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hanisms that enable robot teams to autonomouslygenerate 
ooperative behaviors. This paper �rst brie
y presents the Cooperative Multi-robot Observation of Mul-tiple Moving Targets (CMOMMT) appli
ation as a ri
h domain for studying the issues of multi-robot learning ofnew behaviors. We dis
uss the results of our hand-generated algorithm for CMOMMT, and then des
ribe our re-sear
h in generating multi-robot learning te
hniques for the CMOMMT appli
ation, 
omparing the results to thehand-generated solutions. Our results show that, while the learning approa
h performs better than random, naiveapproa
hes, mu
h room still remains to mat
h the results obtained from the hand-generated approa
h. The ultimategoal of this resear
h is to develop te
hniques for multi-robot learning and adaptation that will generalize to 
ooper-ative robot appli
ations in many domains, thus fa
ilitating the pra
ti
al use of multi-robot teams in a wide varietyof real-world appli
ations.Keywords: Multi-robot learning, 
ooperative roboti
s, inherently 
ooperative tasks, distributed roboti
s1. INTRODUCTIONResear
h in multi-robot 
ooperation has grown signi�
antly in re
ent years. Before multi-robot teams will everbe
ome widely used in pra
ti
e, however, we believe that advan
es must be made in the development of me
hanismsthat enable the robot teams to autonomously generate 
ooperative behaviors and te
hniques. With the 
urrentstate of the art, the implementation of 
ooperative behaviors on physi
al robot teams requires expert behaviorprogramming and experimentation, followed by extensive tuning and revision of the 
ooperative 
ontrol algorithms.It is unlikely that a signi�
ant real-world impa
t of 
ooperative robot teams will o

ur as long as the 
urrent levelof e�ort is required to implement these systems.Resear
hers have re
ognized that an approa
h with more potential for the development of 
ooperative 
ontrolme
hanisms is autonomous learning. Hen
e, mu
h 
urrent work is ongoing in the �eld of multi-agent learning (e.g.,1).Brooks and Matari
2 identify four types of learning in roboti
 systems:� Learning numeri
al fun
tions for 
alibration or parameter adjustment,� Learning about the world,� Learning to 
oordinate behaviors, and� Learning new behaviors.Our resear
h has examined several of these learning areas. In the �rst area { learning for parameter adjustment { wehave developed the L-ALLIANCE ar
hite
ture,3 whi
h enables robots to adapt their behavior over time in responseto 
hanging team 
apabilities, team 
omposition, and mission environment. This ar
hite
ture, whi
h is an extensionof our earlier work on ALLIANCE,4 is a distributed, behavior-based ar
hite
ture aimed for use in appli
ations
onsisting of a 
olle
tion of independent tasks. The key issue addressed in L-ALLIANCE is the determination ofwhi
h tasks robots should sele
t to perform during their mission, even when multiple robots with heterogeneous,
ontinually 
hanging 
apabilities are present on the team. In this approa
h, robots monitor the performan
e oftheir teammates performing 
ommon tasks, and evaluate their performan
e based upon the time of task 
ompletion.Further author information: E-mail: parkerle�ornl.gov; phone: (865) 241-4959; fax: (865) 574-0405; URL:http://saturn.epm.ornl.gov/~parkerle



Robots then use this information throughout the lifetime of their mission to automati
ally update their 
ontrolparameters a

ording to the L-ALLIANCE update me
hanism. We note, however, that the parameter updatestrategy used by L-ALLIANCE is dependent upon the assumption of independent subtasks whose performan
e 
anbe evaluated based upon the time of task 
ompletion. This assumption does not hold for the CMOMMT appli
ationdomain that we des
ribe in this paper.This paper dis
usses our resear
h in the learning of new behaviors in multi-robot teams. The types of appli
ationsthat are typi
ally studied for this area of multi-robot learning vary 
onsiderably in their 
hara
teristi
s. Some ofthe appli
ations in
lude air 
eet 
ontrol,5 predator/prey,6,7 box pushing,8 foraging,9 and multi-robot so

er.10,11Parti
ularly 
hallenging domains for multi-robot learning are those tasks that are inherently 
ooperative. By this, wemean that the utility of the a
tion of one robot is dependent upon the 
urrent a
tions of the other team members.Inherently 
ooperative tasks 
annot be de
omposed into independent subtasks to be solved by a distributed robotteam. Instead, the su

ess of the team throughout its exe
ution is measured by the 
ombined a
tions of the robotteam, rather than the individual robot a
tions. This type of task is a parti
ular 
hallenge in multi-robot learning,due to the diÆ
ulty of assigning 
redit for the individual a
tions of the robot team members.Of these previous appli
ation domains that have been studied in the 
ontext of multi-robot learning, only themulti-robot so

er domain addresses inherently 
ooperative tasks with more than two robots while also addressingthe real-world 
omplexities of embodied roboti
s, su
h as noisy and ina

urate sensors and e�e
tors in a dynami
environment that is poorly modeled. To add to the �eld of 
hallenging appli
ation domains for multi-robot learning,we have de�ned and have been studying a new appli
ation domain { the Cooperative Multi-robot Observation ofMultiple Moving Targets (CMOMMT) { that is not only an inherently 
ooperative task, but, unlike the multi-robotso

er domain, is also a domain that must deal with issues of s
alability to large numbers of robots. In12 we presentedthe motivation for using this domain for multi-robot learning. In this paper, we brie
y review this motivation, andthen des
ribe a hand-generated solution to this problem, along with the results we obtained with this approa
h. Wethen de�ne a learning approa
h to enable robot teams to autonomously generate viable solutions to the CMOMMTappli
ation and 
ompare the results to the hand-generated approa
h. The �nal se
tion of the paper 
on
ludes withsome summary remarks. 2. THE CMOMMT APPLICATIONThe appli
ation domain that we are studying for use as a multi-robot learning testbed is the problem we entitleCooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT). This problem is de�ned as follows.Given: S : a two-dimensional, bounded, en
losed spatial regionV : a team of m robot vehi
les, vi; i = 1; 2; :::m, with 3600 �eld ofview observation sensors that are noisy and of limited rangeO(t) : a set of n targets, oj(t), j = 1; 2; :::; n, su
h that target oj(t) islo
ated within region S at time tWe say that a robot, vi, is observing a target when the target is within vi's sensing range. De�ne an m�n matrixB(t), as follows: B(t) = [bij(t)℄m�n su
h that bij(t) = 8<: 1 if robot vi is observing targetoj(t) in S at time t0 otherwiseThen, the goal is to develop an algorithm, whi
h we 
all A-CMOMMT, that maximizes the following metri
 A:A = TXt=1 nXj=1 g(B(t); j)Twhere: g(B(t); j) = � 1 if there exists an i su
h that bij(t) = 10 otherwise



That is, the goal of the robots is to maximize the average number of targets in S that are being observed by atleast one robot throughout the mission that is of length T time units. Additionally, we de�ne sensor 
overage(vi)as the region visible to robot vi's observation sensors, for vi 2 V . Then we assume that, in general, the maximumregion 
overed by the observation sensors of the robot team is mu
h less than the total region to be observed.That is, Svi2V sensor 
overage(vi)� S: This implies that �xed robot sensing lo
ations or sensing paths will not beadequate in general, and instead, the robots must move dynami
ally as targets appear in order to maintain theirtarget observations and to maximize the 
overage.The CMOMMT appli
ation is an ex
ellent domain for embodied multi-robot learning and adaptation. CMOMMTo�ers a ri
h testbed for resear
h in multi-robot 
ooperation, learning, and adaptation be
ause it is an inherently
ooperative task. In addition, many variations on the dynami
, distributed sensory 
overage problem are possible,making the CMOMMT problem arbitrarily more diÆ
ult. For example, the relative numbers and speeds of the robotsand the targets to be tra
ked 
an vary, the availability of inter-robot 
ommuni
ation 
an vary, the robots 
an di�erin their sensing and movement 
apabilities, the terrain may be either en
losed or have entran
es that allow obje
tsto enter and exit the area of interest, and so forth. Many other subproblems 
an also be addressed, in
luding thephysi
al tra
king of targets (e.g. using vision, sonar, IR, or laser range), predi
tion of target movements, multi-sensorfusion, and so forth. 3. A HAND-GENERATED SOLUTION TO CMOMMTWe have developed a hand-generated solution to the CMOMMT problem that performs well when 
ompared to various
ontrol approa
hes. This solution has been implemented on both physi
al and simulated robots to demonstrate itse�e
tiveness. The hand-generated solution, whi
h we 
all A-CMOMMT, is des
ribed brie
y as follows. Robots useweighted lo
al for
e ve
tors that attra
t them to nearby targets and repel them from nearby robots. The weightsare 
omputed in real time by a higher-level reasoning system in ea
h robot, and are based on the relative lo
ationsof the nearby robots and targets. The weights are aimed at generating an improved 
olle
tive behavior a
ross robotswhen utilized by all robot team members.The lo
al for
e ve
tors are 
al
ulated as follows. The magnitude of the for
e ve
tor attra
tion of robot vl relativeto target ok, denoted j flk j, for parameters 0 < do1 < do2 < do3, is:j flk j= 8>><>>: �1do1 for d(vl; ok) � do11do2�do1 for do1 < d(vl; ok) � do2�do2do3�do2 for do2 < d(vl; ok) � do30 otherwisewhere d(a; b) returns the distan
e between two entities (i.e., robots and/or targets). The magnitude of the for
eve
tor repulsion of robot vl relative to robot vi, denoted j gli j, for parameters 0 < dr1 < dr2, is:j gli j= 8<: �1 for d(vl; vi) � dr11dr2�dr1 for dr1 < d(vl; vi) � dr20 otherwiseDetermining the proper setting of the parameters do1; do2; do3; dr1, and dr2 is one approa
h to solving theCMOMMT multi-robot learning task using an a priori model-based te
hnique.Using only lo
al for
e ve
tors for this problem negle
ts higher-level information that may be used to improvethe team performan
e. Thus, the hand-generated approa
h enhan
es the 
ontrol approa
h by in
luding higher-level
ontrol to weight the 
ontributions of ea
h target's for
e �eld on the total 
omputed �eld. This higher-level knowledge
an express any information or heuristi
s that are known to result in more e�e
tive global 
ontrol when used by ea
hrobot team member lo
ally. The hand-generated approa
h expresses this higher-level knowledge in the form of aweight, wlk, that redu
es robot rl's attra
tion to a nearby target ok if that target is within the �eld of view of anothernearby robot. Using these weights helps redu
e the overlap of robot sensory areas toward the goal of minimizing thelikelihood of a target es
aping dete
tion.The higher-level weight information is 
ombined with the lo
al for
e ve
tors to generate the 
ommanded dire
tionof robot movement. This dire
tion of movement for robot vl is given by: Pnk=1 wlkflk +Pmi=1;i6=l gli, where flk is



Figure 1. Simulation results of three robots and six targets (�rst image), and �ve robots and twenty targets (se
ondimage), with the robots using the hand-generated solution to CMOMMT, and the targets moving randomly.

Figure 2. Robot team exe
uting hand-generated solution to CMOMMT. The �rst photo shows robots operating inan area with no obsta
les. The se
ond photo shows the robots amidst randomly distributed obsta
les.the for
e ve
tor attributed to target ok by robot vl and gli is the for
e ve
tor attributed to robot vi by robot vl. Togenerate an (x; y) 
oordinate indi
ating the desired lo
ation of the robot 
orresponding to the resultant for
e ve
tor,we s
ale the resultant for
e ve
tor based upon the size of the robot. The robot's speed and steering 
ommands arethen 
omputed to move the robot in the dire
tion of that desired lo
ation.4. RESULTS FROM HAND-GENERATED SOLUTIONFigure 1 shows two of the simulation runs of the hand-generated algorithm (out of over 1,000,000 simulation testruns). Figure 2 shows snapshots of two of the physi
al robot experiments (out of over 800) in whi
h the the robotsperform the task either with no obsta
les in the work area or with randomly distributed obsta
les.The results of the hand-generated approa
h to CMOMMT vary depending upon a number of fa
tors, in
ludingthe relative numbers of robots and targets, the size of the work area, the motions of the targets (i.e., whether randomor evasive), and the setting of the weights. In general, the A-CMOMMT algorithm performed best for a ratio oftargets to robots greater than 1/2. We 
ompared the hand-generated A-CMOMMT approa
h with a non-weightedlo
al for
e ve
tor approa
h, as well as two 
ontrol 
ases in whi
h robots either maintained �xed positions or aremoved randomly. Figure 3 gives a typi
al set of these 
omparative results.
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tion pairs in the lookup table are used by the situationmat
her to sele
t the a
tion to exe
ute in the 
urrent situation. The reinfor
ement fun
tion quali�es the a
tionsproposed, helping to sele
t the best one.5. LEARNING IN THE CMOMMT APPLICATIONWe have studied the CMOMMT problem from a learning perspe
tive without the assumption of an a priori model.This approa
h uses a 
ombination of reinfor
ement learning, lazy learning, and a Pessimisti
 algorithm able to
ompute for ea
h team member a lower bound on the utility of exe
uting an a
tion in a given situation. The
hallenges in this multi-robot learning problem in
lude a very large sear
h spa
e, the need for 
ommuni
ation orawareness of robot team members, and the diÆ
ulty of assigning 
redit in an inherently 
ooperative problem.In this learning approa
h, lazy learning13 is used to enable robot team members to build a memory of situation-a
tion pairs through random exploration of the CMOMMT problem. A reinfor
ement fun
tion gives the utility ofa given situation. The pessimisti
 algorithm for ea
h robot then uses the utility values to sele
t the a
tion thatmaximizes the lower bound on utility. The resulting algorithm is able to perform 
onsiderably better than a randoma
tion poli
y, although it is still signi�
antly inferior to the hand-generated algorithm des
ribed in the previousse
tion. However, even with a performan
e less than that of the hand-generated solution, this approa
h makes animportant 
ontribution be
ause it does not assume the existen
e of a model (as is the 
ase in the Partially ObservableMarkov De
ision Pro
ess (POMDP) domain), the existen
e of lo
al indi
ators that help individual robots performtheir tasks, nor the use of symboli
 representations. The following subse
tions des
ribe this approa
h and its resultsin more detail.5.1. Lazy learning and Q-learningLazy learning13 { also 
alled instan
e-based learning { promotes the prin
iple of delaying the use of the gatheredinformation until the ne
essity arises (see Fig. 4). The same pool of information (i.e., memory) is used for di�erentbehavior syntheses. The lazy memory provides a good way of redu
ing the duration of any roboti
 learning ap-pli
ation. In the 
ontext of reinfor
ement learning, lazy learning provides an instantaneous set of situation-a
tionpairs (after the initial and unique sampling phase). Lazy learning samples the situation-a
tion spa
e a

ording to arandom a
tion sele
tion poli
y, storing the su

ession of events in memory and, when needed, probes the memoryfor the best a
tion. The exploration phase is performed only on
e. By storing situation-a
tion pairs, a lazy memorybuilds a model of the situation transition fun
tion.In order to express a behavior, the memory must be probed. To do this probing, we use a modi�ed version of thete
hnique proposed in.14 In14 the obje
tive is to provide a method for predi
ting the rewards for state-a
tion pairswithout expli
itly generating them. For the 
urrent real world situation, a situation mat
her lo
ates all the states inthe memory that are within a given distan
e. If the situation mat
her has failed to �nd any nearby situations, thea
tion 
omparator sele
ts an a
tion at random. Otherwise, the a
tion 
omparator examines the expe
ted rewards



asso
iated with ea
h of these situations and sele
ts the a
tion with the highest expe
ted reward. This a
tion is thenexe
uted, resulting in a new situation. There is a �xed probability (0.3) of generating a random a
tion regardless ofthe out
ome of the situation mat
her. New situation-a
tion pairs are added to the memory, along with a Q-value
omputed in the 
lassi
al way.15 Among similar situation-a
tion pairs in the memory, an update of the storedQ-values is made. However, there is a limit to the generality of this lazy memory be
ause the Q-values asso
iatedwith the situation-a
tion pairs only apply for a parti
ular behavior. With the desire of redu
ing the learning time asmu
h as possible, as well as preserving the generality of the lazy memory, we modi�ed the algorithm as follows: (1)the situation mat
her always proposes the set of nearest situations { no maximum distan
e is involved, (2) there is norandom sele
tion of a
tions by the a
tion 
omparator, and (3) the Q-values are not stored with the situation-a
tionpairs, but are 
omputed dynami
ally as the need arises.5.2. The Pessimisti
 AlgorithmWe de�ne a Pessimisti
 Algorithm for the sele
tion of the best a
tion to exe
ute for a given robot in its 
urrent lo
alsituation as follows: �nd the lower bounds of the utility value asso
iated with the various potential a
tions that maybe 
ondu
ted in the 
urrent situation, then 
hoose the a
tion with the greatest utility. A lower bound is de�ned asthe lowest utility value asso
iated with a set of similar situations.The idea behind the Pessimisti
 Algorithm is that a lo
al robot situation is an in
omplete observation of the truestate of the system. Thus, instead of trying to solve the observation problem by 
ompleting the observation (usualPOMDP approa
h), we are only interested in ranking the utility of the a
tions. If we use a unique instan
e of thememory to obtain the utility of the situation, then 
han
es are that the utility attributed to this lo
al situation is duein fa
t to other robot's a
tions. This probability de
reases proportionally with the number of similar situations thatare taken into a

ount. If a large number of situations are 
onsidered, then there must be at least one for whi
h thereward dire
tly depends on the lo
al situation. By taking the minimum utility value of the set of similar situations,we are guaranteed that, if the value is null, then the situation a
hieved does not imply loosing target(s).The Pessimisti
 Algorithm is then given as follows:� Let M be the memory, a lookup table of situation-a
tion pairs gathered during anexploration phase -- M = [(s(1); a(1)); :::; (s(t); a(t)); (s(t + 1); a(t+ 1)); :::℄.� Let sit be the 
urrent situation.� Find S(sit), the set of n situations of M similar to sit.� Let Sfollow(sit) be the set of the situations that dire
tly follows ea
h situation ofS(sit).� Compute the lower bound (LB) of the utility value (U) asso
iated with ea
hsituation s(k) 2 Sfollow(sit):{ LB(s(k)) = min(U(s(m))), for s(m) 2 S(s(k)), the set of situations similar tos(k).� Exe
ute the a
tion that should take the robot to the new situation s�: s� =max(LB(s)) and s 2 Sfollow(sit).The utility U asso
iated with a given situation 
an be 
omputed in many ways. It 
an be the exa
t value of thereinfor
ement fun
tion for this parti
ular situation-a
tion pair, or it 
an be a more elaborate variable. For example,in our experien
e we store the situation-a
tion pairs, plus the number of targets under observation in the lookuptable (M). However, the value that is used as utility is +1 if one or more targets have been a
quired 
ompared tothe previous situation, -1 if one or more targets have been lost, or 0 otherwise. An exa
t Q value requires runningthe Q-learning algorithm with the samples stored in the memory.5.3. Results of learning approa
hWe studied the eÆ
ien
y of the Pessimisti
 Algorithm by 
omparing the performan
e of a team of robots with a purelyrandom a
tion sele
tion poli
y, a user-de�ned non-
ooperative poli
y and A-CMOMMT. In these experiments, ea
hrobot situation is a ve
tor of two times 16 
omponents. The �rst 16 
omponents 
ode the position and orientationof the targets. It simulates a ring of 16 sensors uniformly distributed around the robot body. Ea
h sensor measures
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Figure 5. Performan
es of the Pessimisti
 lazy Q-learning approa
h 
ompared to a random a
tion sele
tion poli
y,a user-de�ned non-
ooperative poli
y and the hand-generated solution A-CMOMMT, for 10 robots and 10 randomlymoving targets. The results are the mean of 10 di�erent experiments per point for lazy learning poli
y, and 100experiments for the other 3 poli
ies. Ea
h experiment duration is 1000 iterations.the distan
e to the nearest target. The sensor position around the body gives the orientation. The se
ond ring of16 
omponents 
ode in the same manner the position and orientation of neighboring robots. The maximum rangefor a target or a robot to be seen is 1, for an arena radius of 5. The a
tions of ea
h robot are rotation and forwardmovement. The measure of performan
e is the mean observation time of all targets.Figure 5 shows the performan
e of a Pessimisti
 lazy Q-learning poli
y versus the size of the lazy memory, from100 to 900 situation-a
tion pairs. Ea
h point is the average of 10 experiments. The lazy memories are obtainedthrough an initial exploration involving from 15 to 25 targets and a single robot. During the sampling, the targetsare �xed and the robot's poli
y is random a
tion sele
tion (with 5% 
han
e of dire
tion and orientation 
hanges).The reinfor
ement fun
tion returns +1 if the total number of targets under observation in
reases, -1 if this numberde
reases, or 0 otherwise.As we see there is an important performan
e gain asso
iated with the Pessimisti
 lazy Q-learning over a purelyrandom sele
tion poli
y. This 
learly demonstrates the importan
e of lazy Q-learning as a learning te
hnique. Evenmore interestingly, lazy Q-learning performs mu
h better than the user-de�ned non-
ooperative poli
y (Lo
al). Itis important to note that neither poli
y is aware of the existen
e of the other robots. Both poli
ies use the samesensory information { i.e., the distan
e and orientation of nearby targets. It is our opinion that the variation ofperforman
e is due to the fa
t that the lazy Q-learned behavior is somewhat less rigid than the user-de�ned poli
y.A lazy Q-learning guided robot will follow a target further than it 
ould be, and, in doing so, will exhibit an errati
path, moving from one side of the target to another, ba
k and forth without losing the target. In doing so, the surfa
eunder observation per unit of time is larger than the 
overed surfa
e by the more rigid 
enter-of-gravity-orientedrobot. On the other hand, be
ause it does not take into a

ount the neighboring robots, it is easy to understandwhy the lazy Q-learned behavior performan
e 
annot rea
h the level of the A-CMOMMT performan
e.6. CONCLUSIONSIn this paper, we have proposed that the Cooperative Multi-robot Observation of Multiple Moving Targets(CMOMMT) appli
ation domain provides a ri
h testbed for learning and adaptation in multi-robot 
ooperative teams.



We have des
ribed the need for learning and adaptation in multi-robot teams, and have de�ned the CMOMMT appli-
ation, along with the 
hara
teristi
s that make it an interesting testbed for learning and adaptation. We reported ona hand-generated solution to the CMOMMT problem and dis
ussed how the results from the implementation of thissolution reveal the need for learning and adaptation in this domain. We dis
ussed our work that uses the CMOMMTproblem as a learning domain. The ultimate obje
tive is to develop learning te
hniques using the CMOMMT do-main that will generalize to other real-world domains, and will thus help realize the ultimate goal of enabling thewidespread, pra
ti
al use of multi-robot teams.ACKNOWLEDGMENTSThis resear
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