Performance of Random Sampling for Computing Low-rank Approximations of a Dense Matrix on GPUs

Théo Mary, Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Jack Dongarra presenter

Low-Rank Approximation

- For a matrix A, find B and C such that
$A * n$
$m *$
$m * k \quad C * n$
- If $||A-B C|| \leq \varepsilon$ then $k=$ numerical rank of A
- "Low-rank" means $k \ll \min (m, n)$
- Approximation allows
- Reduced computation
- Reduced storage

Pivoted QR Decomposition

- Pivoted QR decomposition has a form

$$
\begin{array}{r}
A P=\left[Q_{1} Q_{2}\right]\left[R_{11} R_{12}\right] \\
{\left[\begin{array}{rr}
& R_{22}
\end{array}\right]}
\end{array}
$$

with

- $\mathrm{Q}=\left[\mathrm{Q}_{1} \mathrm{Q}_{2}\right]$ - m by n orthogonal matrix
- $R=\left[R_{11} R_{12}\right]-n$ by n upper triangular matrix
[$\left.\quad \mathrm{R}_{22}\right]$
- P - n by n column pivot matrix
- Truncated Pivoted QR decomposition

AP		
$\mathrm{m} * \mathrm{n}$	\approx	Q_{1}

LAPACK's QP3

- LAPACK's QP3 computes QR factorization with column pivoting using Level 3 BLAS
- No truncated QR available
- But only a single line change is necessary in the reference code
- Limitations:
- Includes Level 2 BLAS (in addition to Level 3 BLAS)
- Synchronization occurs at every step to pick a pivot
- Limited parallelism and data locality
- Excessive communication
- A costly update is needed when column norms drift numerically

Randomized Algorithm: Overview

- Stage I: generate Q , an orthogonal subspace spanning the range of A :
$A \approx A Q^{\top} Q$
- Stage II: use Q to compute low-rank approximation of A with standard deterministic methods

Stage I: Generating Orthogonal Subspace - Intuition

- Generate random columns of B:
for $i=1,2, \ldots, k$ do
$w_{i}=\operatorname{random}(m, 1)$
$b_{i}=w_{i} A$
end for
- $B=\left[b_{1} b_{2} \ldots b_{k}\right]$
- B is probably linearly independent
- Orthogonalize:

Q = orth (B)

- To improve robustness, use $k+p$ columns
- p is the oversampling parameter - a small constant such as 10

Stage I: Generating Orthogonal Subspace - Sampling

- $\quad \ell=k+p$

$$
\underset{\ell * \mathrm{n}}{\mathrm{~B}} \quad=\quad \begin{gathered}
\Omega * \mathrm{~A} \\
\ell * \mathrm{~m} \\
\mathrm{~m} * \mathrm{n}
\end{gathered}
$$

- Ω can be
- Gaussian random matrix
- Can use matrix-matrix multiply GEMM
- FFT matrix
- Can use FFT routines
- Padding might be necessary to get power-of-two speed

Sampling with GEMM or FFT

Stage I: Noise Reduction Through Power Method

- If the singular values of A decay slowly, the sampled matrix B may contain significant noise due to the following error bound:
| |A-AQ'Q | | $\leq C(\Omega, p) \sigma_{k+1}$
- To reduce the noise, q iterations of power method are applied:
$B=\Omega A\left(A^{\top} A\right)^{a}$
- This yields a new bound on noise
$\| A-A Q^{\top} Q| | \leq C(\Omega, p)^{1 /(2 q+1)} \sigma_{k+1}$
- Due to round-off errors we need to reorthogonalize:

$$
B_{0}=\Omega A
$$

repeat q times:

$$
\begin{array}{ll}
\mathrm{Q}_{0}=\operatorname{orth}\left(\mathrm{B}_{0}\right) ; \quad \mathrm{B}_{1}=\mathrm{Q}_{0} \mathrm{~A}^{\top} \\
\mathrm{Q}_{1}=\operatorname{orth}\left(\mathrm{B}_{1}\right) ; & \mathrm{B}_{1}=\mathrm{Q}_{1} A
\end{array}
$$

Randomized Pivoted QR

- Truncated pivoted QR step:

$$
\begin{aligned}
B P & \approx \bar{Q}\left(\bar{R}_{1: k} \bar{R}_{k+1: n}\right) \\
& =\bar{Q}_{k} \bar{R}_{1: k}\left(I_{k}{ }_{10} \bar{R}_{1: k}^{-1} \bar{R}_{k+1: n}\right) \\
& =B P_{1: k}\left(I_{k} \bar{R}_{1: k-1} \bar{R}_{k+1: n}\right) \\
\Rightarrow A P & \approx A P_{1: k}\left(I_{k} \frac{I_{1: k}}{} \bar{R}_{k+1: n}\right)
\end{aligned}
$$

- QR step:

$$
\mathrm{AP}_{1: \mathrm{k}}=\mathrm{QR}
$$

- Final approximation:
$\mathrm{AP} \approx$
m*n
m*k
Q
$\mathrm{R}\left(\mathrm{I}_{\mathrm{k}} \overline{\mathrm{R}}_{1: \mathrm{k}}{ }^{-1} \overline{\mathrm{R}}_{\mathrm{k}+1: \mathrm{n}}\right)$
$k^{*} n$
R

Pseudocode of the Implementation

1) Input: $m * n$ matrix A
2) $\mathrm{B}_{0}=\Omega \mathrm{A}$
3) for $1,2, \ldots, q$ do
4) $Q_{0}=\operatorname{orth}\left(B_{0}\right)$
5) $\quad B_{1}=Q_{0} A^{\top}$
6) $Q_{1}=\operatorname{orth}\left(B_{1}\right)$
7) $\quad B_{1}=Q_{1} A$
8) end for
9) $\left.\bar{Q}, \bar{R}, P=\operatorname{TruncatedPQR(} B_{q}\right)$
10) $\mathrm{Q}, \mathrm{R}=\mathrm{QR}\left(\mathrm{AP}_{1: \mathrm{k}}\right)$
11) $R=R\left(I_{k} \bar{R}_{1: k}{ }^{-1} \bar{R}_{k+1: n}\right)$
12)Output: Q, R, P such that $A P \approx Q R$

Communication Cost

- Assuming two-level memory hierarch: fast (size=M) and slow

Algorithm	\#flops	\#words
Sampling (Gaussian)	$O(m n \ell)$	$O\left(m n \ell / M^{1 / 2}\right)$
Iter. (mult.)	$O(m n \ell q)$	$O\left(m n \ell q / M^{1 / 2}\right)$
Iter. (orth.)	$O\left((m+n) \ell^{2}\right)$	$O\left((m+n) \ell^{2} / M^{1 / 2}\right)$
QRCP	$O\left(n \ell^{2}\right)$	$O\left(n \ell^{2}\right)$
QR	$O\left(m \ell^{2}\right)$	$O\left(n \ell^{2} / M^{1 / 2}\right)$
Total	$O(m n \ell(1+q))$	$O\left(m n \ell(1+q) / M^{1 / 2}\right)$
QP3	$O(m n k)$	$O(m n k)$
CAQP3	$O(m n(m+n))$	$O\left(m n^{2} / M^{1 / 2}\right)$

- If p and q are constant then randomized PQR converges towards communication lower bound

Orthogonalization and Numerical Stability

Algorithm	Stability	Cost
Householder QR	ε	high
Cholesky QR	$\mathrm{K}(\mathrm{A})^{2} \varepsilon$	low
CA QR	ε	low
Classical Gram-Schmidt	$\mathrm{K}(\mathrm{A})^{2} \varepsilon$	moderate
Modified Gram-Schmidt	$\mathrm{K}(\mathrm{A}) \varepsilon$	high

We need orthogonalization for:

- Power method
- Factorization of sampled matrix: QR(B)

Cholesky QR Orthogonalization

- Cholesky QR algorithm:

1) Form $S=X^{\top} X$
2) Compute Cholesky factorization $R=c h o l(S)$
3) Solve $Q=X R^{-1}$

- Possible orthogonalization schemes
- Repeat Cholesky QR multiple times
- Try Cholesky and if it fails use Householder QR
- For power method and tall-and-skinny matrices perform Cholesky on the bigger matrix and Householder on the smaller one
- For power method orthogonalize only at some iterations
- Use mixed-precision Cholesky QR
- Our method of choice

Experimental Setup

- Hardware:
- CPU: Intel Sandy Bridge, 16 cores
- GPU: NVIDIA Tesla K40c
- Matrices:
- Power spectrum: $\sigma_{i}=-j^{\alpha}(\alpha=3)$
- Exponent spectrum: $\sigma_{i}=10^{-1 \mathrm{y}}(\mathrm{\gamma}=0.1)$
- HapMap

	Power	Exponent	HapMap
m	500000	500000	503783
n	500	500	506
k	50	50	50
p	10	10	10
ℓ	60	60	60
σ_{1}	1	1	9900
$\sigma_{\mathrm{k}+1}$	$8 * 10^{-6}$	$1.3^{* 10^{-5}}$	500
$\kappa(\mathrm{~A})$	$1.3^{* 10^{5}}$	$7.9 * 10^{4}$	20

Orthogonalization: Numerical Results

- Test orthogonality at each iteration: \|\| $-Q_{0} Q_{0}{ }^{\top} \|$ and $\left\|I_{\ell}-Q_{1} Q_{1}{ }^{\top}\right\|$
- $k(B) \approx \kappa(A)$

Convergence

- Approximation error: ||AP - QR|| / ||A||

	QP3	Rand $\mathrm{q}=0$	Rand $\mathrm{q}=1$	Rand $\mathrm{q}=2$
Power	$4.47 * 10^{-5}$	$9.08 * 10^{-5}$	$4.59 * 10^{-5}$	$4.45 * 10^{-5}$
Exponent	$2.69 * 10^{-5}$	$5.15 * 10^{-5}$	$2.69 * 10^{-5}$	$2.69 * 10^{-5}$
HapMap	$5.99 * 10^{-5}$	$9.86 * 10^{-1}$	$8.74 * 10^{-1}$	$8.18{ }^{* 1} 0^{-1}$

- Oversampling helps a lot
- No oversampling $(p=0)$ gives an order of magnitude larger error than with oversampling $(p=10)$

Sampling Performance

Higher is better

Random QR Approx. vs QP3 - Rows Variable

Lower is better

Random QR Approx. vs QP3 - Columns Variable

Lower is better

Random QR Approx. across GPUs

Lower is better

Random QR Approx. vs QP3 - Power Iterations Variable

Lower is better

Summary and Conclusions

- Randomization works effectively for pivoted QR and may be considered a replacement for QP3
- Accuracy on test matrices is indistinguishable
- Further testing needed
- Randomized algorithms has attractive properties (Exascale-compliant)
- Data locality
- Higher parallelism levels
- Lack of synchronization
- Minimized communication
- New tests of usefulness needed from applications
- Clustering, ...
- Possible extension: more comprehensive survey of QR implementations for low-rank approximation

