
Avoiding Communication in Parallel
Bidiagonalization of Band Matrices

Grey Ballard, James Demmel, Nicholas Knight

UC Berkeley

SIAM CSE 13

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia,

NVIDIA, and Samsung.

Motivation

SLOW

FAST

Local

Sequential Parallel

Local Local

Local

Local Local Local

Local

Local

By communication we mean

moving data within memory hierarchy on a sequential computer

moving data between processors on a parallel computer

Communication is expensive, so our goal is to minimize it

in many cases we need new algorithms

in many cases we can prove lower bounds and optimality

Grey Ballard 1

Motivation

SLOW

FAST

Local

Sequential Parallel

Local Local

Local

Local Local Local

Local

Local

γ = time per flop

β = time per word moved

α = time per message

F = #flops

BW = #words moved

L = #messages

Running time = γ · F + β · BW + α · L

Grey Ballard 1

Direct vs Two-Step Bidiagonalization

Application: computing the dense SVD via reduction to bidiagonal form
(bidiagonalization)

Conventional approach (e.g. LAPACK) is direct bidiagonalization

Two-step approach reduces first to band, then band to bidiagonal

Direct:

A C

Two-step:

A B C

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

0  1000  2000  3000  4000  5000  6000  7000  8000 

M
FL
O
PS
 

n 

MatMul  Direct  Two‐step 

Grey Ballard 2

Direct vs Two-Step Bidiagonalization

Application: computing the dense SVD via reduction to bidiagonal form
(bidiagonalization)

Conventional approach (e.g. LAPACK) is direct bidiagonalization

Two-step approach reduces first to band, then band to bidiagonal

Direct:

A C

Two-step:

A B C

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

0  1000  2000  3000  4000  5000  6000  7000  8000 

M
FL
O
PS
 

n 

MatMul  Direct  Two‐step 

Grey Ballard 2

Why is direct bidiagonalization slow?

Communication costs!

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

0  1000  2000  3000  4000  5000  6000  7000  8000 

M
FL
O
PS
 

n 

MatMul  Direct  Two‐step 
Approach Flops Words Moved

Direct 8
3n

3 O
(
n3
)

Two-step
(1) 8

3n
3 O

(
n3
√

M

)
(2) O

(
n2
√
M
)

O
(
n2
√
M
)

M = fast memory size

Direct approach achieves O(1) data re-use

Two-step approach moves fewer words than direct approach
using intermediate bandwidth b = Θ(

√
M)

Full-to-banded step (1) achieves O(
√
M) data re-use

this is optimal

Band reduction step (2) achieves O(1) data re-use
Can we do better?

Grey Ballard 3

Band Reduction via Bulge Chasing

We want to compute and apply orthogonal matrices Q and W to
transform a band matrix B to a bidiagonal matrix C :

QTBW = C

The basic procedure for band reduction is known as “bulge chasing”

main idea is to annihilate entries with orthogonal transformations but
maintain band sparsity structure

there’s a big design space, many different approaches

same ideas work for symmetric band eigenproblem

Grey Ballard 4

Successive Band Reduction (bulge-chasing)

constraint:
c + d ≤ b

9

Q1

7

5

3

1
11

W1
T

b+

1

d+
1

c

c+
d

c d

Q2

W2
T

Q3

W3
T

Q4

W4
T

Q5

W5
T

2

4

6

8

10

b = bandwidth
c = columns
d = diagonals

Grey Ballard 5

[Bischof, Lang, Sun 2000]

SBR - 1 Sweep Approach

eliminate one column at a time
bidiagonal after one sweep

1

2

3

4

5

6

7

8

9

10

b = bandwidth
c = 1
d = b − 1

Grey Ballard 6

Several Different Scenarios. . .

starting with dense matrix OR starting with band matrix

seeking singular values only OR seeking also singular vectors

left AND/OR right singular vectors (some OR all of them)

sequential machine OR parallel machine

singular value decomposition OR symmetric eigenproblem

We’ll focus on bidiagonalization of (lower triangular) band matrices for the
rest of the talk, considering

sequential and parallel cases

values only and values and (left and right) vectors cases

Our main goal will be to find ways to re-use data in band reduction process

Grey Ballard 7

Several Different Scenarios. . .

starting with dense matrix OR starting with band matrix

seeking singular values only OR seeking also singular vectors

left AND/OR right singular vectors (some OR all of them)

sequential machine OR parallel machine

singular value decomposition OR symmetric eigenproblem

We’ll focus on bidiagonalization of (lower triangular) band matrices for the
rest of the talk, considering

sequential and parallel cases

values only and values and (left and right) vectors cases

Our main goal will be to find ways to re-use data in band reduction process

Grey Ballard 7

Accumulating Orthogonal Transformations

Band reduction:
B = QCW T

Bidiagonal SVD:
C = UΣV T

Full SVD:
B = (QU)Σ(WV)T

To compute left singular vectors of band matrix B, either

1 form Q explicitly and apply U to Q from right, or

2 store Q implicitly and apply Q to U from left

Grey Ballard 8

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

9

Q1

7

5

3

1
11

W1
T

b+
1

d+
1

c

c+
d

c d

Q2

W2
T

Q3

W3
T

Q4

W4
T

Q5

W5
T

2

4

6

8

10

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR

b+1

d+
1

c

PRE + LQ

PRE

POST

PRE + POST

Grey Ballard 9

Data access patterns

One bulge at a time Four bulges at a time

Grey Ballard 10

Asymptotics - singular values only - sequential case

Algorithm Flops Words Messages

LAPACK 4n2b O(n2b) O
(
n2b

)
1 Sweep SBR 8n2b O(n2b) O

(
n2b
M

)

Improved 1 Sweep SBR† 8n2b O
(

n2b3

M

)
O
(

n2b3

M2

)
CA-SBR† 6n2b O

(
n2b2

M

)
O
(

n2b2

M2

)
†assuming 1 ≤ b ≤

√
M/3

CA-SBR cuts remaining bandwidth in half at each sweep

starts with big c and decreases by half at each sweep

starts with small ω and doubles at each sweep

Grey Ballard 11

Asymptotics - singular values only - sequential case

Algorithm Flops Words Messages

LAPACK 4n2b O(n2b) O
(
n2b

)
1 Sweep SBR 8n2b O(n2b) O

(
n2b
M

)
Improved 1 Sweep SBR† 8n2b O

(
n2b3

M

)
O
(

n2b3

M2

)

CA-SBR† 6n2b O
(

n2b2

M

)
O
(

n2b2

M2

)

†assuming 1 ≤ b ≤
√
M/3

CA-SBR cuts remaining bandwidth in half at each sweep

starts with big c and decreases by half at each sweep

starts with small ω and doubles at each sweep

Grey Ballard 11

Asymptotics - singular values only - sequential case

Algorithm Flops Words Messages

LAPACK 4n2b O(n2b) O
(
n2b

)
1 Sweep SBR 8n2b O(n2b) O

(
n2b
M

)
Improved 1 Sweep SBR† 8n2b O

(
n2b3

M

)
O
(

n2b3

M2

)
CA-SBR† 6n2b O

(
n2b2

M

)
O
(

n2b2

M2

)
†assuming 1 ≤ b ≤

√
M/3

CA-SBR cuts remaining bandwidth in half at each sweep

starts with big c and decreases by half at each sweep

starts with small ω and doubles at each sweep

Grey Ballard 11

What if you want singular vectors too? - sequential case

We’ve used two optimizations:

1 chase multiple bulges (increase ω)
2 take multiple sweeps (increase c)

accumulating orthogonal transformations costs O(n3) flops per sweep

Algorithm Flops Words Messages

LAPACK 4n3 O(n2b + n3) O
(
n2b + n3

M

)
1 Sweep SBR 4n3 O

(
n2b + n3

√
M

)
O
(

n2b
M + n3

M

)

Improved 1 Sweep SBR† 4n3 O
(

n2b3

M + n3
√

M

)
O
(

n2b3

M2 + n3

M3/2

)
CA-SBR† 2n3 log b O

(
n2b√

M
+ n3 log b√

M

)
O
(

n2 log b
M + n3 log b

M3/2

)

communication costs: band reduction + orthogonal updates
†assuming 1 ≤ b ≤

√
M/3

Grey Ballard 12

What if you want singular vectors too? - sequential case

We’ve used two optimizations:

1 chase multiple bulges (increase ω)
2 take multiple sweeps (increase c)

accumulating orthogonal transformations costs O(n3) flops per sweep

Algorithm Flops Words Messages

LAPACK 4n3 O(n2b + n3) O
(
n2b + n3

M

)
1 Sweep SBR 4n3 O

(
n2b + n3

√
M

)
O
(

n2b
M + n3

M

)

Improved 1 Sweep SBR† 4n3 O
(

n2b3

M + n3
√

M

)
O
(

n2b3

M2 + n3

M3/2

)
CA-SBR† 2n3 log b O

(
n2b√

M
+ n3 log b√

M

)
O
(

n2 log b
M + n3 log b

M3/2

)

communication costs: band reduction + orthogonal updates

†assuming 1 ≤ b ≤
√
M/3

Grey Ballard 12

What if you want singular vectors too? - sequential case

We’ve used two optimizations:

1 chase multiple bulges (increase ω)
2 take multiple sweeps (increase c)

accumulating orthogonal transformations costs O(n3) flops per sweep

Algorithm Flops Words Messages

LAPACK 4n3 O(n2b + n3) O
(
n2b + n3

M

)
1 Sweep SBR 4n3 O

(
n2b + n3

√
M

)
O
(

n2b
M + n3

M

)
Improved 1 Sweep SBR† 4n3 O

(
n2b3

M + n3
√

M

)
O
(

n2b3

M2 + n3

M3/2

)

CA-SBR† 2n3 log b O
(

n2b√
M

+ n3 log b√
M

)
O
(

n2 log b
M + n3 log b

M3/2

)

communication costs: band reduction + orthogonal updates
†assuming 1 ≤ b ≤

√
M/3

Grey Ballard 12

What if you want singular vectors too? - sequential case

We’ve used two optimizations:

1 chase multiple bulges (increase ω)
2 take multiple sweeps (increase c)

accumulating orthogonal transformations costs O(n3) flops per sweep

Algorithm Flops Words Messages

LAPACK 4n3 O(n2b + n3) O
(
n2b + n3

M

)
1 Sweep SBR 4n3 O

(
n2b + n3

√
M

)
O
(

n2b
M + n3

M

)
Improved 1 Sweep SBR† 4n3 O

(
n2b3

M + n3
√

M

)
O
(

n2b3

M2 + n3

M3/2

)
CA-SBR† 2n3 log b O

(
n2b√

M
+ n3 log b√

M

)
O
(

n2 log b
M + n3 log b

M3/2

)

communication costs: band reduction + orthogonal updates
†assuming 1 ≤ b ≤

√
M/3

Grey Ballard 12

Parallel 1 Sweep SBR

P0

P1

P2

P3

Grey Ballard 13

eliminate one column at a time;
bidiagonal after one sweep

works like a bandsaw:
columns move left
Householder vectors move right
O(1) messages per column

[Lang 1993]

Parallel CA-SBR

P0

P1

P2

P3

P4

Grey Ballard 14

cut bandwidth in half each sweep;
requires multiple sweeps

works like a sandbag relay:
each processor passes bulges along
O(p) messages per sweep

Asymptotics - singular values only - parallel case

Multiple sweeps and chasing multiple bulges reduces latency cost

Algorithm Flops Words Messages

1 Sweep SBR O
(

n2b
p

)
O(nb) O(n)

CA-SBR† O
(

n2b
p

)
O(nb) O(p log b)

†assuming 1 ≤ b ≤ n/(3p)

Grey Ballard 15

What if you want singular vectors too? - parallel case

Run band reduction on
√
p processors, orthogonal updates on all p

broadcasting band reduction updates, or

redundantly computing band reduction

Algorithm Flops Words Messages

1 Sweep SBR∗ 4n3

p O
(
nb + n2

√
p

)
O(n + log p)

CA-SBR† 2n3 log b
p O

(
nb + n2

√
p log b

)
O(
√
p log b)

∗[Auckenthaler et al. 2011]
†assuming 1 ≤ b ≤ n/(3

√
p)

Again, latency is reduced at the cost of extra computation

Grey Ballard 16

Conclusions and Future Work

We’ve used two means to improve data re-use in band reduction schemes:

1 taking multiple sweeps (re-using data within a bulge chase)

2 chasing multiple bulges (re-using data among bulge chases)

Asymptotic communication improvements:

1 in sequential case, we can reduce both bandwidth and latency costs

2 in parallel case, we can reduce latency cost

For singular vectors, multiple sweeps results in extra computation

for subset of vectors, extra computation decreases

to navigate tradeoff, take 1 ≤ # sweeps ≤ log b

These ideas can also benefit full SVD case (starting with dense matrix)
and symmetric eigenproblem (with different constant factors)

Grey Ballard 17

Thank you!

Grey Ballard, Jim Demmel, Nick Knight
{ballard,demmel,knight}@cs.berkeley.edu

Grey Ballard 18

References I

Aggarwal, A., and Vitter, J. S.
The input/output complexity of sorting and related problems.
Comm. ACM 31, 9 (1988), 1116–1127.

Agullo, E., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Langou, J.,
Ltaief, H., Luszczek, P., and YarKhan, A.
PLASMA users’ guide, 2009.
http://icl.cs.utk.edu/plasma/.

Ballard, G., Demmel, J., Holtz, O., and Schwartz, O.
Minimizing communication in linear algebra.
SIAM Journal on Matrix Analysis and Applications 32, 3 (2011), 866-901.

Bischof, C., Lang, B., and Sun, X.
A framework for symmetric band reduction.
ACM Trans. Math. Soft. 26, 4 (2000), 581–601.

Bischof, C. H., Lang, B., and Sun, X.
Algorithm 807: The SBR Toolbox—software for successive band reduction.
ACM Trans. Math. Soft. 26, 4 (2000), 602–616.

Demmel, J., Grigori, L., Hoemmen, M., and Langou, J.
Communication-optimal parallel and sequential QR and LU factorizations.
SIAM J. Sci. Comput. (2011). To appear.

Grey Ballard 19

References II

Dongarra, J., Hammarling, S., and Sorensen, D.
Block reduction of matrices to condensed forms for eigenvalue computations.
Journal of Computational and Applied Mathematics 27 (1989).

Fuller, S. H., and Millett, L. I., Eds.
The Future of Computing Performance: Game Over or Next Level?
The National Academies Press, Washington, D.C., 2011.

Haidar, A., Ltaief, H., and Dongarra, J.
Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated
fine-grained and memory-aware kernels.
Proceedings of the ACM/IEEE Conference on Supercomputing (2011).

Howell, G., Demmel, J., Fulton, C., Hammarling, S., and Marmol, K.
Cache efficient bidiagonalization using BLAS 2.5 operators.
ACM Trans. Math. Softw. 34, 3 (2008), 14:1-14:33.

Kaufman, L.
Banded eigenvalue solvers on vector machines.
ACM Trans. Math. Softw. 10 (1984), 73–86.

Kaufman, L.
Band reduction algorithms revisited.
ACM Trans. Math. Softw. 26 (December 2000), 551–567.

Grey Ballard 20

References III

Lang, B.
A parallel algorithm for reducing symmetric banded matrices to tridiagonal form.
SIAM J. Sci. Comput. 14, 6 (1993), 1320–1338.

Lang, B.
Efficient eigenvalue and singular value computations on shared memory machines.
Par. Comp. 25, 7 (1999), 845 – 860.

Ltaief, H., Luszczek, P., and Dongarra, J.
High performance bidiagonal reduction using tile algorithms on homogeneous multicore
architectures.
Tech. Rep. 247, LAPACK Working Note, May 2011.
Submitted to ACM TOMS.

Luszczek, P., Ltaief, H., and Dongarra, J.
Two-stage tridiagonal reduction for dense symmetric matrices using tile algorithms on
multicore architectures.
In Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(2011).

Murata, K., and Horikoshi, K.
A new method for the tridiagonalization of the symmetric band matrix.
Information Processing in Japan 15 (1975), 108–112.

Grey Ballard 21

References IV

Rajamanickam, S.
Efficient Algorithms for Sparse Singular Value Decomposition.
PhD thesis, University of Florida, 2009.

Rutishauser, H.
On Jacobi rotation patterns.
In Proceedings of Symposia in Applied Mathematics (1963), vol. 15, pp. 219–239.

Schwarz, H.
Algorithm 183: Reduction of a symmetric bandmatrix to triple diagonal form.
Comm. ACM 6, 6 (June 1963), 315–316.

Schwarz, H.
Tridiagonalization of a symmetric band matrix.
Numerische Mathematik 12 (1968), 231–241.

Grey Ballard 22

Anatomy of a symmetric bulge-chase

QR PRE

SYM

POST

b+1

d+
1

c

QR: create zeros

PRE: A← QTA

SYM: A← QTAQ

POST: A← AQ

Grey Ballard 23

Shared-Memory Parallel Implementation

lots of dependencies:
use pipelining

threads maintain working

sets which never overlap

Grey Ballard 24

