
 1

Algorithmic Selection, Autotuning, and Scheduling for
Accelerator-Based Codes for Numerical Linear Algebra

Piotr Luszczek

Funded by NSF

SIAM CSE
Salt Lake City, UT
March 17, 2015

2/16

MotivationMotivation

c ij=∑
k
a i kbk j

∀ B i=⋅POTRF (A i)

∀ B i=⋅GEQRF (Ai)

∀ B i=⋅GETRF (Ai)

O n ,k , p ,q=∑
c=0

C−1

∑
r=0

R−1

∑
s=0

S−1

F k , c ,r , sDn ,c , g (p ,u , R ,r ,h)…

S abij=∑
ck (∑

df
(∑

el
Bbef×D cdel) ×C dfjk) ×Aacik

SIAM CSE
Salt Lake City, UT
March 17, 2015

3/16

Compilation vs. AutotuningCompilation vs. Autotuning

● Compilation
– Sometimes uses autotuning
– Works for all codes
– Finishes in seconds
– Obeys the language syntax
– Optimizes for machine model
– Performs better for fixed sizes

● Autotuning
– Often relies on the compiler
– Works for some codes
– Finishes when optimized
– Delivers correct math
– Optimizes over experimental data
– Specializes in fixed sizes

SIAM CSE
Salt Lake City, UT
March 17, 2015

4/16

Example: C = ABExample: C = AB
blk_n

bl
k_

m

blk_k

blk_n_a

bl
k_

m
_a

blk_n_b

bl
k_

m
_b

di
m

_m

bl
k_

k

dim_n

CA

B

c ij=∑
k
a i kbk j

SIAM CSE
Salt Lake City, UT
March 17, 2015

5/16

Example: C = AB - ParametersExample: C = AB - Parameters

● dim_m
● dim_n
● blk_m
● blk_n
● blk_k
● blk_m_a
● blk_n_a
● blk_m_b
● blk_n_b
● Vectoriazation
● Use shmem
● ...

SIAM CSE
Salt Lake City, UT
March 17, 2015

6/16

Problem with Manual IterationProblem with Manual Iteration

● For dim_m = 32:1024
– For dim_n = 32:1024

● For blk_m = dim_m:dim_m:maxM
– For blk_n = dim_n:dim_n:maxN

● For blk_k = 16:maxK
● For vectorize = “yes”, “no”

● For fetch_A = “yes”, “no”
● For texture = “none”, “1D”, “2D”

● …
● But make sure that

– dim_m*dim_n does not exceed the number of thread blocks for the tested
card

– There is enough shared memory
– ...

SIAM CSE
Salt Lake City, UT
March 17, 2015

7/16

Iterator Basics: Declarative ApproachIterator Basics: Declarative Approach
● Expression iterators

– dim_m = range(32, max_threads_dim_x, 32)
blk_m = range(dim_m, maxM, dim_m)

● Function iterators
– @beast.iterator

def blk_n_a():
 x = blk_k
 if trans_a != 0:
 x = blk_m
 return range(x, 0, -1)

● Closure iterators
– @beast iterator

def fibonacci():
 prev = next = 1
 while next <= largest_number:
 yield next
 next, prev = next+prev, next

SIAM CSE
Salt Lake City, UT
March 17, 2015

8/16

Filter BasicsFilter Basics

● Expression filters
– over_max_threads = filter(block_threads > max_threads_per_block)

● Closure filters
– @beast.filter

def over_max_shmem():
return block_shmem > max_shared_mem_per_block

SIAM CSE
Salt Lake City, UT
March 17, 2015

9/16

Optimizations SummaryOptimizations Summary

● The code generator figures out the optimal order
● Iterators become loops with proper nesting
● The nesting is determined by the dependence DAG
● Filters have to trigger as early as possible to prune the search space

– Loop invariant code motion
● Type inference keeps the generated code fast

– Scripting language iteration may be orders of magnitude slower

SIAM CSE
Salt Lake City, UT
March 17, 2015

10/16

Optimizations: ExampleOptimizations: Example

dim_ndim_n vectorvectordim_mdim_m blk_kblk_k

blk_nblk_n low occupancy shmemlow occupancy shmem

blk_m_ablk_m_a blk_n_ablk_n_a blk_m_bblk_m_b blk_n_bblk_n_b

enough shmemenough shmem enough threadsenough threads sufficient occupancysufficient occupancy dimensions are congruentdimensions are congruent

SIAM CSE
Salt Lake City, UT
March 17, 2015

11/16

Generated Code: This if for the CompilerGenerated Code: This if for the Compiler

for (dim_n = 32; dim_n < 1025; dim_n += 32)
 for (vector = 0; vector < 2; vector += 1)
 for (dim_m = 32; dim_m < 1025; dim_m += 32)
 for (blk_k = 16; blk_k < 64; blk_k += 16)
 for (blk_n = dim_n; blk_n < maxN + 1; blk_n += dim_n)
 for (blk_m = dim_m; blk_m < maxM + 1; blk_m += dim_m) {
 blk_m_a_type_len = 1;
 if (vector != 0)
 blk_m_a_type_len = dim_vec;
 blk_m_a_x = floor(blk_m / blk_m_a_type_len);
 if (trans_a != 0)
 blk_m_a_x = floor(blk_k / blk_m_a_type_len);
 for (blk_m_a = blk_m_a_x; blk_m_a < 0; blk_m_a += -blk_m_a_type_len) {
 blk_n_a_x = blk_k;
 if (trans_a != 0)
 blk_n_a_x = blk_m;
 for (blk_n_a = blk_n_a_x; blk_n_a < 0; blk_n_a += -1) {
 blk_n_b_x = blk_n;
 if (trans_b != 0)
 blk_n_b_x = blk_k;
 for (blk_n_b = blk_n_b_x; blk_n_b < 0; blk_n_b += -1) {
 blk_m_b_type_len = 1;
 if (vector != 0)
 blk_m_b_type_len = dim_vec;
 blk_m_b_x = floor(blk_k / blk_m_b_type_len);
 if (trans_b != 0)
 blk_m_b_x = floor(blk_n / blk_m_b_type_len);
 for (blk_m_b = blk_m_b_x; blk_m_b < 0; blk_m_b += -blk_m_b_type_len)

SIAM CSE
Salt Lake City, UT
March 17, 2015

12/16

extract
hardware

information

NVIDIA Kepler

AMD Tahiti

Intel Xeon Phi

generation
& pruning

engine

extract
compilation
information

nvcc

Open 64

icc

CUDA

OpenCL

C

kernel
stencil

Distributed benchmarking
engine

Extract performance

information

workstation

MPP

server

Machine learning
engine

Adjust tuning
parameters

pruning
constraints

principal components

genetic algorithms

decision trees

analysis
and

reporting

profiles

projections

charts

verification

BEAST DesignBEAST Design

Bench-testing
Environment for
Automated
Software
Tuning

Bench-testing
Environment for
Automated
Software
Tuning

SIAM CSE
Salt Lake City, UT
March 17, 2015

13/16

Performance: the Traditional ViewPerformance: the Traditional View

SIAM CSE
Salt Lake City, UT
March 17, 2015

14/16

Data Analysis: Convex HullData Analysis: Convex Hull

SIAM CSE
Salt Lake City, UT
March 17, 2015

15/16

Hierarchical Clustering of GPU MetricsHierarchical Clustering of GPU Metrics

SIAM CSE
Salt Lake City, UT
March 17, 2015

16/16

Future WorkFuture Work

● Apply autotuning to new kernels
● Continue work on parallel code compilation and autotuning

– Multilevel parallelism: OpenMP and MPI
● Add new language features to the code generators
● Integration of the generated code with existing libraries

