Power Bounds and Large Scale Computing

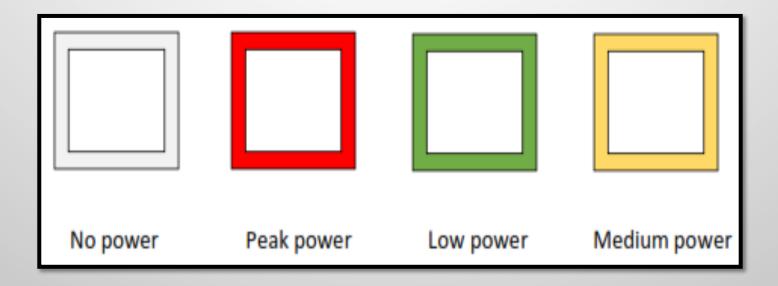
Friday, March 1, 2013

Bronis R. de Supinski¹ Tapasya Patki², David K. Lowenthal², Barry L. Rountree¹ and Martin Schulz¹

²University of Arizona

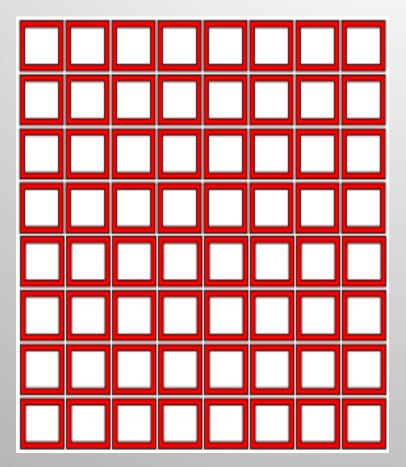


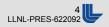
LLNL-PRES-622092

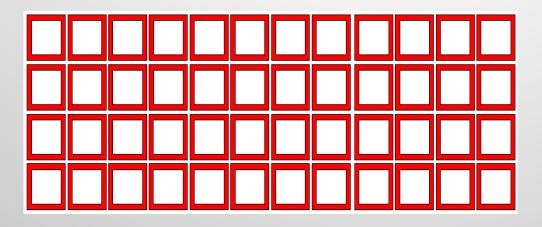

This work has been authored by Lawrence Livermore National Security, LLC under contract DE-AC52-07NA27344 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting this work for dissemination, acknowledges that the United States Government retains a nonexclusive, paid up, irrevocable, world-wide license to publish or reproduce the disseminated form of this work or allow others to do so, for United States Government purposes.

Future supercomputers will require power bounds

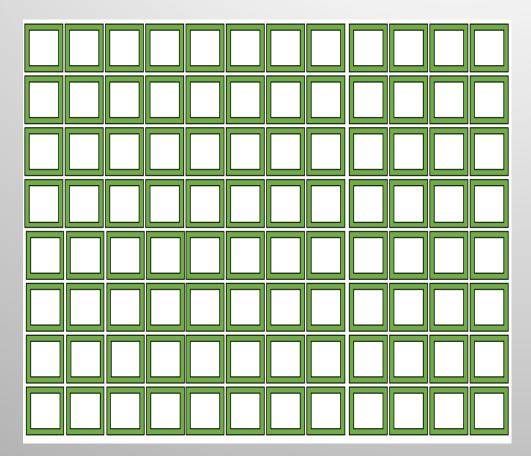
- Power is the limiting factor for exascale
 - Sequoia: 20PFlop, 9.6MW system
 - 50x performance improvement is straightforward
 - How to do with only a 2x power increase is nontrivial
 - Power is expensive (\$1M per MW per year)
 - Infrastructure limits power available
- Two possible mechanisms to limit power
 - Worst-case provisioning
 - Overprovisioning with enforced power bound


Node power vocabulary

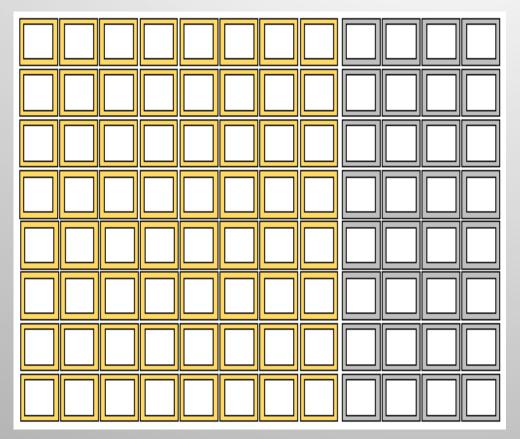

- Power domains
 - Package: processor die (cores + on-chip caches)
 - Uncore: Off-chip caches, QPI
 - DRAM


Example of worst-case provisioning

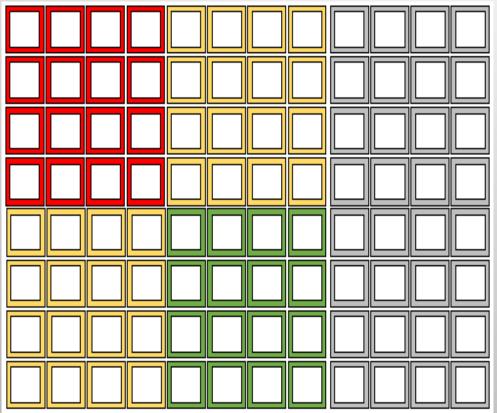
- Assume 64 node cluster
- Assume 300W peak node power
- Total power
 - 19.2KW worst case
 - Less in practice
 - Perhaps close for LINPACK
 - Much less for real applications


What if facility only supports 14.4KW?

- Assume 300W peak power nodes
- Worst-case provisioning: 48 nodes
- Can we do better?

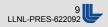

Overprovisioning at 14.4KW

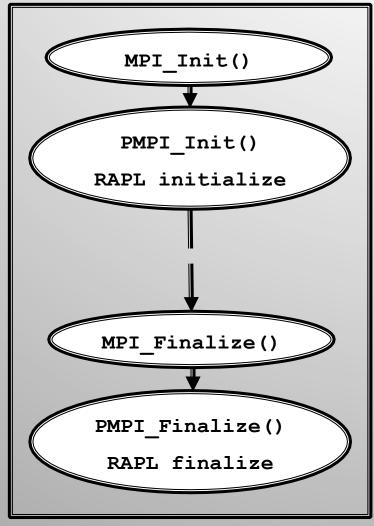
- Assume application power requirements per node of 150W
- Could use 96 nodes and remain within the facility power bound



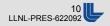
Suppose application requires 225W

- Must limit to 64 active nodes
- Both cases can use more nodes than worst-case provisionsing
- Solution is to reconfigure based on application characteristics

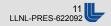

How would overprovisioning work?


- Limit power
 - Per job
 - Statically
 - Dynamically
 - Per system dynamically
 - We study impact of overprovisioning on performance given a power-constraint

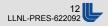
Is overprovisioning a radical idea?


- Already provided in current processors
 - Intel Nehalem, Sandy Bridge w/Turbo Boost
 - AMD Phenom II w/TurboCore
- Power capping with Intel's Running Average Power Limit (RAPL)
 - Domains (vary between server and client models)
 - Power Plane 0 (PP0) and Power Plane 1 (PP1)
 - DRAM and Package (PKG)
 - Can specify a power bound for a specified time window
 - Hardware ensures average power below bound over window
 - Implemented in Machine Specific Registers (MSRs)

Our librapl provides safe user-space MSR access



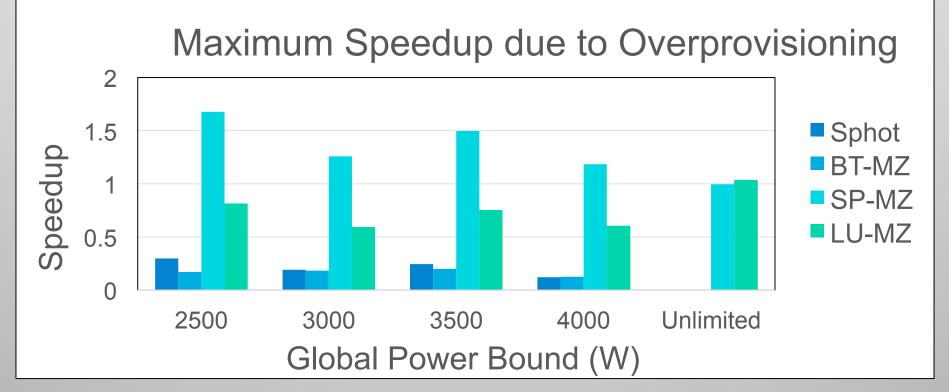
- Uses MPI profiling interface
- Sets up MSRs
- Gathers power and CPU frequency data per process
- In use at several sites
- Download at: https://github.com/tpatki/librapl


Our RAPL-based experiments emulate overprovisioning

- 32 node Sandy Bridge cluster
 - 2 sockets, 8 cores per socket, 2.6 GHz/3.3 GHz (Turbo)
 - Use RAPL PKG capping to emulate overprovisioning
 - Thermal limit is 115W; 51W minimum PKG power cap
- Assume hybrid MPI + OpenMP
 - ASC Purple SPhot
 - NAS-MZ: BT-MZ, SP-MZ and LU-MZ
 - Synthetics
 - CPU-bound and memory-bound
 - Scalable and not-scalable

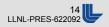
Baseline results for Intel Turbo Boost

- Single node tests for all applications
 - Consistent with expectations
 - Show overprovisioning can improve performance
- Turbo frequency depends on active core count
- All nodes engage in Turbo mode similarly
- Application power profiles
 - No application uses all allocated power
 - Some applications are more memory intensive than others, which implies higher DRAM power percentage

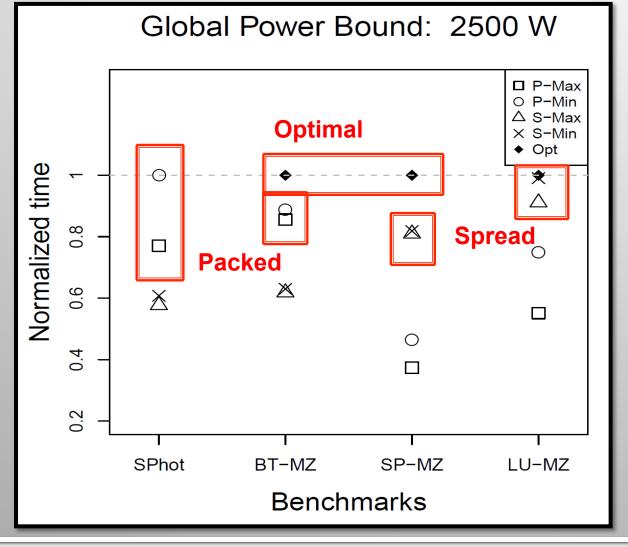

Vocabulary for multiple node results

Configuration

- Number of nodes: n
- Number of cores per node: c
- PKG power cap per socket: p
- Denote configuration as (n x c, p)
- Canonical configurations
 - Packed: All cores on a node before adding node
 - Spread: 4 cores on a node, spread evenly over nodes
 - Max: 115W PKG power
 - Min: 51W PKG power



Overprovisioning yields speed ups between 50% and 73%



 Compare packed-max to optimal under a power bound

Lawrence Livermore National Laboratory

Different configurations suit different applications

- Some applications prefer packed over spread
- Significant performance difference between packed and spread, max and min
- Best configuration depends on power bound and is not necessarily a canonical configuration

Lawrence Livermore National Laboratory

SP-MZ shows how optimal configuration varies with the global power bound

	Optimal Configuration (n x c, p)	Time (s)
2500 W	(22 x 8, 80)	5.19
3500 W	(26 x 12, 80)	3.65
Unlimited	(32 x 14, 115)	2.63

Fewer total cores at lower power can perform better: SP-MZ 192 vs. 176 cores

Global Power Bound: 2500 W

Sphot


SP-MZ

	Configuration (n x c, p)	Time (s)		Configuration (n x c, p)	Time (s)
P-Max	(12 x 16, 115)	74.27	P-Max	(12 x 16, 115)	13.88
P-Min	(22 x 16, 51)	57.24	P-Min	(20 x 16, 51)	11.16
S-Max	(24 x 4, 115)	99.18	S-Max	(22 x 4, 115)	6.40
S-Min	(32 x4, 51)	94.19	S-Min	(28 x4, 51)	6.34
Opt	(22 x 16, 51)	57.24	Opt	(22 x 8, 80)	5.19

Overprovisioning supercomputers is a promising power bound technique

- Power is the limiting factor for exascale
 - 20MW is system power bound target
 - Worst-case provisioning unnecessarily limits system size
 - Overprovisioning will require new infrastructure
 - System-wide measurement and control
 - Resource manger innovations to support and to exploit
- We observe application performance improvements of more than 50% under a power bound with overprovisioning

