Lower Bounds on Algorithm Energy Consumption: Current Work and Future Directions

James Demmel, **Andrew Gearhart**, Benjamin Lipshitz and Oded Schwartz

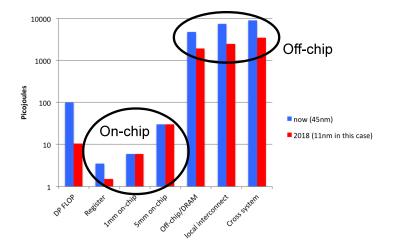
Electrical Engineering and Computer Sciences University of California, Berkeley

March 1, 2013

Energy is the current hot ticket item...

- Problem in both client and cloud
- UCB ASPIRE project
 - Algorithms and Specializers for Provably Optimal Implementations with Resilience and Efficiency
 - 5-year project with funding from DARPA and industry
 - Primary Goal: Energy efficiency in hardware and software!
- This work is an initial foray into the Provably Optimal portion of ASPIRE

Communication costs a lot of energy!!!!

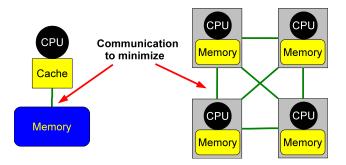


 Hypothesis: Reducing communication via communication-avoiding (CA) algorithms can reduce energy/task

Andrew Gearhart

What do we mean by communication?

- Communication defined as the number of words and messages transferred
- Sequential and parallel distributed machine models



These can be composed hierarchically (more later on this)

Andrew Gearhart	March 1, 2013	

• Communication lower bounds for many linear algebra problems [BDHS11]

Sequential	$\Omega\left(rac{\# flops}{M^{1/2}} ight)$
Parallel	$\Omega\left(\frac{\#flops}{pM^{1/2}}\right)$

where *M* is fast memory size and *p* is the number of processors.

- Bounds for messages moved (latency-cost) obtained by dividing by largest message size $m \ (m \le M)$

2.5D Matrix Multiplication

- 2.5D matrix multiplication replicates input data *c* times to reduce communication in the distributed model (still *O*(*n*³) flops)
- Communication lower bounds $(M = \frac{cn^2}{p}, 1 \le c \le p^{1/3})$:

Words =
$$\Omega\left(\frac{n^2}{(cp)^{1/2}}\right)$$
, # Messages = $\Omega\left(\frac{p^{1/2}}{c^{3/2}}\right)$

- 2.5D matrix multiply algorithm has a range of perfect strong scaling
 - i.e. increase # of procs by factor *c* (w/ problem size *n* constant)...and runtime decreases by *c* while energy is constant (details later)

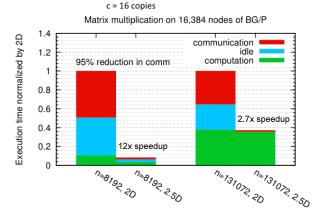
2.5D Matrix Multiplication

- 2.5D matrix multiplication replicates input data *c* times to reduce communication in the distributed model (still *O*(*n*³) flops)
- Communication lower bounds $(M = \frac{cn^2}{p}, 1 \le c \le p^{1/3})$:

Words =
$$\Omega\left(\frac{n^2}{(cp)^{1/2}}\right)$$
, # Messages = $\Omega\left(\frac{p^{1/2}}{c^{3/2}}\right)$

- 2.5D matrix multiply algorithm has a range of perfect strong scaling
 - i.e. increase # of procs by factor *c* (w/ problem size *n* constant)...and runtime decreases by *c* while energy is constant (details later)

 2.5D Matmul on BG/P, 16K nodes/64K cores (Distinguished Paper Award at EuroPar'11) [SD11]



- Can we now say something about the minimal amount of energy needed to compute a problem?
- Assume the distributed memory machine mentioned earlier
- Model runtime, then apply to a model of energy

• Model runtime T as

$$T = \gamma_t F + \beta_t W + \alpha_t S$$

where

- $F = \text{flops performed and } \gamma_t = \text{sec/flops}$
- W = words transferred and $\beta_t =$ sec/word
- $S = messages sent and \alpha_t = sec/msg$

Modeling runtime and energy

Model total energy E as

$$E = p(\gamma_e F + \beta_e W + \alpha_e S + \delta_e MT + \epsilon_e T)$$

- where for p processors and M words of mem/node
 - $\gamma_e, \beta_e, \alpha_e$ = joules/flop, joules/word, joules/msg
 - δ_e = joules/word/sec
 - $\epsilon_e = \text{joules/sec}$
 - T = runtime
- The first 3 terms represent the energy directly required to perform flops and move data

Modeling runtime and energy

• Model total energy E as

$$E = p(\gamma_e F + \beta_e W + \alpha_e S + \frac{\delta_e MT}{\epsilon_e T} + \epsilon_e T)$$

- where for p processors and M words of mem/node
 - $\gamma_e, \beta_e, \alpha_e$ = joules/flop, joules/word, joules/msg
 - $\delta_e = \text{joules/word/sec}$
 - $\epsilon_e = \text{joules/sec}$
 - T = runtime
- $\delta_e MT$ is the energy cost to store data in memory

• Model total energy E as

$$E = p(\gamma_e F + \beta_e W + \alpha_e S + \delta_e MT + \epsilon_e T)$$

- where for p processors and M words of mem/node
 - $\gamma_e, \beta_e, \alpha_e$ = joules/flop, joules/word, joules/msg
 - δ_e = joules/word/sec
 - $\epsilon_e = \text{joules/sec}$
 - T = runtime
- $\epsilon_e T$ is for other energy components
 - leakage
 - cooling fans (45W+ on some servers!)
 - memory idle power
 - other fixed energy costs

- Add a processor, use the additional memory
- Start with the minimal number of procs: $pM = 3n^2$
- Scale p (and total memory) by factor c ($c \le p^{1/3}$)
- Recall:
 - $\gamma_t, \beta_t, \alpha_t = \text{sec/flop, sec/word moved, sec/msg sent}$
 - $\gamma_e, \beta_e, \alpha_e$ = joules for same operations
 - $\delta_e = \text{joules/word/sec}$
 - $\epsilon_e = \text{joules/sec}$

$$T(cp) = \frac{n^3}{cp} \left(\gamma_t + \frac{\beta_t}{M^{1/2}} + \frac{\alpha_t}{mM^{1/2}} \right) = \frac{T(p)}{c}$$
$$E(cp) = cp \left[\frac{n^3}{cp} \left(\gamma_e + \frac{\beta_e}{M^{1/2}} + \frac{\alpha_e}{mM^{1/2}} \right) + \delta_e MT(cp) + \epsilon_e T(cp) \right]$$
$$= E(p)$$

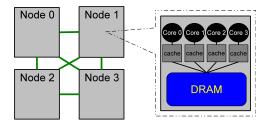
· This is what we mean by perfect strong scaling

$$T(cp) = \frac{T(p)}{c}$$
$$E(cp) = E(p)$$

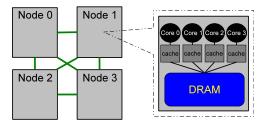
• Not true for algorithms that don't replicate data (2D)...

- In the distributed model, energy lower bounds for:
 - classical $O(n^3)$ and Strassen matrix multiplication
 - LU factorization
 - Fast Fourier Transform (FFT)
 - direct n-body problem ($O(n^2)$ and with cutoff)
- Perfect energy strong scaling by using more memory via *.5D in
 - Bandwidth: Classical/Strassen Matmul, direct n-body, LU
 - Latency: Classical/Strassen Matmul, direct n-body

- Energy models are flexible...can be generated for more machines
- An example 2-level model:



• An example 2-level model: "Level 0" is internode, and "Level 1" is intranode



• Energy parameters have *e* superscript, subscripts show level

$$E_0 \ge p_0 \left[p_1 \left(\gamma_1^e \frac{n^3}{p_0 p_1} + \beta_1^e \frac{n^3}{p_0 p_1 M_1^{1/2}} + \alpha_1^e \frac{n^3}{p_0 p_1 M_1^{3/2}} + \delta_1^e M_1 T_1 + \epsilon_1^e T_1 \right) \right]$$

$$+\beta_0^e \frac{n^3}{p_0 M_0^{1/2}} + \alpha_0^e \frac{n^3}{p_0 M_0^{3/2}} + \delta_0^e M_0 T_0 + \epsilon_0^e T_0 \bigg]$$

- Accurate measurement and validation of models and parameters
 - Initial work involves C benchmarks for bandwidth, latency and tuned linear algebra code (Intel's MKL)
 - Measurement with wall power meters, on-chip firmware
 power meters
- Use energy bounds to aid hardware design-space exploration
 - HW/SW cotuning in ASPIRE
 - Tuned computational kernels + specialized hardware = energy efficiency

- Accurate measurement and validation of models and parameters
 - Initial work involves C benchmarks for bandwidth, latency and tuned linear algebra code (Intel's MKL)
 - Measurement with wall power meters, on-chip firmware
 power meters
- Use energy bounds to aid hardware design-space exploration
 - HW/SW cotuning in ASPIRE
 - Tuned computational kernels + specialized hardware = energy efficiency

- Use models to consider interesting problems:
 - Minimize energy to compute problem
 - Minimize energy w/ runtime bound
 - Minimize time w/ energy bound
 - Minimize avg. power w/ runtime bound
 - Given an algorithm and target efficiency (GFLOPS/W), can we determine a set of optimal architectural parameters?
 - Others?

The End. Questions?

We acknowledge funding from Microsoft (Award #024263) and Intel (Award #024894), and matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from ParLab affiliates National Instruments, Nokia, NVIDIA, Oracle and Samsung, as well as MathWorks. Research is also supported by DOE grants DE-SC0004938, DE-SC0005136, DE- SC0003959, DE-SC0008700, and AC02-05CH11231, and DARPA grant HR0011-12-2-0016. Approved for public release; distribution is unlimited. The content of this presentation does not necessarily reflect the position or the policy of the US government and no official endorsement should be inferred.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.

Minimizing communication in numerical linear algebra. SIAM J. Matrix Analysis Applications, 32(3):866–901, 2011.

James Demmel, Andrew Gearhart, Benjamin Lipshitz, and Oded Schwartz.

Perfect Strong Scaling Using No Additional Energy.

In Proceedings of the 2013 IEEE 27th International Parallel and Distributed Processing Symposium, IPDPS '13. IEEE Computer Society, 2013.

Edgar Solomonik and James Demmel.

Communication-optimal parallel 2.5d matrix multiplication and lu factorization algorithms. In Proceedings of the 17th international conference on Parallel processing - Volume Part II, Euro-Par'11, pages 90–109. Berlin. Heidelberg, 2011. Springer-Verlag.

Comm. Type	Now (45nm)	2018 (11nm)	Reference
DP Flop	100	10.6	Tensilica XPG @ 1Ghz
Register	3.5	1.5	Tensilica XPG
1mm on-chip	6	6	ORION-2 model
5mm on-chip	30	30	ORION-2 model
off-chip/DRAM	4800	1920	Micron Inc (JEDEC roadmap)
local interconnect	7500	2500	Finisar optical cable roadmap
cross system	9000	3500	Finisar optical cable roadmap

Table: Sources for Communication Energy Figure (John Shalf, LBNL)