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Overview 

 Motivation  

 Description of framework for application-
aware energy efficient HPC 

 Strategies for energy efficiency 

 Results & contributions 
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Current HPC systems 

Today’s largest systems have 1M+ cores 

requiring over  ~10 MW of power 

– Constructed with simpler cores to reduce power 

draw (e.g. GPUs, BG, MIC, ARM, etc.) 

– Simpler core = less logic also requires more of 

programmer to get efficiency 

– Even with lower power cores – energy efficiency 

is still an issue 

Growing these systems/future systems 

10 X cores = 10 X power = ~100 MW! 

THIS IS THE POWER WALL 
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PMaC’s Green Queue Framework 

(optimizing for performance & power) 

Goal: Develop automated framework that uses 
power and performance models to make 

application-aware energy optimizations during 
execution (now:DVFS future: power gating) 

DVFS: Reduce the speed (clock frequency) of CPU in 
exchange for reduced power consumption 
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PMaC’s Green Queue Framework 

(optimizing for performance & power) 

Goal: Develop automated framework that uses 
power and performance models to make 

application-aware energy optimizations during 
execution (now:DVFS future: power gating) 

DVFS: Reduce the speed (clock frequency) of CPU in 
exchange for reduced power consumption 

 

– Different computations have different power 
requirements. 

– For computations where the CPU is waiting for 
resources the frequency can be reduced to lower 
power with minimal performance impact. 
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Identify the power and performance affects 

of different computational work  

Energy savings via reduce processor frequency 
– minimal performance impact 
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Application-aware Energy Efficient HPC 

HPC System  

Characterize the computational 

(& communication) patterns 

affect the overall power draw 
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HPC Application  

Characterize the computational 

(& communication) behavior of 

application 

Loop #1 

Func. Foo 

Loop #3 

Loop #2 

Design software- and hardware-aware green optimization 

techniques to reduce HPC’s energy footprint 
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PMaC’s Green Queue Framework 

(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 

 Characterizes system’s power draw behavior by running 

various computational work and uses to  train models  

 Characterizes computational work of HPC application  

 Creates customize fine-grained DVFS policies for application 

HPC Application  

Characterize the computational 

(&communication) behavior of 

application 

HPC System  

Characterize how the computational (& 

communication) patterns affect the overall 

power draw 

Design software- and hardware-aware green optimization techniques to reduce 

HPC’s energy footprint 

– Intra-node: exploits application phases where 
CPU is stalled waiting for resources 

– Inter-node: exploits load imbalances in HPC 
applications 
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PMaC’s Green Queue Framework 

(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 
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various computational work and uses to  train models  
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HPC Application  
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(&communication) behavior of 

application 

HPC System  

Characterize how the computational (& 

communication) patterns affect the overall 

power draw 

Design software- and hardware-aware green optimization techniques to reduce 

HPC’s energy footprint 

– Intra-node: exploits application phases where 
CPU is stalled waiting for resources 

– Inter-node: exploits load imbalances in HPC 
applications 
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Application Characterization 

Application characterization –  fine-grained 

information about the communication & computation 

behavior of the application 

– Low-level details that capture how application uses 

various hardware components 

– Data movement on and off the processor and node 

– Data locality and computational dependencies 
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Application Characterization 

Loop #1 

Func. foo 

Loop #3 

Loop #2 

Application 

Strided access from L1 cache w/  

more FPops than data movement 

Random access from main memory 

w/  dependencies in FPops 

Strided access from main memory w/  

more data movement than FPops 

Strided access from main memory w/  

more data movement than FPops 

Characterization 
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Computation characterization – collected with PEBIL (PMaC’s 
Efficient Binary Instrumentor for Linux) static & dynamic analysis 

 Characterization vector =  
<hit rates, Loads/Stores, FP/Memops, DUD*, # inst> 
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<100,99,98, 1.5, 0.75, (1.0,2.2), 5E10> 

Characterization vector: 
<hit rates, Loads/Stores, FP/Memops, DUD*, # inst> 

<89,80,80, 2.0, 0.5, (1.0,2.2), 4E12> 

<100,99,98, 1.5, 0.75, (0.2,0.2), 1E11> 

<100,90,89, 1.5, 0.75, (1.0,2.2), 9E9> 

Application Characterization 

Loop #1 

Func. foo 

Loop #3 

Loop #2 

Application 
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Computation characterization – collected with PEBIL (PMaC’s 
Efficient Binary Instrumentor for Linux) static & dynamic analysis 

 Characterization vector =  
<hit rates, Loads/Stores, FP/Memops, DUD*, # inst> 

Strided access from main memory w/  

more data movement than FPops 

Strided access from L1 cache w/  

more FPops than data movement 

Random access from main memory 

w/  dependencies in FPops 

Strided access from main memory w/  

more data movement than FPops 

Characterization 
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PMaC’s Green Queue Framework 

(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 

 Characterizes system’s power draw behavior by running 

various computational work and uses to  train models  

 Characterizes computational work of HPC application  

 Creates customize fine-grained DVFS policies for application 

HPC Application  

Characterize the computational 

(&communication) behavior of 

application 

HPC System  

Characterize how the computational (& 

communication) patterns affect the overall 

power draw 

Design software- and hardware-aware green optimization techniques to reduce 

HPC’s energy footprint 

– Intra-node: exploits application phases where 
CPU is stalled waiting for resources 

– Inter-node: exploits load imbalances in HPC 
applications 
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System Characterization 

System characterization: 

 Determine the most energy efficient frequency for range 
of computational work. 

 Computational work focusing on-node. 

 Computational work behavior that spans all HPC 
applications 
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Characterizing a system with  

PMaC’s Performance & Power Benchmarking 

framework 

PMaC’s Performance Power benchmark (P3) 

 Generates computational test loops to measure 
performance and power for computational space of 
HPC application. 

 Test loops measured at different frequencies 

 Test loops designed to vary different characteristics 
of the loop (e.g. working set size or data locality) 
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Characterizing a system with  

PMaC’s Performance & Power Benchmarking 

framework 

PMaC’s Performance Power benchmark (P3) 

 Generates computational test loops to measure 
performance and power for computational space of 
HPC application. 

 Test loops measured at different frequencies 

 Test loops designed to vary different characteristics 
of the loop (e.g. working set size or data locality) 

Testing space can grow to over 100K tests - weeks to run 

Performance and Power models 

can save time 
Power draw = func(computational behavior) 16 
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Using Performance and Power Models to fill 

in the Pcubed space 

 Reduce the number of pcubed benchmark tests 
that we need to run: >100K  3K 

– Reduces runtime from weeks to hours  

 Use sampling of test runs to model remaining 
computation space. 

Power draw = func2(computational behavior) 
Performance = func1(computational behavior) 
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Model of power impact of frequency reduction 

Power Model accuracy: 2.2% avg. absolute error 

on sampling of pcubed space of ~10,000 tests 

Power Models 
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Performance Models 

Model of performance impact of frequency reduction 

19 



PMaC 
Performance Modeling and Characterization 

Combining Power & Performance Models for 

optimal energy efficiency 

Model of performance impact Model of power impact 
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Combining Power & Performance Models for 

optimal energy efficiency 

Energy usage = power * time 
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PMaC’s Green Queue Framework 

(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 

 Characterize systems power draw behavior when running 

various computational work using models  

 Characterizes computational work of HPC application  

 Creates customize fine-grained DVFS policies for application 

HPC Application  

Characterize the computational 

(&communication) behavior of 

application 

HPC System  

Characterize how the computational (& 

communication) patterns affect the overall 

power draw 

Design software- and hardware-aware green optimization techniques to reduce 

HPC’s energy footprint 

– Intra-node: exploits application phases where 
CPU is stalled waiting for resources 

– Inter-node: exploits load imbalances in HPC 
applications 

 

22 

Loop #1-2.4GHz 

Func. Foo-1.6GHz 

Loop #3-1.6GHz 

Loop #2-2.2GHz 
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Intra-node Technique 

(Focusing on work done on processor in between 

communication events) 

 Memory subsystem’s performance is often the 
bottleneck for node-level performance 

– CPU may stall while the hardware satisfies memory 
requests from off-chip (e.g., L3 cache or main memory) 

– Lower the clock frequency during the phases where 
these stalls are significant 
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Intra-node Technique 

(Focusing on work done on processor in between 

communication events) 

 Memory subsystem’s performance is often the 
bottleneck for node-level performance 

– CPU may stall while the hardware satisfies memory 
requests from off-chip (e.g., L3 cache or main memory) 

– Lower the clock frequency during the phases where 
these stalls are significant 

 Phase is a path through the program’s control flow 
graph which exhibits uniform runtime behavior 
while on that path 

 Green Queue uses the structure of the 
application to identify all phases 

– Phase detection mechanism crosses loop and function 
boundaries 
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PMaC’s Green Queue Framework 

(fine-grained application-aware DVFS strategies) 

PMaC’s Green Queue automated framework: 

 Characterize systems power draw behavior when running 

various computational work using models  

 Characterizes computational work of HPC application  

 Creates customize fine-grained DVFS policies for application 

HPC Application  

Characterize the computational 

(&communication) behavior of 

application 

HPC System  

Characterize how the computational (& 

communication) patterns affect the overall 

power draw 

Design software- and hardware-aware green optimization techniques to reduce 

HPC’s energy footprint 

– Intra-node: exploits application phases where 
CPU is stalled waiting for resources 

– Inter-node: exploits load imbalances in HPC 
applications 
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Inter-node Technique 

(Focusing on load imbalance in application due to work distribution) 

 MPI load imbalance: a subset of MPI processes have 

less work to do and wait for others thereby wasting 

energy 

– Could arise due to inherent nature of the problem/dataset 

 Large body of research on remedying load imbalance 

and on exploiting the same to save energy 

 Green Queue’s approach is simple but we apply it at 

scale  
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 Green Queue captures and quantifies load 
imbalance by profiling all MPI communications 
and core-level computations 

 

 

 

 

 
 

 Measure the “idleness” for each core by taking a 
simple ratio of its computation time to the 
computation time of the busiest core 
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Inter-node Technique 

(Focusing on load imbalance in application due to work distribution) 
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Results – Experimental Setup 

Gordon, an Intel Sandybridge 

based supercomputer: 

 Dual socket nodes. 8-core processor 

on each socket.  

(15 available clock frequencies) 

 Nodes configured as a 3D torus. 

QDR Infiniband network 

San Diego Supercomputer 

Center (SDSC) 

 Gordon 

 Experiments run using a single rack of Gordon (1024 cores)  

– Not a limitation of this work 

 Rack-level power measurement obtained from PDUs 
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Results – Experimental Setup 

Large scale applications and benchmarks: 
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Application Description 

Milc Quantum Chromodynamics (QCD) application 

GTC Particle-in-cell application for magnetic fusion 

PSCYEE 3-D Finite-difference time-domain for Maxwell equations 

LBMHD Simulation of turbulence in dissipative magnetohydrodynamics 

POP 3D Ocean circulation model  

LAMMPS Molecular dynamics code 

FT Nas Parallel Benchmark kernel  
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Results – Overall & Discussion 

 

 

 

 

 

 

 Ongoing work 

– Merge inter and intra node techniques  
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Contributions & Conclusions 

 Phase detection based on the structure of the program 

 Optimal frequency assignment for all phases in an application 

 Framework deployed at scale on current generation 
supercomputer 

For details on PMaC Lab’s recent energy efficiency work, please visit: 
http://www.sdsc.edu/pmac/ 
 
Or e-mail: lcarring@sdsc.edu 

Tiwari A, Laurenzano M, Peraza J, Carrington L, Snavely A: Green Queue: 

Customized Large-scale Clock Frequency Scaling. CGC 2012 2012. 

 

Peraza J, Tiwari A, Laurenzano M, Carrington L, Snavely A: PMaC's Green 

Queue: A Framework for Selecting Energy Optimal DVFS Configurations in 

Large Scale MPI Applications. Concurrency and Computation: Practice and 

Experience 2012. 
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Questions ? 
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