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Background – computing Schur forms

A
Step 1−−−−→ H = @

@@

@
@
@

Step 2−−−−→ S =
@
@
@

(A,B)→ (H,T ) = (@
@@

@
@
@
,
@
@
@

)→ (S,T ) = (
@

@
@
,
@
@
@

)

Provide orthogonal bases of subspaces associated with a
specified spectrum.

Option: Provide condition estimators!
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Task graphs of one-sided and two-sided blocked
matrix computations

QTA = R
QTAQ = H
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Related talks in MS75 - Part I

Parallel Multishift QR and QZ Algorithms with Advanced
Deflation Strategies - Recent Progress
(presented by Bo Kågström)

The Parallel Nonsymmetric QR Algorithm with Aggressive
Early Deflation
(presented by Meiyue Shao)

Towards a Fine-Grained Parallel Implementation of the
Nonsymmetric QR Algorithm
(presented by Bo Kågström - substitute for Lars Karlsson)

4 Bo Kågström et al Parallel QR and QZ Algorithms



Generalized Eigenvalue Problem

Given n × n matrices A and B, compute all (generalized)
eigenvalues λ of A− λB (or βA− αB), the roots of

det(A− λB) = 0.

If B is nonsingular, coincides with matrix eigenvalue
problem B−1A.
If B is singular, some of the eigenvalues are∞.

Even for nonsingular B, forming B−1A is not advisable!

Some typical applications:
1 DAEs: dynamic systems with algebraic constraints

(singular B);
2 Finite element discretizations with nonorthonormal basis

functions (sometimes nearly singular B);
3 ... many other ...
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The Generalized Schur Decomposition

Given n× n matrices A and B, there are unitary matrices Q and
Z such that

S − λT = Q∗(A− λB)Z =

[
@
@
@

]
− λ

[
@

@
@

]
.

For A and B real, Q and Z can be chosen orthogonal, resulting
in quasi-triangular S (1× 1 and 2× 2 blocks on the diagonal).

Eigenvalues come in pairs (α, β) = (sii , tii):
λi = sii/tii (if tii 6= 0)
λi =∞ (if tii = 0)

If sii = tii = 0 for at least one i , the eigenvalue problem is called
singular, otherwise regular.
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Outline

The generalized eigenvalue problem
The generalized Schur decomposition

QZ algorithm – brief review
Multi-shift QZ variants
Advanced deflation strategies (AED)
Parallel multishift QZ algorithm with AED
Dealing with infinite eigenvalues
Library software
Computational experiments
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QZ Algorithm [Moler/Stewart’73]

The purpose of the QZ algorithm is to compute a generalized
Schur decomposition.

Ingredients:
1 Initial Hessenberg-triangular (HT) reduction: Compute Q

and Z s.t.

H − λT = Q∗(A− λB)Z =

[
@

@@

@
@
@

]
− λ

[
@

@
@

]

2 QZ iterations: Drive subdiagonal entries of H to zero.
3 Deflations: Sufficiently small subdiagonal elements

(≈ 10−16 × ‖H‖) can be set to zero 

H − λT =

[
H11 − λT11 H12 − λT12

0 H22 − λT22

]
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QZ Iterations

Steps of one QZ iteration on H − λT :
1. Choose shifts σ1, . . . , σm (m is tiny, say m = 2 or m = 4) as

the eigenvalues of the bottom right m ×m block of H − λT .
2. Compute unitary Q0 mapping

∏
(HT−1 − σk I)e1 to e1.

3. Reduce Q∗
0(H − λT ) back to Hessenberg-triangular form.

H − λT =



x x x x x x
x x x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x

− λ


x x x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x
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Memory Hierarchy and BLAS 3 Paradigm
Memory Hierarchy and BLAS 3 Paradigm

large/slow/cheap

small/fast/expensive

Registers

Caches

Local Memory

Disk

Remote Memory

Paradigm: Do as many computations as possible in fast memory
before moving data.
Convenient way to achieve this: Restructure algorithm to increase
usage of level 3 BLAS (matrix-matrix multiplies).

Kågström–Kressner, Umeå University GAMM–SIAM, Düsseldorf, July 24–27, 2006 – p.6/27

Paradigm: Do as many computations as possible in fast
memory before moving data.
Restructure algorithm to increase usage of level 3 BLAS
(matrix-matrix multiplies).
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Multishift QZ – Introducing Chain

Red area: Updated during introduction.
Blue area: Updated after introduction via matrix-matrix-mult.
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Multishift QZ – Chasing Chain

Red area: Updated during chase.
Blue area: Updated after chase via matrix-matrix-mult.
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Aggressive Early Deflation in QZ
Aggressive Early Deflation in QZ

With standard deflation, the QZ algorithm can be viewed as a
Newton method.

Kågström–Kressner, Umeå University OGAMM–SIAM, Düsseldorf, July 24–27, 2006 – p.10/27

Standard deflation: Look for hi+1,i ≈ 10−16 × ‖H‖.
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Aggressive Early Deflation in QZ
Aggressive Early Deflation in QZ

Aggressive early deflation (AED) adds a Krylov subspace
acceleration!

See [Kågström/Kressner’05], based on [Braman/Byers/Mathias’02].

Kågström–Kressner, Umeå University GAMM–SIAM, Düsseldorf, July 24–27, 2006 – p.10/27

AED: look for small elements outside subdiagonal of H-part.

See [Kågström/Kressner’07], based on [Braman/Byers/Mathias’02].
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AED in QZ Algorithm

Let (H,T ) be in unreduced form:

H =

 H11 H12 H13
H21 H22 H23
0 H32 H33

 , T =

 T11 T12 T13
0 T22 T23
0 0 T33


Block rows and columns are of size n − nw − 1,1 and nw .

Deflation window:
Submatrix pair ([H32, H33], [0, T33]) of size nw × (nw + 1).

Compute generalized Schur decomposition of (H33,T33):

(Ŝ33, T̂33) = QH(H33,T33)Z
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AED in QZ Algorithm

Apply equivalence transformation to (H,T ): I 0 0
0 1 0
0 0 QH

 (H,T )

 I 0 0
0 1 0
0 0 Z

 = (Ĥ, T̂ ),

where

Ĥ =

 H11 H12 H13Z
H21 H22 H23Z
0 QHH32 Ŝ33

 , T̂ =

 T11 T12 T13Z
0 T22 T23Z
0 0 T̂33

 .

s = QHH32 nw × 1 “the spike”
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Early Deflation?

If k of the trailing components of

s = QHH32

are tiny ( < 10−16‖H‖F ), deflate w.r.t. the trailing k × k matrix
pair:

H̃ =


H11 H12 Ĥ13 Ĥ14

H21 H22 H̃23 H̃24

0 ŝ Ĥ33 Ĥ34

0 0 0 Ĥ44

 T̃ =


T11 T12 T̂13 T̂14

0 T22 T̃23 T̃24

0 0 T̂33 T̂34

0 0 0 T̂44


Block rows and columns are of size n− nw − 1,1,nw − k and k ,
respectively.
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BBM/ADK: Best Case Example of AED

Consider 6× 6 matrix pair (H6,T6), which is a generalization of
the motivating example by Braman-Byers-Mathias’02:

H6 =


6 5 4 3 2 1

0.001 1 0 0 0 0
0.001 2 0 0 0

0.001 3 0 0
0.001 4 0

0.001 5

 T6 =


1 1 1 1 1 1

1 0 0 0 0
1 0 0 0

1 0 0
1 0

1



Estimate the distance between (H6,T6) and a matrix pair with
eigenvalues equal to 5, 4, 3, 2 and 1.
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BBM/ADK: Best Case Example of AED

Estimates of the distances (‖.‖F ) between (H6,T6) and a matrix
pair with eigenvalues equal to (hii , tii) of (H6,T6) for nw = 5.

A matrix pair with ...
5 as eigenvalue is within distance 10−17

5 and 4 as eigenvalues is within distance 10−13

5, 4 and 3 as eigenvalues is within distance 10−10

... by setting the trailing k (= 1,2,3) components of s to zero.
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Retransform to HT-form

H̃ =


H11 H12 Ĥ13 Ĥ14

H21 H22 H̃23 H̃24

0 ŝ Ĥ33 Ĥ34

0 0 0 Ĥ44

 T̃ =


T11 T12 T̂13 T̂14

0 T22 T̃23 T̃24

0 0 T̂33 T̂34

0 0 0 T̂44


Construct Q = I − βvvT such that QT ŝ = ce1

Transform (QT Ĥ33,QT T̂33) to HT-form:

QT T̂33 = (I − βvvT )T̂33 = T̂33 − βv(T̂33v)T

Rank-1 perturbation of upper triangular matrix

Apply RQ-updating: 2(nw − k − 1) rotations −→ Z
Apply standard HT-reduction algorithm to
(QT Ĥ33Z ,QT T̂33Z )
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(QT Ĥ33Z ,QT T̂33Z )

20 Bo Kågström et al Parallel QR and QZ Algorithms



BBM/ADK example for n = 600− 4000

1000 1500 2000 2500 3000 3500 4000
10
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Execution time in logarithmic scale without (top graphs) and
with AED (nw = n − 1). Time spent on (multishift) QZ iterations
negligible compared to overall time!
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Parallel QZ on distributed memory

Pr × Pc processor grid
Square block (NB × NB) cyclic data distribution
Multiple computational windows

Parallel multishift QZ iterations by chasing several tightly
coupled bulge chains—level 3 operations!
Parallel multi-level AED—faster convergence!

Reduce communication costs via data redistribution
Computations done on a subgrid

Explained in context of the // QR algorithm (next talk!)
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Treating Infinite Eigenvalues

QZ algorithm is in many aspects similar to the QR algorithm for
solving matrix eigenvalue problems.

Fundamental difference: occurence of infinite eigenvalues!

In exact arithmetic, singularity of B implies zero diagonal entry
in T :

H − λT =


x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x

− λ


x x x x x
0 x x x x
0 0 0 x x
0 0 0 x x
0 0 0 0 x


Zero can be pushed to one of the corners and deflated.

Use windowing technique for deflating many infinite
eigenvalues of a large matrix pair (=⇒ blocked algorithm with
delayed updates).
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Parallel Deflation of λ =∞

Identification of 0-elements in the diagonal of T (black squares).

Assume unreduced H: hi+1,i 6= 0
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Parallel Deflation of λ =∞

Intra-block chasing of zeros in T : Broadcasts horizontal and
vertical followed by // updates of off-diagonal blocks in (H,T ).

h2,1 = h3,2 = h4,3 = hn−1,n−2 = hn,n−1 = 0 and
t1,1 = t2,2 = t3,3 = tn−1,n−1 = tn,n = 0
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Parallel Deflation of λ =∞

Inter-block chasing of zeros in T : Cross-border chasing for
odd-numbered windows. Broadcasts horizontal and vertical
followed by // updates of off-diagonal blocks in (H,T ).
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Parallel Deflation of λ =∞
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Parallel Deflation of λ =∞

Chasing of zero diagonal elements of T completed.

Perform (initial) deflation of infinite eigenvalues (8 = 3 + 5)

24 Bo Kågström et al Parallel QR and QZ Algorithms



Beware of Infinite Eigenvalues

In finite-precision arithmetic these zero diagonal entries can be
severely perturbed, leading to the

√
∞-effect.

Example:

A− λB = QT




3 3 3 3 3
1 3 3 3 3
0 1 3 3 3
0 0 1 3 3
0 0 0 1 3

− λ


1 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1


Z

with random orthogonal matrices Q and Z .
Two infinite eigenvalues but QZ algorithm computes nonzero
pairs (sii , tii) with ratio sii/tii ≈ ±6× 107

√
−1.
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Preprocessing Deflation of λ =∞

Exploiting staircase algorithms (e.g., GUPTRI):

UT (A,B)V =

([
A11 A12
0 Ainf

]
,

[
B11 B12
0 Binf

])

U and V orthogonal.
(Ainf,Binf) reveals the Jordan structure of the infinite
eigenvalue.
(A11,B11) has only finite eigenvalues.
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UT (A,B)V =

([
A11 A12
0 Ainf

]
,

[
B11 B12
0 Binf

])

U and V orthogonal.
(Ainf,Binf) reveals the Jordan structure of the infinite
eigenvalue.
(A11,B11) has only finite eigenvalues.
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Library software for computing
generalized Schur forms of regular A− λB

Step LAPACK ScaLAPACK (∅)
0: Balancing xGGBAL PxGGBAL

1: (A,B)→ (H,T ) xGGHRD PxGGHRD

2: (H,T )→ (S,T ) xHGEQZ1 PxHGEQZ

3: (S,T )→ (Sord,Tord) xTGESEN PxTGESEN2

PxTGORD

GEP contributions are ongoing work!

1No multishift, no AED!
2Use parallel routines of SCASY/RECSY—matrix equation solvers
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Computational experiments
Target parallel systems (abisko, akka)

Radom matrices—fullrand (A,B), hessrand (H,T )

Benchmark examples (AKK/BBM, Matrix Market, NEP
collection)

Wanted! Large scale (dense) generalized eigenvalue problems!
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Varying number of infinite eigenvalues of random H,T

Execution times for hessrand 4000x4000 with varying number
of infinite eigenvalues.
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PDHGEQZ execution times (in secs) – fullrand (A,B)

PDHGEQZ: parallel multishift QZ algorithm with AED
two AED-levels, data redistribution, dynamic NIBBLE

n =
Pr × Pc 4 000 8 000 16 000 32 000

1× 1 125 (1.1) Fullrand
2× 2 73 (1.1) 476 (1.7)
4× 4 48 (1.2) 251 (1.5) 1282 (1.7)
6× 6 45 (1.0) 161 (1.4) 723 (1.6)
8× 8 41 (1.1) 145 (0.9) 602 (1.6) 2640 (1.5)

10× 10 40 (0.9) 130 (1.1) 537 (1.8) 2050 (1.5)

(Time PDHGEQZ / Time PDHSEQR)
# flops (sequential): QZ ≈ 3.5× QR ( QT (A,B)Z = (S,T ) )
Fullrand // timings: PDHGEQZ ≈ 0.9− 1.8× PDHSEQR
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PDHGEQZ execution times (in secs) – 100K × 100K
hessrand (A,B)

PDHGEQZ: parallel multishift QZ algorithm with AED
two AED-levels, data redistribution, dynamic NIBBLE
without tests for infinite eigenvalues

Pr × Pc= 16× 16 24× 24 32× 32
TAED 86% 74% 54%
TSweep 14% 26% 46%
Total time 25185(2.6) 12913(1.8) 10512(1.7)
#AED 25(0.7) 25(0.8) 33(1.3)
#Sweeps 2(0.5) 4(0.7) 7(0.7)
#Shifts/n 0.07(0.4) 0.13(0.6) 0.27(0.9)

Ratios (PDHGEQZ / PDHSEQR)
Hessrand // timings: PDHGEQZ ≈ 1.7− 2.6× PDHSEQR
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Abstract PMAA 2012

Key techniques used in our novel parallel QR and QZ
algorithms include multi-window bulge chain chasing and
distributed aggressive early deflation (AED), which enable
level-3 chasing and delayed update operations as well as
improved eigenvalue convergence. Mixed MPI-OpenMP coding
techniques are utilized for DM platforms with multithreaded
nodes, such as multicore processors. Recent progress includes
a multi-level recursive approach for performing AED in a
parallel environment leading to communication avoiding
algorithms via data redistribution. A new performance model of
our parallel QR algorithm is presented together with our library
software available as part of ScaLAPACK version 2.0.
Application and test benchmarks confirm the superb
performance of our parallel implementations.
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Target parallel systems@HPC2N

akka 64-bit low power Intel Xeon Linux cluster, 672 dual socket
quadcore L5420 2.5GHz nodes, 256KB dedicated L1
cache, 12MB shared L2 cache, 16GB RAM per node,
Cisco Infiniband and Gigabit Ethernet, 10 GB/sec
bandwidth.

abisko 64-bit AMD Opteron L238 12 cores (2.6 GHz) Linux
Cluster; (Interlagos)[1 socket 12 cores, 1 NUMA island = 6
cores, 1 module = 2 cores w. common FPU], 48 cores
nodes, 15264 cores, 128 GB RAM (312 nodes), 512 GB
RAM 8GB (10 nodes), Infiniband QDR - 40Gb/s, 160+
Tflops.
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Compilers and software

akka OpenMPI 1.2.6, BLACS 1.1patch3, GOTO BLAS r1.26,
LAPACK 3.1.1, ScaLAPACK/PBLAS 1.8.0

sarek MPICH-GM 1.5.2, BLACS 1.1patch3, GOTO BLAS r0.94,
LAPACK 3.1.1, ScaLAPACK/PBLAS 1.7.0

On both systems, we use the Portland Group Compiler Suite.
ONLY for SISC-paper! Now, Pathscale compiler is used.
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Accuracy metrics

To validate the output, we compute the following accuracy
measures

Relative residual norm:

Rr =
‖QT AQ − S‖F

‖A‖F

Relative orthogonality check:

Ro =
max(‖QT Q − In‖F , ‖QQT − In‖F )

un

Both ScaLAPACK and novel algorithm perform well on Ro,
while our new parallel implementation is usually slightly
better for Rr .
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QR: Sweep − updates
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Profile of execution time for SISC implementation; memory load
corresponds to a 4 000× 4 000 submatrix per core.
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Balancing

Hessenberg red.

QR: AED Schur red.

QR: AED reordering

QR: return to Hess.

QR: Sweep - updates

QR: Sweep - local chase

Profile of execution time for ScaLAPACK 2.0.1 implementation;
memory load corresponds to a 4 000× 4 000 submatrix per core.
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Choice of algorithm parameters

Pr × Pc : process mesh size; Pr = Pc

nb: data distribution block size; optimal on a few cores:
akka: nb = 50
sarek: nb = 160

nw : size of deflation window; varies with problem size n
ns: number of shifts; = 2nw/3 (min 10)

n: 590-3000 –6000 –12000 –24000 –48000 –96000 > 96000
nw : 96 192 384 768 1536 3072 6144
ns : 64 128 256 512 1024 2048 4096

NIBBLE: dynamic (fixed 14% in LAPACK)
If AED detects a high fraction of eigenvalues in the deflation
window to be converged, it can be beneficial to skip
subsequent QR sweep and perform AED once again on a
suitably adjusted deflation window.
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