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Glossary

Autonomous robot
An autonomous robot is a robot that can perform tasks in unstructured environments with minimal human

guidance.

Planned path
A planned path is a pre-determined, obstacle-free, trajectory that a robot can follow to reach its goal

position from its starting position.

Complete path planner
A complete path planner is an algorithm that is guaranteed to find a path, if one exists.

Deadlocked path planning
A deadlock is a situation in path planning in which a solution cannot be found, even though one exists.

Typically, this is caused by robots blocking each other’s paths, and the planner being unable to find a solution
in which robots move out of each other’s way.
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1 Definition of the Subject and Its Importance

Multi-robot path planning and motion coordination addresses the problem of how teams of autonomous mobile
robots can share the same workspace while avoiding interference with each other, and/or while achieving
group motion objectives. Nearly all applications of multiple autonomous mobile robots must address this
issue of motion coordination, either explicitly or implicitly. Multi-robot path planning and teaming has been
extensively studied since the 1980s. While many techniques have been developed to address this challenge,
the general centralized multi-robot path planning problem is known to be intractable, meaning that optimal
solutions cannot be found in polynomial time. Thus, alternative techniques that decouple aspects of the
motion planning and coordination problem have been proposed that trade off optimality for efficiency. A
wide variety of applications can benefit from teams of robots that can coordinate their motions effectively,
including search and rescue, planetary exploration, mineral mining, transportation, agriculture, industrial
maintenance, security and surveillance, and warehouse management.

2 Introduction

Many practical applications of autonomous robots require the use of multiple team members. Such teams
have many potential benefits, including faster task completion time (through parallelism) and increased ro-
bustness (through redundancy). Further, teams of robots can increase the application domain of autonomous
robots by providing solutions to tasks that are inherently distributed, either in time, space, or functionality.
Since the 1980s, researchers have addressed many issues in multi-robot teams, such as control architectures,
communication, task allocation, swarm robots, learning, and so forth [83].

A critical issue in these mobile robot teams is coordinating the motions of multiple robots interacting
in the same workspace. Regardless of the mission of the robots, they must be able to effectively share the
workspace to prevent interference between the team members. Solutions to the motion coordination problem
are approached in a variety of ways, depending upon the underlying objectives of the robot team. In some
cases, the paths of the robots are explicitly planned and coordinated in advance, as might be needed in a
busy warehouse management application, for example. In other cases, planning is relaxed and emphasis is
placed on mechanisms to avoid collision, applicable for tasks such as automated hospital meal deliveries. In
yet other situations, the robots could have mechanisms with little pre-planning that focus on coordinating
robot motions in real-time using reactive, behavior-based, or control-theoretic approaches, such as would be
used in a convoying or formation-keeping application.

The multi-robot path planning problem is defined as follows: given a set of m robots in k-dimensional
workspace, each with an initial starting configuration (e.g., position and orientation) and a desired goal
configuration, determine the path each robot should take to reach its goal, while avoiding collisions with
obstacles and other robots in the workspace. More formally (adapting the notation of [58, 59]), let A be
a rigid robot in a static workspace W = R

k, where k = 2 or k = 3. The workspace is populated with
obstacles. A configuration q is a complete specification of the location of every point on the robot geometry.
The configuration space C represents the set of all the possible configurations of A with respect to W. Let
O ⊂ W represent the region within the workspace populated by obstacles. Let the closed set A(q) ⊂ W
denote the set of points occupied by the robot when it is in the configuration q ∈ C. Then, the C-space
obstacle region, Cobs , is defined as:

Cobs = {q ∈ C|A(q) ∩ O 6= ∅}.

The set of configurations that avoid collision (called the free space) is:

Cfree = C \ Cobs .

A free path between two obstacle-free configurations cinit and cgoal is a continuous map:

τ [0, 1] → Cfree

such that τ(0) = cinit and τ(1) = cgoal .
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For a team of m robots, define a state space that considers the configurations of all the robots simultane-
ously:

X = C1 × C2 × · · · × Cm.

Note that the dimension of X is N , where N =
∑m

i=1 dim(Ci). The C-space obstacle region must now
be redefined as a combination of the configurations leading to a robot-obstacle collision, together with the
configurations leading to robot-robot collision. The subset of X corresponding to robot Ai in collision with
the obstacle region, O, is

Xi
obs = {x ∈ X|Ai(qi) ∩ O 6= ∅}. (1)

The subset of X corresponding to robot Ai in collision with robot Aj is

X
ij
obs = {x ∈ X|Ai(qi) ∩ Aj(qi) 6= ∅}. (2)

The obstacle region in X is then defined as the combination of Equations 1 and 2, resulting in

Xobs =

(

m
⋃

i=1

Xi
obs

)

⋃





⋃

ij,i 6=j

Xi
obs



 . (3)

With these definitions, the planning process for multi-robot systems treats X the same as C, and Xobs

the same as Cobs , where cinit represents the starting configurations of all the robots, and cgoal represents the
desired goal configurations of all the robots.

Typically, optimization criteria guide the choice of a particular solution from an infinite number of pos-
sible solutions. Example criteria include minimized total path lengths, minimized time to reach goals, and
minimized energy used to reach goals. Additional constraints can introduce more complexity in the plan-
ning process, such as navigational restrictions on the robots (e.g., maximum slope restrictions, inability to
traverse rocky terrain, etc.), or the need for multiple robots to move in tandem with each other (e.g., a
formation of robots moving over uneven terrain). Since the general optimal motion planning problem for
multiple moving objects is computationally intractable (specifically, PSPACE-hard [47]), most approaches
relax the requirement for global optimality, and instead seek to locally optimize portions of the path planning
problem.

Planning approaches can be categorized, or taxonomized, in various ways. One taxonomy evaluates
approaches in terms of completeness (i.e., whether they are guaranteed to find a solution if one exists),
complexity (i.e., the computational requirements of the search process), and optimality (i.e., the quality of
the resulting solution). Often, techniques that are complete and optimal are too computationally intensive
to use in practice. Alternatively, techniques that achieve computational tractability typically trade off
optimality and/or completeness.

Another taxonomy of multi-robot path planning techniques makes distinctions based on the amount of
information used during the planning process. Approaches that use global information and plan directly
in X are called coupled, centralized approaches. These approaches treat the robot team as a composite
robot system, to which classical single-robot path planning algorithms are applied. For example, the A*
algorithm [45] can generate complete and optimal solutions to the multi-robot path planning problem under
a centralized and coupled approach. However, this type of planning approach requires computation time
that is exponential in the dimension of the multi-robot configuration space. Thus, these approaches can
only be used in real-time for the smallest of problem sizes. Section 3 describes these coupled, centralized
techniques.

To deal with the high-dimensionality of X, alternative approaches decouple the path planning problem into
independent components that can find good solutions quickly, although at the cost of losing optimality and
completeness. These decoupled techniques can either be centralized or decentralized. Common examples of
decoupled approaches include those that separate path planning and velocity planning. Typical approaches
to decoupled planning will plan individual paths for a robot or set of robots, followed by a second step to
resolve any potential conflicts between the paths. Section 4 describes some common techniques for decoupled
multi-robot path planning.
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A broader problem in multi-robot teams is that of motion coordination. Motion coordination encompasses
multi-robot path planning, but also includes other problems such as flocking, formation-keeping, multi-robot
target tracking, and other similar objectives. These tasks do not necessarily require advance planning of
specific paths for each robot, but do require the coordination of trajectories as the robots move, to avoid
collisions with each other, or to reach other group-level objectives, such as maintaining a desired inter-robot
distance. Section 5 describes some of these techniques. This chapter is concluded with Section 6, which
offers remarks on the future directions and impact of multi-robot path planning and motion coordination.

3 Coupled, Centralized Approaches

In coupled, centralized approaches to multi-robot path planning, the robot team is considered to be a com-
posite robot system, to which a classical single-robot path planning algorithm is applied. Motion planning
algorithms for single mobile robot systems have been intensively studied for years (see [58, 97, 40, 48]).
Examples of classical single-robot path planning algorithms include sampling-based planning, potential-field
techniques, and combinatorial methods. Sampling-based planners [54] avoid the explicit construction of Cobs

by sampling different configurations to generate curves that represent collision-free paths in Cfree . Poten-
tial field techniques (e.g., [9, 11, 114]) construct real-valued functions that pull the robot toward the goal,
and repulse the robot away from obstacles, via a combination of force vector fields. Combinatorial meth-
ods construct roadmaps through the configuration space using techniques such as cell decomposition (e.g.,
[75, 100]).

In an environment that contains a set of stationary obstacles, single robot path planning methods such as
graph searching based on a geometric configuration of the environment are guaranteed to return optimal paths
(in the sense of a performance measure such as shortest distance) in polynomial time if one exists. However,
motion planning in a dynamic environment with moving obstacles is inherently harder. Even for a simple case
in two dimensions, the problem is PSPACE-hard and is not solvable in polynomial time [35, 47]. Motion
planning in dynamic environments was originally addressed by adding the time dimension to the robot’s
configuration space. The approach in [29] discretizes the configuration-time space to a sequence of slices of
the configuration space at successive time intervals, representing the motions of moving obstacles using the
set of slices embodying space-time. In [79], moving obstacles are represented as sheared cylinders, and a
methodology was proposed to provide optimal tangent paths to the goal for a dynamic robot environment.

Extending the problem still further, to multiple robot path planning, requires even more computational
resources. An example centralized approach for generating complete multi-robot path solutions is the work
of Parsons and Canny [85], which takes a global cell decomposition approach, incorporating obstacles and
other robots in a unified configuration space representation. This algorithm first computes a decomposition
of the free space into cells; it then searches through the resulting adjacency graph for a path. However,
not surprisingly, the algorithm is exponential in the number of robots. Other centralized algorithms that
represent the path planning problem as a cross product of the configuration spaces of the individual robots
include [96, 11].

Because of the high dimension of the multi-robot configuration space, centralized approaches that treat
the multi-robot team as a single composite robot tend to be impractical computationally if the full search
space is used. Instead, techniques that reduce the size of the search space have been shown to be practical
for small-sized problems. One way to reduce the search space is to weakly constrain the allowable paths that
robots can follow by limiting the motion of the robots to lie on roadmaps in the environment. Intuitively,
roadmaps are akin to automotive highways, where robots move from their starting position to a roadmap,
move along the roadmap to the proximity of the goal, and then move off the roadmap to the specific goal
location. More formally, a roadmap is defined as follows [24]:

Definition (Roadmap): A union of one-dimensional curves is a roadmap RM if for all qstart and qgoal in
Cfree that can be connected by a path, the following properties hold:

1. Accessibility: there exists a path from qstart ∈ Cfree to some q′start ∈ RM,

2. Departability: there exists a path from q′goal ∈ RM to qgoal ∈ Cfree , and
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3. Connectivity: there exists a path in RM between q′start and q′goal . �

Typically, a roadmap RM is represented as a graph G = (V,E), in which the nodes V represent collision-
free configurations, and the edges E represent feasible paths. (A feasible path is one that can be executed
by robot Ai, based on its physical motion constraints.) Various algorithms have been created that make
use of the roadmap concept for motion planning, both for single robots and for multi-robot teams (e.g.,
[93, 87, 109]). The following subsections present two such approaches for multi-robot teams. The first,
in work by Švestka and Overmars, is a probabilistically complete approach, meaning that the problem is
solvable in finite time. Their approach creates a coordinated path for a composite robot by making use of
the concept of super-graphs. The second, in work by Peasgood, et al., [87], is a multi-phase approach that
uses a graph and spanning tree representation to create paths through the environment. This approach is
shown to have linear-time complexity, and is thus scalable to much larger robot teams.

Before presenting these two approaches, it is worth noting that many other roadmapping approaches to
multi-robot path planning have been proposed. For example, the work of Ryan [93] reduces the search space
by decomposing the original map into subgraphs, planning paths between subgraphs, and then coordinating
motions within the subgraphs. This approach has been shown to be effective for up to 10 robots. In
[26], Clark, et al., introduce the concept of dynamic networks, which are formed between robots that are
within communication range. Within this framework, only robots within the same network use a centralized
planner, which is based upon probabilistic road maps [54]; otherwise, robots plan their paths using decoupled
planners based on optimizing priorities (see Section 4). In [95], efficiencies in the probabilistic road map are
achieved by delaying collision checking along the roadmaps until necessary. The speed-up achieved by this
collision-checking (on the order of a factor of 4 to 40) allows this technique to be used more practically for
small-sized multi-robot teams. The authors incorporate this improved planning process into three multi-
robot path planning variants: a centralized version, a decoupled planner with global coordination, and a
decoupled planner with pair-wise coordination.

3.0.1 Super-graph method (Švestka and Overmars)

In [109], Švestka and Overmars present an approach for creating a composite roadmap, which represents
a network of feasible motions for the composite robot. This composite roadmap is created as follows.
First, a roadmap for each individual robot is constructed using the standard roadmap generation algorithm,
Probabilistic Path Planner (PPP) [54]. Then, n such roadmaps are combined into a roadmap for the
composite robot, which can be used to generate coordinated paths.

Specifically, the coordinated path for the composite robot (A1, . . . ,An) is an n-tuple of paths feasible for
all robots Ai that, when executed simultaneously, introduce no mutual collisions between the individual
robots. Formally, let C[0,1] represent the configuration space from time t = 0 to time t = 1, where the robot
is at its starting position at time 0, and is at its goal location at time 1. Let s1, . . . , sn and g1, . . . , gn be
given starting and goal configurations for the n robots, where ∀i ∈ {1, . . . , n} : si ∈ Cfree ∧ gi ∈ Cfree . Let
P represent a free path if P is in Cfree for all times t (i.e., ∀t ∈ [0, 1] : P (t) ∈ Cfree). Let A ∩ B 6= ∅ (i.e., A

and B intersect) be represented by A ⊗ B. Then if P1, . . . , Pn ∈ C[0,1] are feasible paths, such that for all
i, j ∈ {1, . . . , n}

• Pi(0) = si ∧ Pi(1) = gi

• i 6= j ⇒ ∀t ∈ [0, 1] : ¬A(Pi(t)) ⊗A(Pj(t))

then (P1, . . . Pn) is a coordinated path for (A1, . . .An) solving the problem ((s1, . . . , sn), (g1, . . . , gn)).
Švestka and Overmars present an approach for constructing such a coordinated path for a composite

robot [109]. The basic idea is to seek paths along the roadmap, G, that allow the robots to move from their
starting to their goal configurations, while disallowing simultaneous motions or motions along paths that are
blocked by other robots. This type of path is called a G-discretized coordinated path. They introduce the
concept of super-graphs, which represent roadmaps for the composite robots created by combining n simple
robot roadmaps. Two variants of super-graphs are proposed – flat super-graphs and multi-level super-graphs.

In the flat supergraph, a node represents a feasible placement of the n simple robots at the nodes of G,
and an edge represents a motion of exactly one simple robot along a non-blocked path of G. A disadvantage
of the flat supergraph is that its size is exponential in the number of robots.
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Figure 1: An illustration of a coordinated path generated by the super-graph approach of Švestka and
Overmars, for 5 nonholonomic car-like robots (from [109]).

The second type of super-graph – the multi-level super-graph – reduces the size of the super-graph data
structure by combining multiple nodes into a single node of the graph. This approach makes use of the
concept of subgraphs. Whereas the nodes in a flat super-graph represent robots being located at particular
nodes of G, the nodes in a multi-level super-graph represent robots being located in a subgraph of G. The
restriction placed on node combinations is that the resultant subgraphs should not interfere with each other,
meaning that the nodes in one subgraph cannot block paths in another subgraph. Experimental results have
shown that the multi-level super-graphs are typically much smaller than the equivalent flat super-graphs.

Švestka and Overmars applied this approach to teams of up to 5 nonholonomic, car-like robots in sim-
ulation. An example of these results is shown in Figure 1, illustrating the feasibility of this approach for
small-sized multi-robot teams. Nevertheless, this type of approach is appropriate only for relatively small
numbers of robots. For much larger sizes of robot teams, decoupled approaches are necessary (see Section 4).

3.0.2 Spanning tree method (Peasgood, et al.)

Peasgood, et al., [87] present another roadmap-based planner for multi-robot teams. This approach is a
multi-phase planner that uses a graph and spanning tree representation to create and maintain obstacle-free
paths through the environment. Initially, a graph is created, in which the nodes are the robots’ initial and
goal positions, and the edges represent the connectivity of the node positions. An example is illustrated in
Figure 2 (part a), in which the starting positions of the three robots (R1, R2, and R3) are (C, B, A), while
the goal positions are (A, C, B). Figure 2 (part b) shows the graph-based map for this example. Then, a
spanning tree of this graph is created, which is a connected subset of the original graph that includes all the
nodes without cycles; Figure 2(part c) shows the example spanning tree. The root of this spanning tree is
chosen to be the node that is closest to the geographic center of the map. Then, in the first phase of the
approach, a plan is generated that moves the robots to the leaves of the spanning tree along collision-free
paths, as shown in Figure 3 (part a). In the second phase, the robots are moved into positions where they
can reach their goals without creating obstructions for other robots. This is accomplished by processing the
robots in order according to the depth of their goals in the spanning tree. This is shown in Figure 3 (parts
b and c). The third phase moves robots to the remaining unfilled goal locations, as shown in Figure 3 (part
d). These three phases result in a sequence of motions that allow only one robot to move at a time. The
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(a) Original planning prob-
lem.

(b) Graph-based map.

(c) Spanning tree for the graph representation.

Figure 2: An example multi-robot path planning problem using the spanning tree method of Peasgood, et
al., along with the corresponding graph and spanning tree (from [87]).

final phase of the process seeks to improve the quality of the concurrent plan by allowing robots to move
simultaneously when doing so does not introduce any collisions.

Peasgood, et al., show that this algorithmic approach results in time complexity that is linear in the
number of robots. To further improve the resulting path lengths, the authors propose a hybrid planning
approach, which uses the regular multi-phase planner, but then also calls a decoupled planner (such as
[15]), to attempt to find shorter path solutions. For smaller-sized robot teams (less than 20), the decoupled
planner can often find better solutions. However, for larger-sized teams, the multi-phase approach is more
time-efficient (increasingly so as the team size grows larger).

4 Decoupled Approaches

Decoupled approaches to multi-robot path planning typically trade off solution quality for efficiency by
solving some aspects of the problem independently. There are many alternative ways of decomposing the
planning problem. Most commonly, approaches plan individual paths for robots, followed by methods
for handling collision avoidance. While decoupled approaches are typically more efficient than centralized
approaches, they lose completeness. For instance, Figure 4 shows an example of a situation that is difficult
for decoupled approaches to solve. In this situation, robots must exchange positions in a narrow corridor.
While a centralized approach would find a solution in which the robots first move into the open space at the
end of the corridor to exchange places, a decoupled approach will have difficulties discovering this solution.

Decoupled approaches are typically divided into two broad categories [58, 59]: prioritized planning and
path coordination. Prioritized planning considers the motions of the robots one at a time, in priority order,
calculating path information for the ith robot by treating the previous i − 1 robots as moving obstacles.
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(a) Phase 1. (b) Phase 2a. (c) Phase 2b. (d) Phase 3.

Figure 3: The multi-phase solution of the multi-robot path planning problem in Figure 2, using the spanning
tree method of Peasgood, et al. (from [87]).

Figure 4: An example multi-robot path planning problem that is difficult for decoupled approaches to solve.
Here, the robots must exchange positions by first moving into the open space at the end of the corridor.
While a centralized approach can find this solution, most decoupled approaches would fail (recreated from
[58]).

Path coordination, on the other hand, first plans independent paths for the robots separately, then seeks
to plan their velocities so as to avoid collisions along those paths. The following subsections describe these
approaches in more detail.

4.1 Prioritized Planning

The prioritized planning approach to multi-robot path planning was first proposed by Erdmann and Lozano-
Peréz [29]. In this approach, priorities are assigned to each robot. These priorities could be assigned
randomly, or they could be determined from motion constraints, in which more-constrained robots are given
higher priority. A path is planned for the first robot using any single-robot path planning approach. The
path for each successive robot, Ai, then takes into account the plans for the previous robots A1, . . . ,Ai−1,
treating these higher-priority robots as moving obstacles.

More specifically, in the prioritized planning approach of [29], the configuration space is extended to
account for time, since the time-varying motions of previously-planned robots must be taken into account.
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Configuration space-time is represented as a list of configuration space slices at particular times – specifically,
those times corresponding to when a moving object changes its velocity. Motions between slices can then
be interpolated via straight-line translations between these configuration space slices. The configuration
space-time can be constructed in O(m) time, where m = nr, for n edges in the environment and r time
slices.

Paths through configuration space-time are computed using a visibility graph algorithm, which searches
along a visibility graph consisting of the vertices of the configuration space obstacles (plus vertices for the
start and goal positions), and the line-of-sight edges between the vertices. Planners using this method
have time complexity O(rn3), although [29] also suggests a faster implementation. The prioritized planning
approach has been demonstrated in several application domains, including the translation of multiple planar
robots, as well as the motion of two-link planar articulated robot arms.

Other researchers who have studied prioritized path planning for multiple mobile robots include [32, 121,
16, 20]. Both Ferrari, et al. [32] and Warren [121] used a fixed priority scheme for the decoupled planner. In
the work of Buckley [20], a heuristic is applied to assign higher priorities to robots that can move in a straight
line to their target location. Chun, et al. [25] use this priority scheme to coordinate independently-generated
schedules online, as the conflicts arise. The work of Azarm and Schmidt [6] considers all possible priority
assignments, although the resulting approach is computationally complex. A more tractable method for
finding and optimizing priority schemes for decoupled priority-based planners is presented by Bennewitz, et
al., in [16]. The proposed approach performs a centralized, randomized search with hill-climbing (i.e., the A*
search algorithm [73]) to search the space of prioritization schemes to find priority schemes that minimize the
overall path length. The resulting priority scheme can then be applied in decoupled priority-based planners,
such as Erdmann’s method described above [29].

The advantage of prioritized planning approaches is that they reduce the problem from a single planning
problem in a very high-dimensional space to a sequence of planning problems in much lower dimensional
space. The disadvantage, as with all decoupled approaches, is that these approaches are not complete.

4.2 Path coordination

Path coordination techniques decouple the planning problem into path planning and velocity planning (e.g.,
[52]. The ideas are based on scheduling techniques for dealing with limited resources, inspired by the
approaches developed for concurrent access to a database by multiple users [124]. In the current context, the
shared resource is space. The decomposition of path and velocity planning provides a solution through the
complexity barrier caused by the additional time dimension, and also provides solutions that are relevant
when robots move along fixed paths.

In the path coordination approach, the path planning step first generates individual robot paths indepen-
dently, using common single-robot path planners. The second step plans a velocity profile that each robot
should follow along its path so as to avoid collisions with other robots. This approach is typically called
fixed-path coordination, since the paths planned in the first step are not altered in the second step. Instead,
only the velocities taken by the robots along the paths are varied.

In more detail (using the notation of [59]), assume that the path generated for each individual robot in
the first step constrains robot Ai to follow a path τi : [0, 1] → Ci

free . Then, an m-dimensional coordination
diagram X = [0, 1]m for m robots is defined that is used to schedule the motions along their paths so that
they do not collide [74]. In this diagram, the ith coordinate represents the domain, Si = [0, 1], of the path of
robot Ai. At state (0, . . . , 0) ∈ X, every robot is in its initial starting configuration. At state (1, . . . , 1) ∈ X,
every robot is at its goal configuration. Within the coordination diagram, obstacles form obstacle regions
Xobs that must be avoided. Any continuous, obstacle-free path, h : [0, 1] → X, for which h(0) = (0, . . . , 0)
and h(1) = (1, . . . , 1), is a valid path that moves the robots from their starting positions to their goals.
The objective, therefore, is to find h : [0, 1] → Xfree , in which Xfree = X \ Xobs . An example coordination
diagram showing a valid path for the robots is illustrated in Figure 5.

Several authors have looked at variations of the path coordination approach. In [62], Lee and Lee use
a similar idea to plan the motions of two robots. Griswold and Eem [41] take uncertainty of the moving
obstacles into account while using the same principle for path planning. Pan and Luo [77] use the concept
of traversability vectors to analyze the spatial relationship between the robot and moving obstacles, and
develop a search algorithm to coordinate the robot motion. Rude [92] proposes a space-time representation
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Figure 5: An example coordination diagram for three robots. Each axis represents the domain of an individual
robot’s path. The cylindrical objects are obstacles, and the path from (0, 0, 0) to (1, 1, 1) represents the
coordinated velocity plans for moving all three robots to their goals without collisions (adapted from [43]).

for collision avoidance in pre-planned individual robot paths. In [43], Guo and Parker present a decentralized
path coordination approach that also incorporates optimization issues into the planning, including a global
performance measurement to minimize the weighted sum of the most expensive time to reach the goals and
all idle time, as well as individual optimization goals for navigation over rough terrain. In [61], LaValle
and Hutchinson consider multiple robots with independent goals and performance measures, and proposes
algorithms optimizing a scalarizing function that is a weighted-average of individual performance functions.
Other approaches to optimal motion planning have been proposed in [17, 18, 23, 61, 101, 88], sometimes
in the context of robotic manipulator motion planning. In [22], one robot is randomly chosen to stop, and
time delays are inserted to resolve potential collisions. Path coordination schedules, which are another form
of velocity planning, are studied in [17, 102, 74]. A priority-based method using collision maps is presented
in [78]. Extensions of the path coordination approach to coordination on roadmaps have been proposed by
[61, 39].

While all of these decoupled approaches typically allow good solutions to the multi-robot path planning
problem, they can lead to deadlocks, in which solutions cannot be found, even though they exist. In these
cases, it may be possible to make use of a centralized planner for small portions of the original problem, in
order to solve the immediate deadlock problem.

5 Motion Coordination

Closely related to the topic of multi-robot path planning is the issue of multi-robot motion coordination.
Unlike multi-robot path planning or path coordination approaches, which plan and/or coordinate the complete
paths of all of the robots in advance, techniques for motion coordination focus on decentralized, online
approaches that allow robots to avoid and/or resolve conflict as the situation arises during path execution,
such as through the use of traffic control rules. In traffic control applications, individual robots still have
independent starting and goal positions, and must move so as to avoid conflict with each other. Even
broader concepts of motion coordination seek to have the robots move according to some constraints on
the team as a whole, such as can be seen in formation keeping, flocking/swarming, target search/tracking,
dispersion/aggregation, and related topics. In these problems, the motions of individual robots are no longer
independent of each other; instead, the group must move in synchrony according to pre-defined motion
constraints for the entire team. The following subsections discuss some of the key research in these areas of
motion coordination.
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5.1 Traffic control

Traffic control approaches to multi-robot motion coordination typically predefine traffic or control rules that
robots must obey as they move through the workspace. Individual robots often move along paths to their
goals that they pre-plan in advance, based only on the individual robot goals. Then, as regions involving
shared resources are reached (such as the space in an intersection), robots follow the traffic or control rules
to coordinate their motions with other robots who also need access to the shared resources.

An early example of traffic control is the work of Grossman [42], which addresses the motion of large
numbers of Automatic Guided Vehicles (AGVs) in a factory. Grossman defines three types of control pos-
sibilities: 1) restrict the roads so that there is a unique route between all starting and goal positions; 2)
allow AGVs to select their own routes autonomously; and 3) control all AGVs’ paths using centralized traffic
control. Grossman shows that allowing AGVs to select their routes autonomously (option 2) is preferred
over the highly suboptimal restriction of roads (option 1). Of course, as previously noted, the centralized
approach (option 3) has high combinatorial complexity.

The problem of the autonomous coordination of paths (option 2) is formulated as follows. A set of r

AGVs are allowed to follow unconstrained paths in two dimensions, on a grid-iron network of roadways,
with n parallel roads along each axis. Each section of roadway between intersections is called an arc; in
this formulation, there are 2n(n − 1) arcs in the network. Each intersection of roadways is called a node,
representing the locations of machine tools to be serviced by the robots. It is assumed that 1 ≤ r ≤ n2 − 1,
and that all vehicles move at the same speed, v. Each AGV has the task of moving from a source location
(i.e., starting position) to a sink location (i.e., a goal location). Defining S to be the average number of time
steps per task for each AGV, the average throughput of all the AGVs together is W = vr

S
. This throughput

must exactly match the throughput of all the n2 machine tools, leading to a requirement that the AGV

speed must satisfy: v = Sn2

r
. The price of r AGVs is considered negligible in comparison to the price of

the machine tools. Thus, the problem is formulated as the problem of optimizing the traffic control and
the value of r so as to minimize v in an n × n grid-iron floor plan. The constraints on the traffic in this
environment are as follows:

• At the end of each step, at most one AGV may be at each node.

• During each step, no two AGVs may pass on the same arc.

• All AGVs have equal priority.

Different policies are investigated, including a greedy policy and a benevolent policy. Simulation results
show that the benevolent policy performs the best, with a performance close to the derived lower bound.
This traffic policy requires the AGVs to follow these rules:

1. From the AGVs own (i, j) location, determine in which quadrant q the goal node (i′, j′) lies:

• Quadrant 1 has i′ > i and j′ ≥ j.

• Quadrant 2 has j′ > j and i′ ≤ i.

• Quadrant 3 has i′ < i and j′ ≤ j.

• Quadrant 4 has j′ < j and i′ ≥ i.

2. Depending on the value of q, try to move to an adjacent node:

• If q is 1 then (i + 1, j).

• If q is 2 then (i, j + 1).

• If q is 3 then (i − 1, j).

• If q is 4 then (i, j − 1).

3. If that node is blocked, add 1 to q and try Step 2 again.

4. If that node is blocked, add 1 to q and try Step 2 again.

5. If that node is blocked, add 1 to q and try Step 2 again.
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6. If all adjacent nodes are blocked, then wait at the current node.

This policy leads to an overall counterclockwise flow of traffic through the workspace. Based on analysis
and simulation results, the authors conjecture that this policy is the optimal policy for AGVs without
memory or task trading.

There are many variants on the traffic control and conflict resolution theme [53, 5, 117, 125, 118, 65]. For
example, in [53], Kato, et al., categorize the traffic rules into three types: 1) traffic rules to be applied to
the current positions of the robot (examples include passage zone, stop, slow); 2) traffic rules to be applied
to current positions and conditions (examples include overtaking, avoiding obstacles, crossing intersections);
and, 3) traffic rules to ensure safety in case of accidents or failures. These rules are illustrated for robot
teams operating in indoor hallway-types of settings.

In [5], Asama, et al., propose two basic rules for avoiding collisions:

• “If the colliding robot is nearby to the front and approaching, then avoid from the left”, and

• “If the colliding robot is nearby to the front and leaving, then stop for a while”.

These rules are combined with a communication-based negotiation process that resolves conflicts by setting
priorities based on the task requirements, the environmental situation, and robot performances. In the
work of Yuta and Premvuti [125], robots move along pre-planned paths in network of roadways, which can
involve conflicts at intersections. These deadlock situations at intersections are resolved through a “shunting”
process, in which one robot, acting as a leader, devises a solution for moving robots through the intersection,
and then broadcasts the instructions to the other robots for how to resolve the conflict. Another approach
to conflict resolution is to use techniques from distributed computing, as illustrated in the work of Wang
[117, 118], in which robots use a mutual exclusion protocol to compete for the right to move along certain
pathways or to resolve conflicts at intersections.

In [67], Lumelsky, et al., present a decentralized approach for motion planning that has robots plan and
execute their paths “on the fly” in real time, resolving conflicts as they arise. The authors make an analogy
to human cocktail parties, in which people do not plan optimal paths in advance, nor consult with others
about their intended destinations; instead, they move toward their destinations while avoiding collisions as
they go. Their approach is based on maze-searching techniques, and makes use of perpendicular bisectors
and Voronoi diagrams [90] to allow robots to avoid collisions.

Another approach that is closely related to the decoupled path coordination research described earlier is
the work of Alami, et al. [2, 1]. This online plan-merging paradigm does not require advance planning of all
robot paths in advance. Instead, robots move as needed, coordinating their paths as new goal destinations
arise. In this decentralized planning approach, robots also treat segments of their paths as shared resources.
However, when a robot elaborates a new plan for itself, it must validate that plan within the current multi-
robot context. This is done by collecting the plans from all the other robot team members via communication,
and “merging” its own plan into the existing robot plans. This merging operation is done without affecting
the plans of other robots, thus allowing them to continue on with their current executions. In this approach,
the environment is represented as a topological graph of areas, routes, and crossings. Routes are composed of
lanes with direction, thus setting up a type of traffic pattern through the environment. The motion planning
approach makes use of a graph searching technique, planning dependency graphs, and synchronization points
to coordinate the motions of the robots. Figure 6 illustrates the geometrical and topological planning space
for this approach in a prototypical application.

More recent work in conflict resolution for multi-robot teams is the work of Pallottino, et al., [76], which
considers a more realistic kinematic model of the robot dynamics, recognizing that most robots cannot stop
instantly in order to avoid collisions. This model focuses on large numbers of robots (e.g., 70) operating
closely in shared, open spaces. As with other techniques discussed to this point, this approach also assumes
robots have independent starting positions and goal destinations. This approach is particularly relevant for
applications of aerial vehicles flying at constant altitude. This work makes use of the concept of reserved
region, which is an area for which a robot claims exclusive ownership. The control policy is defined for a set
of discrete modes of operation, including a hold state in which a robot is stopped, a straight state in which
the robot is moving forward without turning, and two roll states – one for mild turns and a second for tight
turns. Control theoretic definitions of the motions of the robots in each state are given, and the policy is
shown to be safe, meaning that it guarantees collision avoidance. Under certain conditions, the approach
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(a) Geometrical representation.

(b) Topological representation.

Figure 6: Representations used for a prototypical application of the plan-merging paradigm of Alami, et al.
(from [1]).

is also shown to have the property of liveness, meaning that all the robots are guaranteed to reach their
destinations in finite time.

5.2 Reactive approaches

Reactive-style methods for coordination are useful in many applications, since they are fast, and can operate
well in real-time. One common reactive method makes use of potential fields [55]. In the potential field
approach, the robot moves through space as if it is being acted upon by a set of forces. Attractive forces
pull the robot toward a goal destination, while repulsive forces push the robot away from obstacles and/or
other robots. At each point in the configuration space, the robot moves along the vector representing the
combined forces acting on that point in the configuration space. These concepts have been applied to various
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Figure 7: Example results for 5 robots in simulation performing adaptive navigation to avoid collisions, using
the approach of Fujimori, et al. (from [34]).

multi-robot applications [121], including multi-robot soccer [63]. Other potential field approaches to multi-
robot coordination include [27, 64, 120, 119]. A well-known issue in potential field methods, however, is their
susceptibility to deadlock due to local minima in the potential field. Some techniques have been designed to
overcome this shortcoming [10].

Other reactive approaches for collision avoidance based on local information include the work of Matarić
[70], which proposes behavior-based avoidance rules in which robots either stop for a period of time or change
directions. Similar rules were proposed by Arkin [4] and by Sugihara and Suzuki [107]. Shan and Hasegawa
[99] present behavior-based techniques for avoiding robot collisions in narrow passages.

While all of the above techniques can work well for relatively unconstrained situations, they are not
analyzed formally to provide guidance for setting the navigation parameters. On the other hand, a more
formal method for determining reactive collision avoidance parameters is given by Fujimori, et al., in [34].
These authors propose a collision avoidance method based on an adaptive navigation technique, in which
the navigation law is given by a first-order differential equation. Navigation of the robot to the goal and
obstacle avoidance are handled by switching the direction angle adaptively. Robots are assigned priorities
to determine which vehicles must yield to the others. The proper value of the direction angle is calculated
theoretically, based on three robot modes of operation: navigation mode, in which the robot is moving toward
the goal without interference; cooperative avoidance mode, in which the robot avoids other robots; and, final
mode, when the robot is approaching near the goal. The approach has been implemented in simulation for
up to five mobile robots, and on two physical robots. Figure 7 illustrates the type of motions generated by
this approach in a five-robot simulation.

5.3 Coordinated Motion of Entire Team

A significant topic of current research is the control of robot motions to achieve a group objective, such as
maintaining a formation while moving to a goal position, cooperatively tracking moving targets, collective
coverage tasks, and so forth. Often, these topics are studied in the context of swarm robot systems, involving
large numbers of homogeneous robots performing the same control algorithms. A complete survey of all the
work in these areas is beyond the scope of this chapter. However, this section briefly outlines the areas of
active research in this domain.

Many types of swarm behaviors have been studied, such as foraging, flocking, chaining, search, herding,
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Table 1: Categories of swarm behaviors
Relative motion requirements Swarm Behaviors

Relative to other robots Formations [80, 107], Flocking,
Natural herding (as in herds of cattle),
Schooling, Sorting [13], Clumping [13],
Condensation, Aggregation, Dispersion

Relative to the environment Search [36], Foraging [7], Grazing,
Harvesting, Deployment, Coverage,
Localization, Mapping, Exploration

Relative to external agents Pursuit, Predator-prey, Target tracking,
Forced herding/shepherding (as in shepherding sheep)

Relative to other robots Containment, Orbiting,
and the environment Surrounding, Perimeter search

Relative to other robots, external agents, Evasion,
and the environment Tactical overwatch, Soccer [19, 115, 122, 104]

aggregation, and containment. The majority of these swarm behaviors deal with spatially distributed multi-
robot motions, requiring robots to coordinate motions either (1) relative to other robots, (2) relative to the
environment, (3) relative to external agents, (4) relative to robots and the environment, or (5) relative to
all (i.e., other robots, external agents, and the environment). Table 1 categorizes swarm robot behaviors
according to these groupings (see also [83]).

Much of the current research in swarm robotics is aimed at developing specific solutions to one or more
of the swarm behaviors listed in Table 1. Some of these swarm behaviors have received particular atten-
tion, notably formations, flocking, search, coverage, and foraging. In general, most current work in the
development of swarm behaviors is aimed at understanding the formal control theoretic principles that can
predictably converge to the desired group behaviors, and remain in stable states. The following subsections
outline research in some of these areas.

5.3.1 Flocking and Formations

Coordinating the motions of robots relative to each other has been a topic of interest in multiple mobile
robot systems since the inception of the field. In particular, much attention has been paid to the flocking
and formation control problems. The flocking problem can be viewed as a subcase of the formation control
problem, requiring robots to move together along some path in the aggregate, but with only minimal require-
ments for paths taken by specific robots. Formations are more strict, requiring robots to maintain certain
relative positions as they move through the environment. In these problems, robots are assumed to have only
minimal sensing, computation, effector, and communications capabilities. A key question in both flocking
and formation control research is determining the design of local control laws for each robot that generate the
desired emergent collective behavior. Other issues include how robots cooperatively localize themselves to
achieve formation control (e.g., [71, 72]), and how paths can be planned for permutation-invariant multi-robot
formations (e.g., [56]).

Early solutions to the flocking problem in artificial agents were generated by Reynolds [91] using a rule-
based approach. Similar behavior- or rule-based approaches have been used physical robot demonstrations
and studies, such as in [70, 8]. These earlier solutions were based on human-generated local control rules
that were demonstrated to work in practice. More recent work is based on control theoretic principles, with
a focus on proving stability and convergence properties in multi-robot team behaviors. Examples of this
work include [49, 14, 113, 31, 68, 37, 38, 110, 3].

5.3.2 Foraging and Coverage

Foraging is a popular testing application for multi-robot systems, particularly for those approaches that
address swarm robotics, involving very large numbers of mobile robots. In the foraging domain, objects
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such as pucks or simulated food pellets are distributed across the planar terrain, and robots are tasked with
collecting the objects and delivering them to one or more gathering locations, such as a home base. Foraging
lends itself to the study of weakly cooperative robot systems, in that the actions of individual robots do
not have to be tightly synchronized with each other. This task has traditionally been of interest in multi-
robot systems because of its close analogy to the biological systems that motivate swarm robotics research.
However, it also has relevance to several real-world applications, such as toxic waste cleanup, search and
rescue, and demining. Additionally, since foraging usually requires robots to completely explore their terrain
in order to discover the objects of interest, the coverage domain has similar issues to the foraging application.
In coverage, robots are required to visit all areas of their environment, perhaps searching for objects (such as
landmines) or executing some action in all parts of the environment (e.g., for floor cleaning). The coverage
application has real-world relevance to tasks such as demining, lawn care, environmental mapping, and
agriculture.

In foraging and coverage applications, a fundamental question is how to enable the robots to quickly
explore their environments without duplicating actions or interfering with each other. Alternative strategies
can include basic stigmergy [13], forming chains [28], and making use of heterogeneous robots [7]. Other
research demonstrated in the foraging and/or coverage domain includes [86, 33, 116, 106, 94, 108, 21, 69].

5.3.3 Multi-Target Observation

The domain of multi-target observation requires multiple robots to monitor and/or observe multiple targets
moving through the environment. The objective is to maximize the amount of time, or the likelihood,
that the targets remain in view by some team member. The task can be especially challenging if there are
more targets than robots. This application domain can be useful for studying strongly cooperative task
solutions, since robots may have to coordinate their motions or the switching of targets to follow in order
to maximize their objective. In the context of multiple mobile robot applications, the planar version of
this testbed was first introduced by Parker in [82] as CMOMMT (Cooperative Multi-robot Observation
of Multiple Moving Targets). Similar problems have been studied by several researchers, and extended to
more complex problems such as environments with complex topography or three dimensional versions for
multiple aerial vehicle applications. This domain is also related to problems in other areas, such as art gallery
algorithms, pursuit evasion, and sensor coverage. This domain has practical application in many security,
surveillance, and reconnaissance problems. Research applied to the multi-target observation problem in
multi-robot systems includes [12, 123, 66, 60, 57, 51, 111].

6 Future Directions

Many open issues in multi-robot path planning and coordination remain. Current techniques typically do
not scale well to very large numbers of robots (e.g., thousands), and many still have limitations for extensions
to three dimensions (e.g., aerial robots). Many approaches have difficulty in highly stochastic environments;
dynamic, online replanning of paths and coordination strategies is important in these contexts. Creating
provably correct interaction strategies in these domains is an ultimate goal. Developing path planning
and motion coordination techniques that incorporate practical motion and sensing constraints of physical
robots is still an open issue. Integrating these techniques onto physical robots remains uncommon, due
to the practical need to integrate these path planning and coordination algorithms with complete sensing,
navigation, and reasoning systems, as well as the practical difficulty of experiments involving large numbers
of fallible robots. Certainly, ongoing work is addressing these important issues in multi-robot path planning
and coordination; it is likely that the research community will be successful in developing solutions to extend
the state of the art in this domain.

Of course, understanding how to coordinate the motions of robots in a shared workspace has both practical
and scientific interest. From a practical perspective, many real-world applications can potentially benefit
from the use multiple mobile robot systems. Example applications include container management in ports
[1], extra-planetary exploration [105], search and rescue [50], mineral mining [98], transportation [112],
industrial and household maintenance [84], construction [103], hazardous waste cleanup [81], security [30, 44],
agriculture [89], and warehouse management [46]. To date, relatively few real-world implementations of
these multi-robot systems have occurred, primarily due to the complexities of multiple robot systems and
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the relative newness of the supporting technologies. Nevertheless, many proof-of-principle demonstrations
of physical multi-robot systems have been achieved, and the expectation is that these systems will find their
way into practical implementations as the technology continues to mature. Because of the fundamental need
for motion coordination for all applications of multi-robot systems, the work described in this chapter is of
critical importance.

From a scientific perspective, understanding interactions between multiple autonomous robots might lead
to insights in understanding other types of complex systems, from natural interactions in biology and social
systems to engineered complex systems involving multiple interacting agents. Because multi-robot systems
operate in stochastic and unpredictable settings, the study of the interaction dynamics in these settings can
lead to discoveries of broader impact to a wide range of complex nonlinear systems.
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