
The Parallel Nonsymmetric QR Algorithm
with Aggressive Early Deflation

Robert Granat1, Bo Kågström1, Daniel Kressner2, and Meiyue Shao1,2

1Department of Computing Science and HPC2N, Umeå University
2MATHICSE, École Polytechnique Fédérale de Lausanne

Boston, February 2013

Motivation — 1/25 —

• Standard eigenvalue problem (SEP)

Ax = λx, A ∈ CN×N, x ∈ CN, x , 0.

• Schur form
A can be factorized as

A = QTQ∗,

where Q is unitary (QQ∗ = Q∗Q = I) and T is upper triangular.

(If A is real, then Q is orthogonal and T is quasi-upper triangular.)

• Sometimes all eigenvalues of A are indeed required.
For example, the Schur-Parlett algorithm for computing matrix functions:

A = QTQ∗ ⇒ f (A) = Qf(T)Q∗.

• How to compute all eigenvalues of A?
Use the QR algorithm.

Performance of Library Software — 2/25 —

6671 sec.

739 sec.

fullrand

8653 sec.

69 sec.
hessrand

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
ScaLAPACK 1.8

ScaLAPACK 2.0

Overall execution time of the QR algorithm for two classes of 16, 000 × 16, 000
upper Hessenberg matrices on 4 × 4 processors (akka@HPC2N):

ScaLAPACK 1.8 vs. ScaLAPACK 2.0.

QR Algorithm — 3/25 —

• A high level abstraction of the QR algorithm:

1. (optional) Balancing (isolating and scaling)

2. Hessenberg reduction

3. Repeat
Deflation
QR sweep

Until converge

4. (optional) Eigenvalue reordering∗

5. (optional) Backward transformation

∗ Especially when a subspace associated with a specified set of eigenvalues is
required.

QR Algorithm — 4/25 —

• Stage 1 — Hessenberg reduction

• Stage 2 — QR iteration

– Aggressive early deflation (AED)

– Small-bulge multishift QR sweep

QR Algorithm — 5/25 —

• Stage 1 — Hessenberg reduction

• Stage 2 — QR iteration

– Aggressive early deflation (AED)

– Small-bulge multishift QR sweep

QR Algorithm — 6/25 —

• Stage 1 — Hessenberg reduction

• Stage 2 — QR iteration

– Aggressive early deflation (AED)

– Small-bulge multishift QR sweep

Library Software — 7/25 —

Stage LAPACK ScaLAPACK 2.0
0: Balancing xGEBAL PxGEBAL

1: Hessenberg reduction xGEHRD PxGEHRD

2: QR iteration xLAHQR PxLAHQR

xHSEQR PxHSEQR

3: Eigenvalue reordering xTRSEN PxTRSEN

PxTRORD

Our contributions

Distributed Memory Systems — 8/25 —

• Distributed memory systems

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

• Message passing

CPU

Memory

send()

CPU

Memory

recv()

ScaLAPACK Data Layout — 9/25 —

1D block 1D cyclic 1D block cyclic

2D block 2D cyclic ⋆ 2D block cyclic

Parallel QR Sweep — 10/25 —

• Chase multiple chains of tightly coupled bulges

ScaLAPACK 1.8 ScaLAPACK 2.0
loosely coupled bulges tightly coupled bulges

for small matrices for large matrices

Level 1 BLAS / −→ Level 3 BLAS ,

Parallel QR Sweep — 11/25 —

• Intrablock chase can be performed simultaneously

Parallel QR Sweep — 12/25 —

• Interblock chase are performed in an odd-even manner
to avoid conflicts between different tightly coupled chains

first round second round

Parallel Aggressive Early Deflation — 13/25 —

• Stage 1 — Schur decomposition

– The Schur decomposition is computed by
either the new parallel QR algorithm (recursively),
or the pipelined QR algorithm + another level of AED,
depends on nAED and Pr × Pc.

– Reduce parallel overhead via data redistribution to a subgrid.

• Stage 2 — Eigenvalue reordering

• Stage 3 — Hessenberg reduction

Parallel Aggressive Early Deflation — 14/25 —

• Stage 1 — Schur decomposition

• Stage 2 — Eigenvalue reordering

– Check possible deflation at the bottom of the spike.

– Undeflatable eigenvalues are moved to the top-left corner.

– Reorder eigenvalues in groups to avoid frequent communication.

• Stage 3 — Hessenberg reduction

Parallel Aggressive Early Deflation — 15/25 —

• Stage 1 — Schur decomposition

• Stage 2 — Eigenvalue reordering

• Stage 3 — Hessenberg reduction

Simply call the ScaLAPACK routine PxGEHRD.

Communication Avoiding Algorithms — 16/25 —

• AED is mathematically efficient, but becomes a BOTTLENECK in practice

The Schur decomposition is too expensive to calculate because of

– frequent communication

– heavy task dependence

– significant overhead in the start-up and ending stages

Remedy

Small problems — use only one processor
Copy the AED window to one processor and call LAPACK’s xLAQR3.
Implemented in the modified version of ScaLAPACK’s pipelined QR
algorithm.

Larger problems — use a subset of the processor grid
Redistribute the AED window to a subset of processors and solve it in
parallel.
Implemented in the new parallel QR algorithm.

Communication Avoiding Algorithms — 16/25 —

• AED is mathematically efficient, but becomes a BOTTLENECK in practice

The Schur decomposition is too expensive to calculate because of

– frequent communication

– heavy task dependence

– significant overhead in the start-up and ending stages

• Remedy

– Small problems — use only one processor
Copy the AED window to one processor and call LAPACK’s xLAQR3.
Implemented in the modified version of ScaLAPACK’s pipelined QR
algorithm.
Larger problems — use a subset of the processor grid
Redistribute the AED window to a subset of processors and solve it in
parallel.
Implemented in the new parallel QR algorithm.

Communication Avoiding Algorithms — 16/25 —

• AED is mathematically efficient, but becomes a BOTTLENECK in practice

The Schur decomposition is too expensive to calculate because of

– frequent communication

– heavy task dependence

– significant overhead in the start-up and ending stages

• Remedy

– Small problems — use only one processor
Copy the AED window to one processor and call LAPACK’s xLAQR3.
Implemented in the modified version of ScaLAPACK’s pipelined QR
algorithm.

– Larger problems — use a subset of the processor grid
Redistribute the AED window to a subset of processors and solve it in
parallel.
Implemented in the new parallel QR algorithm.

Tuning Parameters — 17/25 —

• Repeated runs with different parameters

• Taking into account both N and P
Some crossover points are determined based on N2/P (i.e. average memory
load).

• The former computational bottleneck in AED is removed by

– Multi-level AED

– Data redistribution technique

– Well tuned parameters

Performance Model — 18/25 —

• Total execution time model

T = #(messages) · α + #(data) · β + #(flops) · γ,

where

– α: communication latency

– β: reciprocal of bandwidth

– γ: time for one floating point operation

• Processor grid is square: Pr = Pc =
√

P

• Balanced load: block cyclic data distribution

N/Nb, # block rows and columns,≫
√

P

Performance Model — 19/25 —

• Execution time of our parallel Hessenberg QR algorithm

T(N, P) = kAEDTAED + kQRSWTQRSW + kshiftTshift,

where

– kAED: # super-iterations (AED+QRSW)

– kQRSW: # multishift QR sweeps

– kshift: # times when new shifts are computed (AED does not provide
sufficiently many)

Therefore we have kAED ≥ kQRSW ≥ kshift ≥ 0.

(These numbers usually depend on the property of the matrix and the
algorithmic parameter settings.)

Performance Model — 20/25 —

• Under certain assumptions of the convergence rate, the execution time of our
parallel Hessenberg QR algorithm is

T(N, P) = Θ
(N2 log P
√

P N2
b

)
α + Θ

(N3

√
P Nb

)
β + Θ

(N3

P

)
γ.

• The pipelined QR algorithm (in ScaLAPACK 1.8) requires

T(N, P) = Θ
(N2 log P
√

P Nb

)
α + Θ

(N2 log P
√

P
+

N3

P Nb

)
β + Θ

(N3

P

)
γ.

• The new algorithm reduces #(messages) by a factor of Θ(Nb).

The serial term Θ(N3/P) γ is also improved because most operations in the new
algorithm are of Level 3 computational intensity.

• In practice, T(N, P) ∼ N1.3 is observed when N2/P is a constant.
This is consistent with the theoretical model (Θ(N) < T(N, P) < Θ(N2)).

Computational Experiments — 21/25 —

• This research was conducted using the resources of the
High Performance Computing Center North (HPC2N).

• Platform — akka@HPC2N

64-bit low power Intel Xeon Linux cluster
672 dual socket quadcore L5420 2.5GHz nodes
256KB dedicated L1 cache, 12MB shared L2 cache
16GB RAM per node
Cisco Infiniband and Gigabit Ethernet, 10 GB/sec bandwidth

Computational Experiments — 22/25 —

• Test matrices — fullrand (well-conditioned)

1000

2000

3000

4000

5000

6000

7000

0

8000

n = 4K
p = 1× 1

n = 8K
p = 2× 2

n = 16K
p = 4× 4

n = 32K
p = 8× 8

PDLAHQR

PDHSEQRT
im

e
(s
ec
)

Problem Size

Execution time for fullrand matrices

Our new routine PDHSEQR is up to 10× faster than PDLAHQR.

Computational Experiments — 23/25 —

• Test matrices — hessrand (ill-conditioned)

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

10000

n = 4K
p = 1× 1

n = 8K
p = 2× 2

n = 16K
p = 4× 4

n = 32K
p = 8× 8

PDLAHQR

PDHSEQR

T
im

e
(s
ec
)

Problem Size

Execution time for hessrand matrices

Our new routine PDHSEQR is up to 125× faster than PDLAHQR.

Computational Experiments — 24/25 —

• A 100, 000 × 100, 000 fullrand matrix

Procs 16 × 16 24 × 24 32 × 32
Total time 5.87 hrs 3.97 hrs 3.07 hrs
Balancing 0.24 hrs 0.24 hrs 0.24 hrs
Hess. red. 2.92 hrs 1.78 hrs 1.08 hrs
QR+AED 2.72 hrs 1.95 hrs 1.75 hrs
AED/(QR+AED) 44% 44% 42%
Shifts per eig 0.30 0.22 0.16

The preliminary version of PDHSEQR (Granat et al., SISC 2010) requires 7 hours
for the QR iteration (using 32 × 32 processors).
Now the execution time is close to that for Hessenberg reduction.

Summary — 25/25 —

• Summary

– Chasing multiple chains of tightly coupled bulges.

– Multiple levels AED via data redistribution.

– A performance model is established.

– Software published in ScaLAPACK 2.0.

– Numerical experiments confirm the high performance.

Summary — 25/25 —

• Summary

– Chasing multiple chains of tightly coupled bulges.

– Multiple levels AED via data redistribution.

– A performance model is established.

– Software published in ScaLAPACK 2.0.

– Numerical experiments confirm the high performance.

Thank you for your attention!

Contact: Meiyue Shao, meiyue.shao@epfl.ch

