 robots and 10 randomlymoving targets. The results are the mean of 10 di�erent experiments per point for lazy learning poliy, and 100experiments for the other 3 poliies. Eah experiment duration is 1000 iterations.the distane to the nearest target. The sensor position around the body gives the orientation. The seond ring of16 omponents ode in the same manner the position and orientation of neighboring robots. The maximum rangefor a target or a robot to be seen is 1, for an arena radius of 5. The ations of eah robot are rotation and forwardmovement. The measure of performane is the mean observation time of all targets.Figure 5 shows the performane of a Pessimisti lazy Q-learning poliy versus the size of the lazy memory, from100 to 900 situation-ation pairs. Eah point is the average of 10 experiments. The lazy memories are obtainedthrough an initial exploration involving from 15 to 25 targets and a single robot. During the sampling, the targetsare �xed and the robot's poliy is random ation seletion (with 5% hane of diretion and orientation hanges).The reinforement funtion returns +1 if the total number of targets under observation inreases, -1 if this numberdereases, or 0 otherwise.As we see there is an important performane gain assoiated with the Pessimisti lazy Q-learning over a purelyrandom seletion poliy. This learly demonstrates the importane of lazy Q-learning as a learning tehnique. Evenmore interestingly, lazy Q-learning performs muh better than the user-de�ned non-ooperative poliy (Loal). Itis important to note that neither poliy is aware of the existene of the other robots. Both poliies use the samesensory information { i.e., the distane and orientation of nearby targets. It is our opinion that the variation ofperformane is due to the fat that the lazy Q-learned behavior is somewhat less rigid than the user-de�ned poliy.A lazy Q-learning guided robot will follow a target further than it ould be, and, in doing so, will exhibit an erratipath, moving from one side of the target to another, bak and forth without losing the target. In doing so, the surfaeunder observation per unit of time is larger than the overed surfae by the more rigid enter-of-gravity-orientedrobot. On the other hand, beause it does not take into aount the neighboring robots, it is easy to understandwhy the lazy Q-learned behavior performane annot reah the level of the A-CMOMMT performane.6. CONCLUSIONSIn this paper, we have proposed that the Cooperative Multi-robot Observation of Multiple Moving Targets(CMOMMT) appliation domain provides a rih testbed for learning and adaptation in multi-robot ooperative teams.



We have desribed the need for learning and adaptation in multi-robot teams, and have de�ned the CMOMMT appli-ation, along with the harateristis that make it an interesting testbed for learning and adaptation. We reported ona hand-generated solution to the CMOMMT problem and disussed how the results from the implementation of thissolution reveal the need for learning and adaptation in this domain. We disussed our work that uses the CMOMMTproblem as a learning domain. The ultimate objetive is to develop learning tehniques using the CMOMMT do-main that will generalize to other real-world domains, and will thus help realize the ultimate goal of enabling thewidespread, pratial use of multi-robot teams.ACKNOWLEDGMENTSThis researh is sponsored by the Engineering Researh Program of the OÆe of Basi Energy Sienes, U. S.Department of Energy. Aordingly, the U.S. Government retains a nonexlusive, royalty-free liense to publishor reprodue the published form of this ontribution, or allow others to do so, for U. S. Government purposes.Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Dept. of Energy under ontratDE-AC05-00OR22725. REFERENCES1. G. Weiss and S. Sen, eds., Adaption and Learning in Multi-Agent Systems, Springer, 1996.2. R. A. Brooks and M. J. Matari, \Real robots, real learning problems," in Robot Learning, J. H. Connell andS. Mahadevan, eds., Kluwer Aademi Publishers, 1993.3. L. E. Parker, \Lifelong adaptation in heterogeneous teams: Response to ontinual variation in individual robotperformane," Autonomous Robots 8, July 2000.4. L. E. Parker, \ALLIANCE: An arhiteture for fault-tolerant multi-robot ooperation," IEEE Transations onRobotis and Automation 14(2), pp. 220{240, 1998.5. R. Steeb, S. Cammarata, F. Hayes-Roth, P. Thorndyke, and R. Wesson, \Distributed intelligene for air eetontrol," Tehnial Report R-2728-AFPA, Rand Corp., 1981.6. M. Benda, V. Jagannathan, and R. Dodhiawalla, \On optimal ooperation of knowledge soures," TehnialReport BCS-G2010-28, Boeing AI Center, August 1985.7. T. Haynes and S. Sen, \Evolving behavioral strategies in predators and prey," in Adaptation and Learning inMulti-Agent Systems, G. Weiss and S. Sen, eds., pp. 113{126, Springer, 1986.8. S. Mahadevan and J. Connell, \Automati programming of behavior-based robots using reinforement learning,"in Proeedings of AAAI-91, pp. 8{14, 1991.9. M. Matari, Interation and Intelligent Behavior. PhD thesis, Massahusetts Institute of Tehnology, 1994.10. P. Stone and M. Veloso, \A layered approah to learning lient behaviors in the roboup soer server," AppliedArti�ial Intelligene 12, pp. 165{188, 1998.11. S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka, I. Muslea, and M. Tambe, \On being a teammate: Experienesaquired in the design of RoboCup teams," in Proeedings of the Third Annual Conferene on AutonomousAgents, O. Etzioni, J. Muller, and J. Bradshaw, eds., pp. 221{227, 1999.12. L. E. Parker, \A ase study for life-long learning and adaptation in ooperative robot teams," in Proeedings ofSPIE Sensor Fusion and Deentralized Control in Roboti Systems II, vol. 3839, pp. 92{101, 1999.13. D. Aha, ed., Lazy Learning, Kluwer Aademi Publishers, 1997.14. J. Sheppard and S. Salzberg, \A teahing strategy for memory-based ontrol," in Lazy Learning, D. Aha, ed.,pp. 343{370, Kluwer Aademi Publishers, 1997.15. C. Watkins, Learning from Delayed Rewards. PhD thesis, King's College, Cambridge, 1989.


