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Abstract. The growing popularity of the Intel Xeon Phi coprocessors and the
continued development of this new many-core architecture has created the need
for an open-source, scalable, and cross-platform task-based dense linear algebra
package that can efficiently use this type of hardware. In this paper, we examined
the design modifications necessary when porting PLASMA, a task-based dense
linear algebra library, to run on Knights Corner Xeon Phi coprocessor. We first
modified the scheduling mechanism for the PLASMA tiled Cholesky decompo-
sition to use OpenMP so as to be compatible with the Xeon Phi and then com-
pared the performance to using the previous dynamic scheduler on a Xeon Sandy
Bridge. We then looked at the performance of the new OpenMP tiled Cholesky
decomposition on a Knights Corner. We found that various optimizations were
necessary because of hardware and scheduler differences but made it possible to
reach desirable performance for this architecture.
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1 Introduction

Solving linear systems of equations and eigenvalue problems is integral throughout
many different scientific domains and applications. These codes can be very computa-
tionally intensive and much effort has been dedicated to increasing the speed and effi-
ciency of these codes. New accelerator and coprocessor architectures such as GPUs and
the Intel Xeon Phi offer the potential for better performance but also have substantial
overhead in optimizing code to achieve this high performance due to major differences
in architecture design.

Developers of linear algebra libraries that want to make use of the Xeon Phi have
previously used techniques that offloaded the specific Basic Linear Algebra Subpro-
gram (BLAS) routines to the Xeon Phi or used a hybrid approach and offloaded some
of the work such as in Matrix Algebra on GPU and Multicore Architectures (MAGMA)
[7]. This approach is designed based on the assumption that the controlling thread needs
to be run on a separate primary processor such as is required for a GPU. However, the
Xeon Phi architecture differs from a GPU in that it allows more complex threads than
GPUs which makes it more similar to a traditional multi-core primary processor. This
architecture, which has been referred to as many-core seems to be reverting back to
traditional multi-core lineage, and it has been announced that the next generation Intel
Knights Landing architecture will work as a primary processor[13].
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Other hardware manufacturers who do not use Intel’s Math Kernel Library (MKL)
will likely attempt to compete with this large increase in cores within a primary pro-
cessor. These products will also require an effective and scalable dense linear algebra
library. One method for performing dense linear algebra on multi-core architectures is
to use a task-based model for computations. This is the approach taken by PLASMA
(Parallel Linear Algebra Software for Multicore Architectures), and it has been shown
to provide good performance on many different machines but has yet to target the
Xeon Phi due to differences in architectures. However, the implementation of task-
dependencies in OpenMP 4.0 provides an easy way to port this library to the Xeon Phi
as well as decrease the size of the code base.

1.1 Contributions

The contributions of this paper are-

We implemented a task-based tile Cholesky decomposition using OpenMP 4.0 di-
rectives based on the PLASMA linear algebra library.

We compared the performance of using OpenMP tasking dependencies with the
previous dynamic scheduling mechanism.

‘We measured the performance of this task-based tile Cholesky algorithm on Knights
Corner.

We investigated the execution behavior of this algorithm and discovered various
ways of improving performance up to that comparable to MKL.

These contributions show the viability of task-based algorithms on the Xeon Phi archi-
tecture.

2 Background

2.1 Intel Xeon Phi Coprocessor

MIC The Intel Many Integrated Core (MIC) architecture was developed in response to
the growing demand for accelerators with large amounts of cores to provide high per-
formance and efficiency. However, in contrast with accelerators, it was designed to be
more general purpose and work without major changes to code. It was meant to have
the extraordinary performance provided by accelerators but also keep a familiar pro-
gramming environment. The performance is obtained by using a large number of cores,
wide vector units, and multiple threads per core [8]. While code can be compiled for a
MIC architecture without major changes and by just including a compiler flag, reaching
peak performance still depends on careful distribution of work across the threads and
cores as well as consideration of the vector units.

Specifications The current Intel product that uses the MIC architecture design is the
Xeon Phi. These products have ranged from 32 to 61 cores. The most recent model that
is available to the public is called Knights Corner (KNC) and the current Knights Corner
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has 61 cores and operates at 1.238 GHz. Knights Corner has a 512-bit instruction set
and 8 double precision wide vector processing units. It also supports fused multiply
add so it is capable of 16 double precision floating point operations per cycle [5]. This
gives a theoretical double precision peak performance of 1,208.29 GFLOPS on Knights
Corner.

Coprocessor Knights Corner acts as a coprocessor. It is connected to a primary pro-
cessor through a PCI Express bus and has its own Linux operating system running on it
which includes all of the process and thread management and scheduling functionality.
The operating system stack allows secure shell onto it and then code can be executed na-
tively, however heterogeneous code is also possible using compiler offload capabilities
[8]. Knights Corner is meant to supplement a primary processor with a processing ele-
ment capable of performing a large amount of work in parallel through a combination
of task and data parallelism.

The upcoming Knights Landing (KNL), on the other hand, will be a primary pro-
cessor and will not need to be connected to a host processor. This will increase the
usability of the architecture and the ease of accessing its parallelism.

Caches and Memory Each core of a Knights Corner has an L1 cache of 32 KB and a
L2 cache of 512 KB. These cores are connected with a ring interconnect that connects
them to memory and I/O. It also has 16 GB of memory and a max memory bandwidth
of 352 Gb/s. The Xeon Phi relies heavily on effective usage of the caches for peak
performance. However, with this many cores, it can sometimes be difficult to use the
caches in a way that does not incur cache consistency penalties.

Threads The main difference between the Xeon Phi and other Intel multicore architec-
tures is its use of up to 4 hardware threads on each core with a short in-order pipeline.
These are different from hyperthreads which can be found on a Xeon CPU in that hy-
perthreads are hardware threads on an out-of-order execution engine. In a Xeon CPU,
the full floating point potential can be reached using a single thread and the out-of-order
execution allows it to tolerate latency. Additional threads are only helpful for more la-
tency tolerance but often put more pressure on the memory. For this reason, typically
only 1 thread is used per core for dense linear algebra codes on CPUs.

The Xeon Phi, on the other hand, schedules using a simple round-robin scheme with
its 4 threads and is able to execute 2 vector instructions in parallel but they must come
from different threads [11]. This means that peak performance is only even possible
with at least 2 threads per core. However, providing 4 threads per core provides more
latency tolerance and is what is typically recommended. Drawbacks to adding addi-
tional threads can occur, however, in that they can negatively affect caching behaviors
which could be especially detrimental in codes that are not compute bound.

2.2 PLASMA

History As increasing core count became the dominant form of increasing perfor-
mance of computers, peak performance became dependent on task granularity and
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asynchronous execution. Parallel Linear Algebra Software for Multicore Architectures
(PLASMA) was developed at the Innovative Computing Laboratory (ICL) starting in
2007 to provide high performance dense linear algebra routines for multiple socket and
multiple core architectures [4]. It contains many different linear algebra algorithms and
supports single, double, single complex, and double complex precision. PLASMA is
able to efficiently use the hardware by using algorithms that can distribute the work and
a system of dynamic scheduling in which work is assigned to cores when data is avail-
able to be operated on and the core is not busy. Thus, this is a system of asynchronous,
out-of-order scheduling of task-structured operations.

Tiling The benefit of PLASMA comes from its ability to effectively distribute the com-
putation to multiple cores who can simultaneously operate on their contiguous memory
blocks. This is attempting to maximize the operations that are performed on the data
that has been cached by each core before eviction while also limiting synchronization
issues. It accomplishes this feat using tiling algorithms.

Tile algorithms work by first separating the matrix into memory contiguous tiles.
Thus a matrix of size N by N will be divided into tiles of size NB by NB producing
(N/NB)? tiles of the matrix. This is different from the previous layouts in which the
elements are stored by the full column or by row as in LAPACK. However, each tile
is stored using one of these traditional layouts to allow it to be operated on by the pre-
vious hardware specific optimized BLAS routines. Operations are performed between
individual tiles and then combined to produce the overall desired computation. The tile
operations can be then performed in parallel when there are no dependencies between
them without risk of cache consistency issues and minimized synchronization points.

However, deciding the size of the tile is not always straightforward and is necessary
for good performance because overall performance will be dependent on the perfor-
mance of each tile and number of tiles. Because of memory latency and throughput of
architectures, tiles will become increasingly memory-bound with smaller tiles and thus
will have reduced performance. However, if the tiles are too large then there may not
be enough parallel work to be effectively distributed to all of the cores.

Task-based Model All of the separate tile operations are self-contained tasks that have
dependencies on the memory associated with the data to be operated on and some
dependency-based order of operations specified by the tiled algorithm. This inherently
can be viewed as a graph where nodes represent tasks and edges represent dependencies
between them. This forms a directed acyclic graph (DAG). This representation can help
discover work that can be run in parallel because there are no remaining dependencies.
Ideally a scheduler would be able to identify some of this parallel work and distribute
the work in a way that would allow for the fastest computation. The ability to transform
linear algebra algorithms into a task-based model provides an easily understandable
representation that simplifies parallelization.

Static Scheduling PLASMA has two types of scheduling available. The static schedul-
ing mechanism will assign tasks to cores before execution and the tasks will wait to
begin execution until all of their dependencies are met. Task dependencies and comple-
tions are then tracked by a global progress table. Performance then depends on using the
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static pipeline [10]. However, this method lacks the ability to schedule all tasks whose
dependencies have been met as quickly as possibly because the scheduling is performed
beforehand and will not be able to account for variations in task execution times. Artifi-
cial synchronization points expose serial sections of code and this can leave some cores
idle. Static scheduling also cannot distribute the tasks as well across a large number of
cores and lacks generality in that the pipeline must be considered when designing the
algorithm.

Dynamic Scheduling PLASMA is designed to achieve the best performance when using
a dynamic scheduling mechanism. This is different from static scheduling in that as
cores finish tasks they can be assigned any tasks whose dependencies have been met at
runtime. This is considered data-driven scheduling. This allows better work distribution
and less idle time on cores.

The dynamic scheduling was previously controlled by an internal runtime called
QUARK (Queueing And Runtime for Kernels). This scheduler was shown to perform
very well for previous PLASMA work distribution on other architectures. We com-
piled PLASMA using QUARK for the Xeon Phi. However, initial tests showed that
QUARK did not produce sufficient performance because of the fact that multiple Xeon
Phi threads were necessary per core. While only slight modifications to the code could
have fixed this problem, another solution presented itself when the project decided to
transition to a new dynamic scheduling mechanism- OpenMP.

2.3 OpenMP

History OpenMP [6] was created in October 1997 to provide an easy method for ex-
ploiting shared memory parallelism. It was first released for FORTRAN as an API that
used a collection of compiler directives, library, routines, and environment variables to
control underlying implementation. It added C/C++ support in 1998 and has grown in
terms of features and support since then. It is now an option provided by most compil-
ers including Intel, which allows it be a viable option for parallel programming on the
Xeon Phi. It was designed in a way that focused on ease of use but still allows a wide
variety of features. It has continued to add to this list of features over the years, one of
the most recent being tasking.

Tasking Model In 2009, the release of OpenMP 3.0 added support for tasking model
of parallelism which allowed parallelization of irregular problems. These are problems
that have recursive, unbounded loops. In 2013, OpenMP 4.0 added new capabilities to
allow tasks to specify data dependencies. This provides support for a task-based model
for programs in which each task can depend on data which may be manipulated by
earlier tasks. The program can then be represented as a DAG of tasks and these tasks
are made to execute on available hardware as their dependencies are met.

As of GCC 4.9, GNU began support for OpenMP 4.0 and Intel began support for
some of the OpenMP features beginning in 2013 [1]. This new support for tasks with
dependencies provides the necessary abstraction to allow PLASMA to easily replace its
internal dynamic scheduler with OpenMP task directives and thus be able to run on a
Xeon Phi.
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2.4 Cholesky Decomposition

Algorithm Cholesky decomposition is the decomposition of a symmetric positive def-
inite matrix A into a lower triangular matrix and its conjugate transpose (Equation 2).
This is used for solving linear systems of equations which is common to many appli-
cations. The formula for calculating each matrix entry can be seen in Equations 4 and
5. As the matrix grows in size, this algorithm for solving the matrix will depend on ac-
cessing increasingly distant memory locations which can make it difficult to parallelize
and lead to memory thrashing.
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Tiled Cholesky Decomposition PLASMA uses a tiled version of Cholesky decompo-
sition. The premise of this method is to separate the operations that are taking place
in the above algorithm to allow effective parallelization. The creation of this algorithm
can be seen in the LAPACK User’s Guide[2]. It is composed of the BLAS tile oper-
ations: matrix-matrix multiplications (GEMM), solving the triangular matrix equation
(TRSM), symmetric rank-k update (SYRK), and Cholesky decomposition (POTRF).
All of these are Level 3 BLAS which means that they are no longer memory bound and
the peak theoretical performance will increase as the tile size increases.

There are commonly three variations for how to schedule the tile operations neces-
sary to complete the whole computation. They all have the same tasks and dependencies
as they are performing the same computation. However, the order that these operations
are scheduled can be varied and these variations can drastically affect the view of the
tasks presented to the scheduler and thus order of completion of tasks.
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Scheduling Variations The three variations of tiled Cholesky decomposition are: right-
looking (Figure 1), left-looking (Figure 2), and top-looking (Figure 3). The availability
of work as seen by the scheduler can be seen in the task dependency DAGs in Figure 4.

The right-looking version can be considered the most aggressive and offers the most
parallelization with its breadth first task exploration. This is why right-looking was
previously selected for PLASMA dynamic scheduling. The top-looking version can
then be described as the “lazy” version because it is using depth first exploration of the
task graph which limits the number of tasks that are immediately able to be run. The
PLASMA static scheduler uses left-looking Cholesky decomposition because it was
determined to be the best for the static pipeline [10].

begin

for k =0tont — 1 do

POTRF(A(k,k)));

form=k+1tont—1do

|  TRSM(A(k,k),A(m,k));

end

form=k+1tont—1do
SYRK(A(m, k), A(m,m));
forn=k+1tom—1do

GEMM(A (m, k),A(n,k),A(m,n));

end
end

end
end

Fig. 1. Right-looking variation of the tiled Cholesky decomposition

begin
for k =0tont —1 do
forn=0tok—1do
SYRK(A(k,n), A(k, k));
form=k+1tont—1do
GEMM(A(m,n),A(k,n),A(m,k));

end
end
POTRF(A (k,k)));
form=k-+1tont—1do
\ TRSM(A(k, k), A(m,k));
end

end

end

Fig. 2. Left-looking variation of the tiled Cholesky decomposition

3 OpenMP Task-Based Cholesky Decomposition

To transition the PLASMA Tiled Cholesky decomposition to run on the Xeon Phi, we
wrote the three different tiled versions in C replacing the previous QUARK calls with
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begin
for k=0tont—1do
forn=0tok—1do
form=0ton—1do
GEMM(A (k,m),A(n,m),A(k,n));

end
TRSM(A(n,n),A(k,n));
end
forn=0tok—1do
\ SYRK(A(k,n), A(k,k));
end
POTRF(A (k, k)));

end
end

Fig. 3. Top-looking variation of the tiled Cholesky decomposition

Fig. 4. DAGs for 3 variations of tiled Cholesky decomposition: From left to right: right-looking,
left-looking, top-looking. This shows how the order in which tasks are presented to the scheduler
affects the available parallelization.
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OpenMP 4.0 tasking directives (right-looking in Figure 5). This implementation starts a
pool of threads with “#pragma omp parallel” and then uses a master thread to sequen-
tially create all of the tasks and specify their dependencies. After the tasks are created,
the scheduler can assign them to available threads/cores for execution.

OpenMP allows specifying whether the task only needs to read data (in:), write
data(out:), or both (inout:). The scheduler will then be able to use this information
to safely start tasks when data dependencies are met. Specifying the dependencies is
straightforward with the tile layout because each tile is contiguous in memory so they
can be specified by the start of the tile and the size of the tiles.

This method can be applied to all the linear algebra routines that are included in
PLASMA. By removing the internal scheduler, it would make the software more mini-
malist and standardized as well as allow PLASMA to gain all of the customization and
support of OpenMP.

#pragma omp parallel
#pragma omp master
PLASMA POTREF( tiled_matrix A, tilesize ts) {
for (k =0; k < M; k++) {
#pragma omp task depend(inout:A(k,k)[0:ts])
{ POTRF(A(kk)); }
for (m =k+1; m < M; m++)
#pragma omp task depend(in:A(k.,k)[0:ts]) depend(inout:A(m,k)[0:ts])
{ TRSM( A(k,k), A(m,k) ); }
for (m=k+1; m < M; m++) {
#pragma omp task depend(in:A(m,k)[0:ts]) depend(inout:A(m,m)[0:ts])
{ SYRK( A(m,k), A(m,m) ); }
for (n =k+1; n < m; n++)
#pragma omp task depend(in:A(m,k)[0:ts], A(n,k)[0:ts]) \
depend(inout:A(m,n)[0:ts])
{ GEMM( A(m/k), A(n,k), A(m,n) ); }

}
}

Fig. 5. Right-looking tiled Cholesky decomposition with OpenMP tasks. This code segment
shows how PLASMA -style tile algorithms can expressed using OpenMP pragmas.

Performance of Task-Based Runtimes on Xeon Sandy Bridge We tested the OpenMP
double precision right-looking Cholesky decomposition performance on a Intel Xeon
Sandy Bridge with QUARK, GCC OpenMP, and Intel OpenMP. This processor has 16
cores, a clock frequency of 2.6 GHz, and 8 double precision FLOPS/clock to give a
theoretical peak of 332.8 GFLOPS. We set the outer blocking size to be 128 and varied
N from 128 to 14080 to see how the scheduling mechanisms behaved as the number of
tasks increased. The results can be seen in Figure 6.

It can be seen that the GCC OpenMP implementation behaves similarly to the inter-
nally developed task-based runtime QUARK, which shows the capability of OpenMP as
a complete replacement for dynamic scheduler. However, the Intel OpenMP implemen-
tation has severely decreased performance when the matrix size N exceeds 4000, likely
due to the large number of tasks. The Intel implementation of the OpenMP runtime is
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Fig. 6. Performance of double precision right-looking tiled Cholesky decomposition perfor-
mance with different schedulers implementations on Xeon Sandy Bridge (QUARK runtime, GCC
OpenMP, Intel OpenMP).

the only option available to the Xeon Phi, so this must be considered when optimizing
performance.

4 Task-Based Cholesky Decomposition on a Xeon Phi

This proof of concept code could then be compiled for Knights Corner using the Intel
compiler and the “-mmic” flag. There are various things to consider for examining and
evaluating the performance on the Xeon Phi.

4.1 Experimental Setup

Hardware We ran all tests on a 61 core MIC 7120 (Knights Corner). We launched every
run using “micnativeloadex” which required 1 core for operating system functions and
communication, so only 60 cores could be used for Cholesky decomposition. This left
a theoretical maximum of 1,188.48 double precision GFLOPS assuming each core was
able to make full use of its vector instructions, used fused multiply add, and properly
used multiple threads to thus perform 16 double precision FLOPS per cycle.

MKL Performance To give a baseline for the possible performance of Cholesky decom-
position on Knights Corner, we ran the MKL version 11.3.1 double precision Cholesky
decomposition (DPOTRF) on matrices of varying sizes. The points tested for MKL
performance were multiples of 200 and multiples of 256 up to 16000. The goal of this
project was not to outperform MKL but rather to show the applicability of task-based al-
gorithms to the Xeon Phi architecture. However, if the task-based method for Cholesky
decomposition can be shown to have reasonable performance, it provides evidence that
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tile-based linear algebra algorithms from PLASMA can provide benefits over MKL for
some of its other routines such as tall-and-skinny QR, SVD, and EVP as it has done on
other architectures.

Tile Size Measuring performance for a tile-based algorithm required considering vari-
ous tile sizes. This was necessary because the optimal tile size varies depending on the
size of the matrix that the user intends to operate on. A certain number of tiles will be
necessary to successfully distribute the computation across the large number of cores
on Knights Corner. However, smaller tiles will have lower performance due to being
more memory bound and thus will limit the theoretical peak the whole computation.
This creates a need find a tile size that balances these two considerations optimally for
the overall matrix size. PLASMA intends to have desirable performance for all ranges
of matrix sizes so this required testing a range of tile sizes throughout.

BLAS library We used the Intel MKL math library for the individual tile kernels
(GEMM, POTREF, TRSM, and SYRK) which is optimized for Xeon Phi cores. This
could easily be replaced with other libraries as they become available or if they are
necessary for another architecture.

Warmup An issue that occurs when timing MKL routines is that there is some overhead
loading libraries before execution the first time they are called. When used in practice,
it is likely that many calls will be made to these linear algebra routines so this overhead
can be ignored. To account for this, the PLASMA library timing examples provide a
command line option to run the computation once before running a computation for
timing. This option must be used for all timings and a warmup method was also used
before the MKL performance measurement in Figure 16.

Traces To help understand the flow of execution and the scheduling of work on cores,
traces were used (Figures 7, 8, 13, and 14). These are figures that show the compute
cores on the y axis and time along the x axis. This is a helpful tool for viewing how the
computation progresses and how tasks are scheduled on the cores. These figures can
also provide insight into factors that affect performance. Creating this visualization in-
volved keeping track of which core the kernels ran on and the start and completion times
for each. We recompiled the code separately with these function calls when tracing and
these runs were not used for measuring performance. The colors on the blocks on the
trace represent the kernel that is running- green=GEMM, red=POTREF, orange=TRSM,
and purple=SYRK.

4.2 Execution Environment

Running a program using OpenMP on a Xeon Phi can be controlled by a large number
of environment variables. These variables communicate to the Xeon Phi operating sys-
tem and OpenMP about what hardware to use and how to schedule work on that hard-
ware and the available threads as well as many other customizations. We discovered
through investigation and testing that the desired behavior of tiled OpenMP Cholesky



12 Joseph Dorris, Jakub Kurzak, Piotr Luszczek, Asim YarKhan, and Jack Dongarra

Fig.7. PLASMA OpenMP Cholesky decomposition trace- all kernels use 4 threads (incomplete)
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Fig.8. PLASMA OpenMP Cholesky decomposition trace- DGEMM, DSYRK, DTRSM use 4
threads and DPOTRF uses 1 thread

required setting the following variables:

KMP_NUM_THREADS=60t,4c - use 60 cores and 4 hardware threads on each
KMP_HOT_TEAMS_MODE-=1 - allows OpenMP threads to stay alive
KMP_HOT_TEAMS_MAX_LEVEL=2 - keeps nested level OpenMP threads alive
OMP_NESTED=TRUE - allows multiple levels of parallelism
OMP_NUM_THREADS=60.,4 - a hierarchy of 60 threads and 4 subthreads
OMP_PROC_BIND=spread,close - specifies how threads are bound to resources
MKL_DYNAMIC=FALSE - Disable MKL dynamic adjustment of threads

— MKL_DOMAIN_NUM_THREADS=MKL_DOMAIN_BLAS=4 - suggests number
of threads for a particular function domain

After we set these environment variables, we created an initial trace for the right-
looking Cholesky decomposition on the Xeon Phi to discover what factors affected
performance and to gain insight as to how it can be improved. A trace for a matrix of
size N=5120 and with a tile size NB=256 can be seen in Figure 7.

4.3 Individual Kernel Performance

When examining the initial trace, the DPOTRF kernel which consists of the fewest flops
of all of the kernels[3] is taking considerably longer to execute than all the other kernels.
It also can be observed in the task dependency DAG representation that DPOTRF ker-
nels are a common path and a bottleneck for execution. These two observations make
this kernel a top candidate and priority for attempting to improve performance.
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We decided to test varying the number of threads used per core by the individual
kernels to determine which number of threads would be best for the performance of
each. Tiles sizes of 64, 128, 192, 256, 384, and 512 were tested and the performance
was calculated based on the median runtime for each kernel and configuration.

It can be seen in Figure 9 that on average GEMM, TRSM, and SYRK performed
best with 4 threads but POTRF performed best with 1 thread. The MKL library allows
runtime switching of the number of threads used for a kernel, so it can be switched to
1 thread whenever the core is going to perform a POTRF and then set back to 4 when
it is completed to allow maximum performance for the other kernels. This decreased
runtime and its affect on the trace can be seen in Figure 8. The DPOTREF kernels com-
plete much more quickly and thus do not stall the execution of the other tasks as long
to increase overall performance.

This was an unexpected result as it is commonly suggested to use 2-4 threads for
peak performance. It was also very poor performance even with its best configuration
and can be seen that it is performing less than 10% of peak for a core even with a tile of
size 512 by 512. This seems to suggest that an improved implementation of this kernel
might be possible for small tile sizes which would drastically improve performance of
this algorithm but it is out of the scope of this paper.

4.4 Scheduling Variations

The next test was to see which of variations of tiled Cholesky decomposition (right-
looking, left-looking, and top-looking) could perform the best on Knights Corner. Tiles
of size 128, 256, and 512 were tested to observe the behavior of the different algorithms
at different granularities.

The results can be seen in Figures 10, 11, and 12. For all tile sizes, the top-looking
Cholesky implementation performed the best or equal to the other variations. While
the right-looking implementation seemed to offer the most parallelism and hence the
hypothesized best performance on Knights Corner, this was not the case. Also, it can
be seen that even when switching to the top-looking algorithm, using a tile size of 128
with the dynamic scheduler is ineffective because of the immense load on the scheduler
to manage the increased number of tasks.

The fact that the top-looking implementation, which was supposed to be the least ag-
gressive performed the best raised some questions as to why this was occurring. We ob-
tained traces of a right-looking and a top-looking Cholesky decomposition at N=5120,
NB=128 when the performance of each had diverged (Figures 13 and 14). There is con-
siderable idle time on the right-looking implementation when there is a large number
of GEMMs that need to be completed. Their dependencies have been met according to
DAG representation for right-looking Cholesky yet there is delay in scheduling them.

The Intel runtime is proprietary software, so we were unable to investigate further.
We believe that the Intel implementation of the OpenMP runtime does not handle a large
number of tasks well because of its method of maintaining the tasks and the overhead
associated with them. The top-looking version unrolls the DAG slower, so the scheduler
has less work when updating dependencies after the completion of tasks and is better
able to handle it.
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threads | NB=64 | NB=128 [ NB=192 | NB=256 | NB=384 [ NB=512 | | threads [ NB=64 | NB=128 | NB=192 | NB=256 | NB=384 | NB=512
1 2.963 3.486 3.104 3.404 6.384 6.570 1 1.133 1.875 1.970 1.971 2.295 3.003
2 2.805 3.998 3.807 4.635 6.583 7.674 2 1.057 1.794 1.726 1.711 2.145 2.834
3 2.675 3.478 4.530 4.244 6.705 7.869 3 0.993 1.659 1.470 1.527 1.947 2.682
4 4 1.199 1.830 2.665 3.121 5.295 6.367
DPOTRF Performance (GFLOPS) | DTRSM Performance (GFLOPS)
threads | NB=64 | NB=128 NB=256 | NB=384 | NB=512 | | threads | NB=64 | NB=128 [ NB=192 | NB=256 | NB=384 | NB=512
1 1 1.304 3.262 3.960 4.176 5.395 5.323
2 0.100 0.062 0.426 0.544 0.944 1.627 2 1.331 3.623 5.420 6.828 9.092 9.272
3 0.091 0.036 0.339 0.480 0.826 1.402 3 1.267 3.350 6.096 7.457 8.164 8.478
4 0.081 0.134 0.323 0.333 0.802 0.884 4 1.214 3.427 6.050 8.061 9.894 10.199

Fig.9. MKL v11.3.1 kernel performance- single Knights Corner core
4.5 Comparison and Final Performance

The combination of correctly setting environment variables, modifying the number of
threads for DPOTREF, and using top-looking Cholesky decomposition as opposed to the
original right-looking offered the best performance. The incremental befit of each of
these modifications can be seen in Figure 15 when using a tiles of size 256.

After all of these optimizations, the curves for different tile sizes can be shown
in comparison to standard LAPACK-style implementation in MKL. Tile sizes of 192,
256, 384 are shown in Figure 16 as they demonstrate a range of available performance
curves for various matrix sizes. It can be seen that in fact as the matrix size increases,
the optimal tile size will increase. This is caused by balancing individual kernel per-
formance and work distribution. However, if set correctly by a user, it can be seen that
tiled Cholesky decomposition can obtain performance comparable to MKL and can
reach around 50% of peak.



Task-Based Cholesky Decomposition on Knights Corner using OpenMP

GFLOPS

GFLOPS

GFLOPS

500

400

350

300

250

200

150

0 2000 4000 6000 8000 10000 12000 14000

Fig. 10. Tiled Cholesky decomposition variations, NB=256

200
180
160
140 —— Static
120
100

80 Right

60

40

20 /

0 1000 2000 3000 4000 5000 6000
N

Fig. 11. Tiled Cholesky decomposition variations, NB=128

700
600 ~top
500 ——Left
Right
400 —— Static
300
200
100
0
0 5000 10000 15000 20000 25000

N

Fig. 12. Tiled Cholesky decomposition variations, NB=512

15



16 Joseph Dotris, Jakub Kurzak, Piotr Luszczek, Asim YarKhan, and Jack Dongarra

Fig. 14. OpenMP top-looking Cholesky decomposition-N=5120,NB=128
S Conclusion

The architectural differences between the Xeon Phi and previous multi-core proces-
sors provided many challenges and factors that needed to be considered to achieve
good performance. This performance was only possible with multiple threads per core
which created hierarchical levels of parallelism that was not previously considered with
PLASMA. Additionally, the optimal number of threads in this parallelism was not con-
sistent between different kernels. This created issues like having to dynamically set the
number of threads for MKL calls depending on the kernel.

Many challenges also arose because of the scheduler having difficulty handling a
large number of tasks. The ability of GCC OpenMP implementation to perform better
on a Xeon as compared to the Intel version gives evidence that there may be a solution
that will also provide better performance on the Xeon Phi. Until the implementation is
changed however, it could be seen that these issues could be mitigated using techniques
such as using algorithms that limit the parallelism presented to the scheduler.
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Fig. 15. OpenMP Cholesky decomposition incremental performance improvement (NB=256)
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Fig. 16. Final OpenMP task-based double precision Cholesky decomposition performance

Thus, the PLASMA OpenMP framework was shown to be able to produce good
performance for Cholesky decomposition on a Knights Corner after making only minor
modifications. This proved that a port of PLASMA to the Xeon Phi will be straightfor-
ward and has potential for high performance.

6 Related Work

This paper is building off of previous work that took place to create PLASMA at the
Innovative Computing Laboratory [4] in order to broaden the scope of the library to
include Xeon Phi coprocessors. The Innovative Computing Laboratory also researched
porting MAGMA to be able to make use of the Xeon Phi by using its offload capabili-
ties [7]. Knights Corner has been available since 2012 allowing ample time for analysis
and dissection. [12] studied performance of OpenMP programs as compared to an Intel
Xeon Sandy Bridge in terms of memory bandwidth and overhead of OpenMP con-
structs when making use of the dynamic scheduler. However, they were not looking at
tasks with dependencies and the degraded performance with a large number of tasks
(likely because it was written before it was implemented). [9] studied the Xeon Phi
Architecture and performance but was not focused on optimizations to increase that
performance.

7 Future Work

Many of the parameter configurations for optimal performance such as using one thread
for POTRF and choosing top-looking tiled Cholesky decomposition as opposed to right-
looking were based on underlying kernel and scheduler implementation issues that we
believe may be changed in the future, which will then require a different optimal con-
figuration for tiled Cholesky decomposition. The process outlined in this paper will
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need to be repeated for the Knights Landing to see if these decisions are still applicable.
Also, PLASMA contains many other routines. Extensive testing needs to be performed
on the other remaining algorithms to determine if any other kernels perform better with
one thread or if there are other factors that effect the performance. There is more work
to be done before a Xeon Phi PLASMA release, but the applicability of this task-based
approach to an order of magnitude more cores and the next generation of architectures
is becoming evident.
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