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Energy is the current hot ticket item...

• Problem in both client and cloud

• UCB ASPIRE project

• Algorithms and Specializers for Provably Optimal
Implementations with Resilience and Efficiency

• 5-year project with funding from DARPA and industry

• Primary Goal: Energy efficiency in hardware and software!

• This work is an initial foray into the Provably Optimal
portion of ASPIRE
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Communication costs a lot of energy!!!!

• Hypothesis: Reducing communication via
communication-avoiding (CA) algorithms can reduce
energy/task

Source: John Shalf, LBLAndrew Gearhart March 1, 2013 3



What do we mean by communication?

• Communication defined as the number of words and
messages transferred

• Sequential and parallel distributed machine models

• These can be composed hierarchically (more later on this)
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Communication lower bounds

• Communication lower bounds for many linear algebra
problems [BDHS11]

Sequential Ω
(

#flops
M1/2

)
Parallel Ω

(
#flops
pM1/2

)
where M is fast memory size and p is the number of
processors.

• Bounds for messages moved (latency-cost) obtained by
dividing by largest message size m (m ≤ M)
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2.5D Matrix Multiplication

• 2.5D matrix multiplication replicates input data c times to
reduce communication in the distributed model (still O(n3)
flops)

• Communication lower bounds (M = cn2

p , 1 ≤ c ≤ p1/3):

# Words = Ω
(

n2

(cp)1/2

)
, # Messages = Ω

(
p1/2

c3/2

)
• 2.5D matrix multiply algorithm has a range of perfect

strong scaling

• i.e. increase # of procs by factor c (w/ problem size n
constant)...and runtime decreases by c while energy is
constant (details later)
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Machine models

• 2.5D Matmul on BG/P, 16K nodes/64K cores
(Distinguished Paper Award at EuroPar’11) [SD11]
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How to save energy

• Can we now say something about the minimal amount of
energy needed to compute a problem?

• Assume the distributed memory machine mentioned
earlier

• Model runtime, then apply to a model of energy
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Modeling runtime and energy

• Model runtime T as

T = γtF + βtW + αtS

• where

• F = flops performed and γt = sec/flops
• W = words transferred and βt = sec/word
• S = messages sent and αt = sec/msg
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Modeling runtime and energy

• Model total energy E as

E = p(γeF + βeW + αeS + δeMT + εeT)

• where for p processors and M words of mem/node

• γe,βe,αe = joules/flop, joules/word, joules/msg
• δe = joules/word/sec
• εe = joules/sec
• T = runtime

• The first 3 terms represent the energy directly required to
perform flops and move data
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• δeMT is the energy cost to store data in memory
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Modeling runtime and energy

• Model total energy E as

E = p(γeF + βeW + αeS + δeMT + εeT)

• where for p processors and M words of mem/node

• γe,βe,αe = joules/flop, joules/word, joules/msg
• δe = joules/word/sec
• εe = joules/sec
• T = runtime

• εeT is for other energy components

• leakage
• cooling fans (45W+ on some servers!)
• memory idle power
• other fixed energy costs
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Matmul perfect strong scaling-in Time and Energy (with .5D)[DGLS13]

• Add a processor, use the additional memory
• Start with the minimal number of procs: pM = 3n2

• Scale p (and total memory) by factor c (c ≤ p1/3)
• Recall:

• γt,βt,αt = sec/flop, sec/word moved, sec/msg sent
• γe,βe,αe = joules for same operations
• δe = joules/word/sec
• εe = joules/sec

T(cp) =
n3

cp

(
γt +

βt

M1/2 +
αt

mM1/2

)
=

T(p)

c

E(cp) = cp
[

n3

cp

(
γe +

βe

M1/2 +
αe

mM1/2

)
+ δeMT(cp) + εeT(cp)

]
= E(p)
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Matmul perfect strong scaling-in Time and Energy (with .5D)

• This is what we mean by perfect strong scaling

T(cp) =
T(p)

c

E(cp) = E(p)

• Not true for algorithms that don’t replicate data (2D)...
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More energy lower bounds

• In the distributed model, energy lower bounds for:

• classical O(n3) and Strassen matrix multiplication

• LU factorization

• Fast Fourier Transform (FFT)

• direct n-body problem (O(n2) and with cutoff)

• Perfect energy strong scaling by using more memory via
*.5D in

• Bandwidth: Classical/Strassen Matmul, direct n-body, LU

• Latency: Classical/Strassen Matmul, direct n-body
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Which models matter?

• Energy models are flexible...can be generated for more
machines

• An example 2-level model:
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Which models matter?

• An example 2-level model: ”Level 0” is internode, and
”Level 1” is intranode

• Energy parameters have e superscript, subscripts show
level

E0 ≥ p0

[
p1

(
γe

1
n3

p0p1
+ βe

1
n3

p0p1M1/2
1

+ αe
1

n3

p0p1M3/2
1

+ δe
1M1T1 + εe

1T1

)

+βe
0

n3

p0M1/2
0

+ αe
0

n3

p0M3/2
0

+ δe
0M0T0 + εe

0T0

]
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Future work

• Accurate measurement and validation of models and
parameters

• Initial work involves C benchmarks for bandwidth, latency
and tuned linear algebra code (Intel’s MKL)

• Measurement with wall power meters, on-chip firmware
power meters

• Use energy bounds to aid hardware design-space
exploration

• HW/SW cotuning in ASPIRE

• Tuned computational kernels + specialized hardware =
energy efficiency

Andrew Gearhart March 1, 2013 18



Future work

• Accurate measurement and validation of models and
parameters

• Initial work involves C benchmarks for bandwidth, latency
and tuned linear algebra code (Intel’s MKL)

• Measurement with wall power meters, on-chip firmware
power meters

• Use energy bounds to aid hardware design-space
exploration

• HW/SW cotuning in ASPIRE

• Tuned computational kernels + specialized hardware =
energy efficiency

Andrew Gearhart March 1, 2013 18



Future work

• Use models to consider interesting problems:

• Minimize energy to compute problem
• Minimize energy w/ runtime bound
• Minimize time w/ energy bound
• Minimize avg. power w/ runtime bound
• Given an algorithm and target efficiency (GFLOPS/W), can

we determine a set of optimal architectural parameters?
• Others?
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Backup Slides

Comm. Type Now (45nm) 2018 (11nm) Reference
DP Flop 100 10.6 Tensilica XPG @ 1Ghz
Register 3.5 1.5 Tensilica XPG

1mm on-chip 6 6 ORION-2 model
5mm on-chip 30 30 ORION-2 model

off-chip/DRAM 4800 1920 Micron Inc (JEDEC roadmap)
local interconnect 7500 2500 Finisar optical cable roadmap

cross system 9000 3500 Finisar optical cable roadmap

Table: Sources for Communication Energy Figure (John Shalf, LBNL)
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