Performance of Random Sampling for Computing Low-rank Approximations of a Dense Matrix on GPUs

Théo Mary, Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Jack Dongarra presenter

Low-Rank Approximation

• For a matrix A, find B and C such that

Α	~	В *	С
m*n		m*k	k*n

- If $||A-BC|| \le \epsilon$ then k=numerical rank of A
- "Low-rank" means k<<min(m,n)
- Approximation allows
 - Reduced computation
 - Reduced storage

Pivoted QR Decomposition

Pivoted QR decomposition has a form

$$AP = [Q_1 Q_2] [R_{11} R_{12}] [R_{22}]$$

with

- $Q = [Q_1 Q_2] m$ by n orthogonal matrix
- $R = [R_{11} R_{12}] n$ by n upper triangular matrix [R_{22}]
- P n by n column pivot matrix
- Truncated Pivoted QR decomposition

 $\begin{array}{rrrr} AP &\approx & Q_1 & [R_{11} & R_{12}] \\ m*n & & m*k & k*n \end{array}$

SC15 Austin, TX, USA

LAPACK's QP3

- LAPACK's QP3 computes QR factorization with column pivoting using Level 3 BLAS
- No truncated QR available
 - But only a single line change is necessary in the reference code
- Limitations:
 - Includes Level 2 BLAS (in addition to Level 3 BLAS)
 - Synchronization occurs at every step to pick a pivot
 - Limited parallelism and data locality
 - Excessive communication
 - A costly update is needed when column norms drift numerically

Randomized Algorithm: Overview

• Stage I: generate Q, an orthogonal subspace spanning the range of A:

 $\mathbf{A} \approx \mathbf{A} \mathbf{Q}^{\mathsf{T}} \mathbf{Q}$

• Stage II: use Q to compute low-rank approximation of A with standard deterministic methods

Stage I: Generating Orthogonal Subspace - Intuition

- Generate random columns of B: for i = 1, 2, ..., k do w_i = random(m,1) b_i = w_iA end for
- $B = [b_1 b_2 \dots b_k]$
- B is **probably** linearly independent
- Orthogonalize:
 Q = orth(B)
- To improve robustness, use k+p columns
 - p is the oversampling parameter a small constant such as 10

Stage I: Generating Orthogonal Subspace - Sampling

В	=	Ω*Α	
ℓ *n		ℓ *m	m*n

- Ω can be
 - Gaussian random matrix
 - Can use matrix-matrix multiply GEMM
 - FFT matrix
 - Can use FFT routines
 - Padding might be necessary to get power-of-two speed

Sampling with GEMM or FFT

Stage I: Noise Reduction Through Power Method

- If the singular values of A decay slowly, the sampled matrix B may contain significant noise due to the following error bound:
 ||A-AQ^TQ|| ≤ C(Ω,p)σ_{k+1}
- To reduce the noise, q iterations of power method are applied: $B=\Omega A (A^TA)^q$
- This yields a new bound on noise $||A-AQ^{T}Q|| \leq C(\Omega,p)^{1/(2q+1)}\sigma_{k+1}$
- Due to round-off errors we need to reorthogonalize:

$$B_0 = \Omega A$$

repeat q times:

$$Q_0 = orth(B_0)$$
; $B_1 = Q_0A^T$
 $Q_1 = orth(B_1)$; $B_1 = Q_1A^T$

Randomized Pivoted QR

- Truncated pivoted QR step:
 - $BP \approx \overline{Q} (\overline{R}_{1:k} \overline{R}_{k+1:n})$ $= \overline{Q}_{k} \overline{R}_{1:k} (I_{k} \overline{R}_{1:k}^{-1} \overline{R}_{k+1:n})$ $= BP_{1:k} (I_{k} \overline{R}_{1:k-1} \overline{R}_{k+1:n})$ $=> AP \approx AP_{1:k} (I_{k} \overline{R}_{1:k}^{-1} \overline{R}_{k+1:n})$
- QR step: $AP_{1:k} = Q\widetilde{R}$

m*n

• Final approximation: $AP \approx O \qquad \widehat{R}(I, \overline{R})$

$$\begin{array}{ccc} Q & \widetilde{R}(I_k \,\overline{R}_{1:k}^{-1} \overline{R}_{k+1:n}) \\ m*k & k*n \\ \mathbf{Q} & \mathbf{R} \end{array}$$

Pseudocode of the Implementation

1) Input: m*n matrix A

$$2)B_{0} = \Omega A$$

- 3) for 1, 2, ..., q do
- 4) $Q_0 = orth(B_0)$
- 5) $B_1 = Q_0 A^T$
- 6) $Q_1 = orth(B_1)$
- 7) $B_1 = Q_1 A$

8) end for

9) \overline{Q} , \overline{R} , P = TruncatedPQR(B_q)

- 10)Q, $\widetilde{R} = QR(AP_{1:k})$
- 11) $R = \widetilde{R}(I_k \overline{R}_{1:k}^{-1} \overline{R}_{k+1:n})$

12)Output: Q, R, P such that AP≈QR

SC15 Austin, TX, USA

Communication Cost

• Assuming two-level memory hierarch: fast (size=M) and slow

Algorithm	#flops	#words
Sampling (Gaussian)	O(mnℓ)	O(mnℓ/M ^{1/2})
Iter. (mult.)	O(mnℓq)	O(mnℓq/M ^{1/2})
Iter. (orth.)	O((m+n)ℓ²)	O((m+n) l ² /M ^{1/2})
QRCP	O(n ℓ²)	O(n ℓ²)
QR	O(m ℓ²)	O(nℓ²/M ^{1/2})
Total	O(mn ℓ(1+q))	$O(mn \ell (1+q)/M^{1/2})$
QP3	O(mnk)	O(mnk)
CAQP3	O(mn(m+n))	O(mn²/M ^{1/2})

• If p and q are constant then randomized PQR converges towards communication lower bound

SC15 Austin, TX, USA

ICL

Orthogonalization and Numerical Stability

Algorithm	Stability	Cost
Householder QR	3	high
Cholesky QR	κ(A)²ε	low
CAQR	3	low
Classical Gram-Schmidt	κ(A)²ε	moderate
Modified Gram-Schmidt	κ(Α)ε	high

We need orthogonalization for:

- Power method
- Factorization of sampled matrix: QR(B)

Cholesky QR Orthogonalization

- Cholesky QR algorithm:
 - **1) Form S=X^TX**
 - 2) Compute Cholesky factorization R=chol(S)
 - 3) Solve Q=XR⁻¹
- Possible orthogonalization schemes
 - Repeat Cholesky QR multiple times
 - Try Cholesky and if it fails use Householder QR
 - For power method and tall-and-skinny matrices perform Cholesky on the bigger matrix and Householder on the smaller one
 - For power method orthogonalize only at some iterations
 - Use mixed-precision Cholesky QR
 - Our method of choice

Experimental Setup

•	Hardware:

- CPU: Intel Sandy Bridge, 16 cores
- GPU: NVIDIA Tesla K40c
- Matrices:
 - Power spectrum: $\sigma_i = -i^{\alpha} (\alpha = 3)$
 - Exponent spectrum: $\sigma_i = 10^{-i\gamma}$ ($\gamma = 0.1$)
 - НарМар

		Power	Exponent	НарМар
	m	500 000	500 000	503 783
	n	500	500	506
	k	50	50	50
	р	10	10	10
	ł	60	60	60
	σ_1	1	1	9900
	σ_{k+1}	8*10-6	1.3*10-5	500
	к(А)	1.3*10 ⁵	7.9*10 ⁴	20

Orthogonalization: Numerical Results

• Test orthogonality at each iteration: $||I_{,-}Q_{,0}Q_{,1}^{T}||$ and $||I_{,-}Q_{,1}Q_{,1}^{T}||$

Austin, TX, USA

SC15

Convergence

• Approximation error: ||AP – QR|| / ||A||

	QP3	Rand q=0	Rand q=1	Rand q=2
Power	4.47*10 ⁻⁵	9.08*10-5	4.59*10 ⁻⁵	4.45*10 ⁻⁵
Exponent	2.69*10 ⁻⁵	5.15*10 ⁻⁵	2.69*10 ⁻⁵	2.69*10 ⁻⁵
НарМар	5.99*10 ⁻⁵	9.86*10-1	8.74*10 ⁻¹	8.18*10-1

- Oversampling helps a lot
 - No oversampling (p=0) gives an order of magnitude larger error than with oversampling (p=10)

Sampling Performance

Higher is better

SC15 Austin, TX, USA

Random QR Approx. vs QP3 – Rows Variable

Lower is better

SC15 Austin, TX, USA

Random QR Approx. vs QP3 – Columns Variable

Lower is better

SC15 Austin, TX, USA

ICL CUT

Random QR Approx. across GPUs

Lower is better

SC15

Austin, TX, USA

Random QR Approx. vs QP3 – Power Iterations Variable

Lower is better

SC15 Austin, TX, USA

Summary and Conclusions

- Randomization works effectively for pivoted QR and may be considered a replacement for QP3
 - Accuracy on test matrices is indistinguishable
 - Further testing needed
- Randomized algorithms has attractive properties (Exascale-compliant)
 - Data locality
 - Higher parallelism levels
 - Lack of synchronization
 - Minimized communication
- New tests of usefulness needed from applications
 - Clustering, ...
- Possible extension: more comprehensive survey of QR implementations for low-rank approximation