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Motivation
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FAST 

Local 

Sequential Parallel 

Local Local 

Local 

Local Local Local 

Local 

Local 

By communication we mean

moving data within memory hierarchy on a sequential computer

moving data between processors on a parallel computer

Communication is expensive, so our goal is to minimize it

in many cases we need new algorithms

in many cases we can prove lower bounds and optimality
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γ = time per flop

β = time per word moved

α = time per message

F = #flops

BW = #words moved

L = #messages

Running time = γ · F + β · BW + α · L
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Direct vs Two-Step Bidiagonalization

Application: computing the dense SVD via reduction to bidiagonal form
(bidiagonalization)

Conventional approach (e.g. LAPACK) is direct bidiagonalization

Two-step approach reduces first to band, then band to bidiagonal

Direct:

A C 

Two-step:

A B C 
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Why is direct bidiagonalization slow?

Communication costs!
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M = fast memory size

Direct approach achieves O(1) data re-use

Two-step approach moves fewer words than direct approach
using intermediate bandwidth b = Θ(

√
M)

Full-to-banded step (1) achieves O(
√
M) data re-use

this is optimal

Band reduction step (2) achieves O(1) data re-use
Can we do better?
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Band Reduction via Bulge Chasing

We want to compute and apply orthogonal matrices Q and W to
transform a band matrix B to a bidiagonal matrix C :

QTBW = C

The basic procedure for band reduction is known as “bulge chasing”

main idea is to annihilate entries with orthogonal transformations but
maintain band sparsity structure

there’s a big design space, many different approaches

same ideas work for symmetric band eigenproblem
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Successive Band Reduction (bulge-chasing)

constraint:
c + d ≤ b
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b = bandwidth
c = columns
d = diagonals
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[Bischof, Lang, Sun 2000]



SBR - 1 Sweep Approach

eliminate one column at a time
bidiagonal after one sweep

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

b = bandwidth
c = 1
d = b − 1
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Several Different Scenarios. . .

starting with dense matrix OR starting with band matrix

seeking singular values only OR seeking also singular vectors

left AND/OR right singular vectors (some OR all of them)

sequential machine OR parallel machine

singular value decomposition OR symmetric eigenproblem

We’ll focus on bidiagonalization of (lower triangular) band matrices for the
rest of the talk, considering

sequential and parallel cases

values only and values and (left and right) vectors cases

Our main goal will be to find ways to re-use data in band reduction process
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Accumulating Orthogonal Transformations

Band reduction:
B = QCW T

Bidiagonal SVD:
C = UΣV T

Full SVD:
B = (QU)Σ(WV )T

To compute left singular vectors of band matrix B, either

1 form Q explicitly and apply U to Q from right, or

2 store Q implicitly and apply Q to U from left
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How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory
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Data access patterns

One bulge at a time Four bulges at a time
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Asymptotics - singular values only - sequential case

Algorithm Flops Words Messages

LAPACK 4n2b O(n2b) O
(
n2b

)
1 Sweep SBR 8n2b O(n2b) O

(
n2b
M

)

Improved 1 Sweep SBR† 8n2b O
(

n2b3

M

)
O
(

n2b3

M2

)
CA-SBR† 6n2b O

(
n2b2

M

)
O
(

n2b2

M2

)
†assuming 1 ≤ b ≤

√
M/3

CA-SBR cuts remaining bandwidth in half at each sweep

starts with big c and decreases by half at each sweep

starts with small ω and doubles at each sweep
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What if you want singular vectors too? - sequential case

We’ve used two optimizations:

1 chase multiple bulges (increase ω)
2 take multiple sweeps (increase c)

accumulating orthogonal transformations costs O(n3) flops per sweep

Algorithm Flops Words Messages

LAPACK 4n3 O(n2b + n3) O
(
n2b + n3

M

)
1 Sweep SBR 4n3 O

(
n2b + n3

√
M

)
O
(

n2b
M + n3

M

)

Improved 1 Sweep SBR† 4n3 O
(

n2b3

M + n3
√

M

)
O
(

n2b3

M2 + n3

M3/2

)
CA-SBR† 2n3 log b O

(
n2b√

M
+ n3 log b√

M

)
O
(

n2 log b
M + n3 log b

M3/2

)

communication costs: band reduction + orthogonal updates
†assuming 1 ≤ b ≤

√
M/3
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Parallel 1 Sweep SBR

P0 

P1 

P2 

P3 

Grey Ballard 13

eliminate one column at a time;
bidiagonal after one sweep

works like a bandsaw:
columns move left
Householder vectors move right
O(1) messages per column

[Lang 1993]



Parallel CA-SBR

P0 

P1 

P2 

P3 

P4 
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cut bandwidth in half each sweep;
requires multiple sweeps

works like a sandbag relay:
each processor passes bulges along
O(p) messages per sweep



Asymptotics - singular values only - parallel case

Multiple sweeps and chasing multiple bulges reduces latency cost

Algorithm Flops Words Messages

1 Sweep SBR O
(

n2b
p

)
O(nb) O(n)

CA-SBR† O
(

n2b
p

)
O(nb) O(p log b)

†assuming 1 ≤ b ≤ n/(3p)
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What if you want singular vectors too? - parallel case

Run band reduction on
√
p processors, orthogonal updates on all p

broadcasting band reduction updates, or

redundantly computing band reduction

Algorithm Flops Words Messages

1 Sweep SBR∗ 4n3

p O
(
nb + n2

√
p

)
O(n + log p)

CA-SBR† 2n3 log b
p O

(
nb + n2

√
p log b

)
O(
√
p log b)

∗[Auckenthaler et al. 2011]
†assuming 1 ≤ b ≤ n/(3

√
p)

Again, latency is reduced at the cost of extra computation
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Conclusions and Future Work

We’ve used two means to improve data re-use in band reduction schemes:

1 taking multiple sweeps (re-using data within a bulge chase)

2 chasing multiple bulges (re-using data among bulge chases)

Asymptotic communication improvements:

1 in sequential case, we can reduce both bandwidth and latency costs

2 in parallel case, we can reduce latency cost

For singular vectors, multiple sweeps results in extra computation

for subset of vectors, extra computation decreases

to navigate tradeoff, take 1 ≤ # sweeps ≤ log b

These ideas can also benefit full SVD case (starting with dense matrix)
and symmetric eigenproblem (with different constant factors)
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Thank you!

Grey Ballard, Jim Demmel, Nick Knight
{ballard,demmel,knight}@cs.berkeley.edu

Grey Ballard 18



References I

Aggarwal, A., and Vitter, J. S.
The input/output complexity of sorting and related problems.
Comm. ACM 31, 9 (1988), 1116–1127.

Agullo, E., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Langou, J.,
Ltaief, H., Luszczek, P., and YarKhan, A.
PLASMA users’ guide, 2009.
http://icl.cs.utk.edu/plasma/.

Ballard, G., Demmel, J., Holtz, O., and Schwartz, O.
Minimizing communication in linear algebra.
SIAM Journal on Matrix Analysis and Applications 32, 3 (2011), 866-901.

Bischof, C., Lang, B., and Sun, X.
A framework for symmetric band reduction.
ACM Trans. Math. Soft. 26, 4 (2000), 581–601.

Bischof, C. H., Lang, B., and Sun, X.
Algorithm 807: The SBR Toolbox—software for successive band reduction.
ACM Trans. Math. Soft. 26, 4 (2000), 602–616.

Demmel, J., Grigori, L., Hoemmen, M., and Langou, J.
Communication-optimal parallel and sequential QR and LU factorizations.
SIAM J. Sci. Comput. (2011). To appear.

Grey Ballard 19



References II

Dongarra, J., Hammarling, S., and Sorensen, D.
Block reduction of matrices to condensed forms for eigenvalue computations.
Journal of Computational and Applied Mathematics 27 (1989).

Fuller, S. H., and Millett, L. I., Eds.
The Future of Computing Performance: Game Over or Next Level?
The National Academies Press, Washington, D.C., 2011.

Haidar, A., Ltaief, H., and Dongarra, J.
Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated
fine-grained and memory-aware kernels.
Proceedings of the ACM/IEEE Conference on Supercomputing (2011).

Howell, G., Demmel, J., Fulton, C., Hammarling, S., and Marmol, K.
Cache efficient bidiagonalization using BLAS 2.5 operators.
ACM Trans. Math. Softw. 34, 3 (2008), 14:1-14:33.

Kaufman, L.
Banded eigenvalue solvers on vector machines.
ACM Trans. Math. Softw. 10 (1984), 73–86.

Kaufman, L.
Band reduction algorithms revisited.
ACM Trans. Math. Softw. 26 (December 2000), 551–567.

Grey Ballard 20



References III

Lang, B.
A parallel algorithm for reducing symmetric banded matrices to tridiagonal form.
SIAM J. Sci. Comput. 14, 6 (1993), 1320–1338.

Lang, B.
Efficient eigenvalue and singular value computations on shared memory machines.
Par. Comp. 25, 7 (1999), 845 – 860.

Ltaief, H., Luszczek, P., and Dongarra, J.
High performance bidiagonal reduction using tile algorithms on homogeneous multicore
architectures.
Tech. Rep. 247, LAPACK Working Note, May 2011.
Submitted to ACM TOMS.

Luszczek, P., Ltaief, H., and Dongarra, J.
Two-stage tridiagonal reduction for dense symmetric matrices using tile algorithms on
multicore architectures.
In Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(2011).

Murata, K., and Horikoshi, K.
A new method for the tridiagonalization of the symmetric band matrix.
Information Processing in Japan 15 (1975), 108–112.

Grey Ballard 21



References IV

Rajamanickam, S.
Efficient Algorithms for Sparse Singular Value Decomposition.
PhD thesis, University of Florida, 2009.

Rutishauser, H.
On Jacobi rotation patterns.
In Proceedings of Symposia in Applied Mathematics (1963), vol. 15, pp. 219–239.

Schwarz, H.
Algorithm 183: Reduction of a symmetric bandmatrix to triple diagonal form.
Comm. ACM 6, 6 (June 1963), 315–316.

Schwarz, H.
Tridiagonalization of a symmetric band matrix.
Numerische Mathematik 12 (1968), 231–241.

Grey Ballard 22



Anatomy of a symmetric bulge-chase

QR PRE 

SYM 

POST 

b+1 

d+
1 

c 

QR: create zeros

PRE: A← QTA

SYM: A← QTAQ

POST: A← AQ
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Shared-Memory Parallel Implementation

lots of dependencies:
use pipelining

threads maintain working

sets which never overlap
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