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ABSTRACT

A low-rank approximation of a dense matrix plays an important
role in many applications. To compute such an approximation, a
common approach uses the QR factorization with column pivot-
ing (QRCP). Though the reliability and efficiency of QRCP have
been demonstrated, this deterministic approach requires costly
communication at each step of the factorization. Since such
communication is becoming increasingly expensive on modern
computers, an alternative approach based on random sampling,
which can be implemented using communication-optimal ker-
nels, is becoming attractive. To study its potential, in this paper,
we compare the performance of random sampling with that
of QRCP on an NVIDIA Kepler GPU. Our performance results
demonstrate that random sampling can be up to 12.8X faster
than the deterministic approach for computing the approxima-
tion of the same accuracy. We also present the parallel scaling of
the random sampling over multiple GPUs on a single compute
node, showing a speedup of 3.8x over three Kepler GPUs. These
results demonstrate the potential of the random sampling as
an excellent computational tool for many applications, and its
potential is likely to grow on the emerging computers with the
increasing communication costs.

1. INTRODUCTION

A low-rank approximation of a dense matrix plays an impor-
tant role in many areas of study, including theoretical computer
science, numerical linear algebra, applied mathematics, statis-
tics, data analysis, machine learning, and physical and biological
sciences. In many cases, by taking advantage of the low-rank
properties of the matrix or of its submatrices, we can reduce
the computational and storage costs of manipulating the matrix,
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or reduce the complexity of analyzing the given dataset. One
standard algorithm to extract a low-rank approximation of a
dense matrix A is based on the QR factorization with column
pivoting (QRCP) [3]. After k steps of QRCP, we obtain a rank-k
approximation of A:

X

AP Q R,
mxn mxk kxn W
where Q has orthonormal columns, R is an upper triangular
matrix, and the pivots P are selected to reveal the numerical
rank of A. Though QRCP has been shown to be efficient and
reliable in practice, this deterministic approach requires signif-
icant communication at each step of the factorization, where
the communication includes the synchronization and the data
transfer between the parallel processing units, as well as the
data movement through the local memory hierarchy. In compar-
ison to arithmetic operations, such communication has become
significantly more expensive on the modern computers, and it
is expected to become increasingly more so on the emerging
computers. It is critical to consider this hardware trend when
designing high-performance software.

To address these recent hardware trends, the algorithms based
on random sampling have been gaining attention [12, 19, 15, 9,
13]. These algorithms first sample a subspace which approxi-
mates the range of the matrix A, and then extract the approxima-
tion of A from a low-rank approximation of the sampled matrix.
The algorithms have been gaining attention because the sampled
matrix can be computed using standard lower-level libraries like
BLAS and FFT which can be implemented in communication-
optimal fashions and whose highly-optimized implementations
are often available on the specific target architecture. In ad-
dition, the dimension of the sampled matrix is typically much
smaller than the dimension of A and computing its low-rank
approximation, even using a standard deterministic algorithm,
requires only marginal computational and communication costs.
As a result, compared to the deterministic approach, random
sampling may better utilize the modern architecture, especially
of a large-scale parallel computer with a high communication
cost.

In this paper, we first study the numerical reliability of the
random sampling. In our numerical experiments, we use a wide



Notation | Description
m X n | dimension of the input matrix A
k | target rank of A
p | oversampling dimension
¢ | total sampling dimension (i.e. £ = k + p)
q | number of power iterations
ng | number of available GPUs
A(;) | submatrix of A distributed on the i-th GPU
j-th and j;-th through ja-th columns of A

Figure 1: Notations used in this paper.

range of input parameters and a variety of matrices with different
distributions of singular values in order to provide insights into
the reliability. Based on these results, we hope to provide to the
user enough information to infer the expected reliability of the
algorithm for a specific application. In addition, we show results
using a matrix from the International Hapmap Project [1] to
show the effectiveness of our algorithm in a practical setting for
an important real world application.

Then, to further investigate the potential of the random
sampling, we compare its performance with that of QRCP on a
GPU and study its parallel scaling on shared-memory multicore
CPUs with multiple GPUs. Our performance results demonstrate
that the random sampling can be up to 12.8% faster than QRCP
with one GPU, while obtaining good parallel scaling over the
multiple GPUs. Although the algorithm is not novel, to the best
of our knowledge, there is no previous report on the detailed
implementation or performance of the random sampling. Hence,
this paper with detailed description of our implementation
choices (e.g., orthogonalization kernels) may provide insights
to many users. We also focus on improving the robustness of
the algorithm in practice (e.g., integrating power iterations and
adaptive step sizes into the adaptive scheme) such that it can be
robustly used in many applications. The GPU kernels developed
for these studies will be released as a part of the numerical linear
algebra software package MAGMA!.

The rest of the paper is organized as follows: first, in Sections 2
and 3, we review the QRCP and random sampling algorithms,
respectively. Then, in Section 4, we describe our GPU implemen-
tations of the algorithms and an extension to utilize multiple
GPUs. Next, in Section 5, we provide the performance model
of the algorithms to discuss the potential of the algorithms in
more general contexts. Finally, after discussing the experimental
setups in Section 6, we present our numerical results, GPU ker-
nel performance, and the performance of the random sampling
with static and adaptive sampling sizes in Sections 7 through
10. We provide our final remarks in Section 11. Figure 1 lists the
notations that will be used in the rest of this paper.

2. QR WITH COLUMN PIVOTING

To compute the low-rank approximation (1), the most-widely
used algorithms are the variants of the QR factorization with
column pivoting (QRCP) [3]. In this algorithm, the column
with the largest norm is selected as a pivot at each step of
the Householder QR factorization. Though the algorithm is
not guaranteed to reveal the numerical rank, it is widely used
because of its algorithmic simplicity and its efficiency and relia-
bility in practice. In addition, it is possible to cheaply downdate

'http://icl.utk.edu/magma/

the column norms at each step of the factorization, reducing
its computational overhead over the standard Householder QR
factorization.

A column-based QRCP uses BLAS-2 matrix-vector operations
to update each column of A. On modern computers, the data
movement is expensive, and the BLAS-2 kernels obtain only a
small fraction of the hardware’s peak performance, limiting the
performance of the column-based QRCP. To improve the data
locality, a block-based QRCP [17] first factors a subset of the re-
maining columns of A (referred to as a panel), and then updates
the trailing submatrix using the accumulated transformations
at once. Since the trailing submatrix can be updated using
BLAS-3 matrix-matrix operations, the block-based algorithm can
exploit better data locality and obtain higher performance. This
BLAS-3 based QRCP is implemented in LAPACKZ2, referred to as
QP3, and widely used in practice. It is also possible to compute
a truncated version of QP3 by returning after factoring the k
columns of A, as it is done in our experiments.

Unfortunately, QP3 still performs about half of its floating-
point operations (flops) using BLAS-2, and requires a synchro-
nization to select a pivot at each step of the panel factorization.
In addition, the round-off errors could accumulate and the down-
dated column norms could significantly diverge from the actual
norms [17]. When this occurs, the trailing submatrix is immedi-
ately updated using the current Householder transformations
and the column norms are recomputed. If the column norms
need to be frequently recomputed, then the computational over-
head could become significant. In addition, the frequent norm
recomputation leads to poorer data locality since the column
norms are computed using BLAS-1 vector-vector operations, and
the trailing submatrix is updated using the smaller blocks.

3. RANDOM SAMPLING

Random sampling first samples a subspace that approximately
spans the range of A and generates its orthogonal basis vectors
Q. Then, the low-rank approximation of A is given by A ~ BQ,
where B = AQT. 1t is also possible to compute the low-rank
approximation of the form (1) based on the QRCP of the sampled
matrix B. Specifically, the random sampling algorithm for
computing (1) takes the following three steps:

1. Sampling (Step 1): Generate the sampled matrix B:

B = Q A,
{Xn f{Xm mxn

where Q is referred to as an £ X m sampling matrix. A
popular sampling matrix Q includes a Gaussian random
matrix and a FFT matrix [9].

2. QRCP (Step 2): Compute a QRCP factorization of the
sampled matrix B:

BP =~ 6 (§1;k §k+1:n)
= QR (Ik R\ilkﬁkﬂ:n)
= BPiy (I RyLRpin).
Thus, we have

AP ~ APy Ik R[ Rs1m) - @)

2http://www.netlib.org/lapack/



1: > POWER(A, B, C, j, k, q)
2: fori,2,...,qdo

> Orthogonalization
4:  Bjy = BOrth(By;j_1, Bjik)
51 Bjk = QR(Bjx)

6: > Matrix-matrix multiply
7: Cjk = BjgAl
8:

9

w

J
> Orthogonalization

: Cj = BOrth(C1j-1, Cj:k)
10: Gy := QR(Cjix)

11: > Matrix-matrix multiply
12: Bj:k = Cj:kA
13: end for

14: return B and C.

(a) Power Method with the matrix A on the initial
vectors B.

: > Step 1: Gaussian sampling

: Q := PRNG(¢, m), where £ =k +p
:B:=QA,C:=][]

: B:=POWER(4, B, C, 1, ¢, q)

: » Step 2: QRCP

[Q. R, P] := QRCP(B)

: > Step 3: QR

: [Q R] := QR(APyy)

: T := R} Risim

:R:=R(Ix T)

11: return Q, R, P such that AP ~ QR.

(b) Random Sampling to compute a low-rank
approximation of an m X n matrix A.
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Figure 2: Random sampling algorithm, where PRNG(¢, m)
returns an ¢ X m Gaussian random matrix, [Q, R] := QR(B)
and [Q, R, P] := QRCP(B) return the QR and QRCP factors
of B (i.e., QR = B and BP = QR), respectively, and V :=
BOrth(B, Q) orthogonalizes B against Q (i.e., viQ = 0).

3. QR (Step 3): Compute the QR factorization of APq.x:
APy = QR. (3)
Thus, combining (2) and (3), we obtain

AP = Q R,
mxn mxk kxn

where R = R (Ik R\I:iﬁk+1:n).

In practice, oversampling the matrix improves the robustness of
the algorithm, and hence, the dimension of the sampled matrix
B is given by { = k + p, where p is a small constant known
as an oversampling parameter. In addition, the dimension of
B is often much smaller than that of A (i.e., { < m, e.g.,
{ = 64 and m = 50, 000 in our experiments), and the cost of
the deterministic QRCP factorization of B is marginal to the
total cost. Hence, the overall cost of the algorithm is typically
dominated by the first step of computing the sampled matrix B,
which can be computed using communication-optimal kernels
that also exhibit high data locality and parallelism.

When the singular values of the matrix A decay slowly, the
sampled matrix generated by the above algorithm may contain

a significant amount of noise. To reduce the amount of noise, g
iterations of the power method may be applied [16]:

B=QA(ATA).
This yields the following error bound on the approximation,
1AP - QRI < c(p, )TV gy,

where 0,1 denotes the (k + 1)-th largest singular value of A,
and c(p, Q) is a constant that depends on the oversampling
parameter p and the sampling matrix Q [9]. Since the condition
number of B increases exponentially with g, to maintain the
numerical stability in practice, the sampled matrix is orthogo-
nalized after each application of A and AT. Figure 2 shows the
pseudocode of the resulting algorithm.

In this paper, we focus on the fixed-rank problem to compute
a rank-k approximation for a user-specified input parameter
k. Alternatively, the fixed-accuracy problem seeks for a low-
rank approximation whose approximation error is less than a
user-specified tolerance &. Figure 3 shows the pseudocode of
an adaptive sample size scheme (adaptive-£), which integrates
the power iteration into the adaptive scheme for solving the
fixed-accuracy problem by gradually increasing the size of the
sampled subspace [9]. At each step of the adaptive-£ scheme, the
sampled subspace is expanded by adding a new set of orthogonal
basis vectors By, 1.x which are generated by the power iteration.
To maintain the numerical stability, during each power iteration,
after performing the matrix-matrix multiplication with A (or A7),
the new vectors Bj. (or Cj.) are orthogonalized against the
previous vectors By:j—1 (or C1.j-1) by a block orthogonalization
(BOrth) based on the Classical or Modified Gram Schmidt [8]),
in addition to being orthogonalized against each other (e.g.,
using the Householder QR [8] or Cholesky QR [18]).

To reduce the cost of computing the approximation error,
||A—AB{, /B1:¢|l, where By, stores the orthonormal basis vectors
of the current sampling subspace, on Line 15, the adaptive-£
scheme estimates the error by € = |[|Q(A — AB{{BM»)H. This
error estimate satisfies the following bound, '

2 _
A - AB{;fBlzfn < Cad 4/ i 4)

with probability 1 — min(m, n)c;fi’“, where cgq is a fixed con-
stant [9]. Once the sampled matrix B is computed through
the adaptive-{ scheme, the low-rank approximation can be
computed by Steps 2 and 3 of random sampling.

Since the computed error € is pessimistic, though the final ap-
proximation error is less than the user-specified &, the adaptive
scheme generally generates a sampled subspace whose dimen-
sion is greater than necessary. This induces the computational
and storage overheads. In addition, compared to performing
the matrix-matrix multiply with the final subspace all at once
(e.g., fixed-rank problem), incrementally performing the matrix-
matrix multiply with a smaller subspace at each step of the
adaptive scheme often obtains lower performance. We study the
performance of this adaptive scheme in Section 10.

4. IMPLEMENTATION

We now describe our GPU implementation of the random
sampling algorithm of Figure 2. For Step 1 of the algorithm, we
experimented with two types of sampling:



Require: Input: m X n matrix A.
1: Initialize:
€:=0,Q:=[],and €inc := f(¢€, inir)
e.g., f({, Linc) = Cinc o Linic + €
2: Q := PRNG({ipc, m)
3: B:=QA,and C :=[]

4: repeat

5: > Expand sampled subspace

6: k:=C+ Cinc

7: [B, C] := POWER(A, B, C, { + 1, k, q)
8 Briik = QR(Bri1:k)

9: {:=k

10: > Generate new vectors

11: Cinc := f(¢, Linc)

12: Q := PRNG({jnc, m)

13: Bpi1.x := QA, where k := € + i,

14: > Compute approximation error

150 &:= By — Bes1kBY Bl
such that £ ~ ||A — AB{.KBM»H

16: until€ < ¢ .

17: return B := By.p

Figure 3: Adaptive scheme to compute sampling subspace.

e Gaussian sampling: For Line 2 of Figure 2, we used
NVIDIA’s cuRAND library to generate a Gaussian matrix {2
(matrix whose entries follow the standard normal distri-
bution W (0, 1) with a mean of 0 and a standard deviation
of 1). The sampling step then takes the form of a matrix-
matrix multiply which is implemented using the general
matrix-matrix multiply (GEMM) kernel from NVIDIA’s
CUBLAS.

e FFT sampling: We used NVIDIA’s cuFFT library to generate
the sampled matrix B by applying an FFT transformation to
A. Like many other FFT implementations, cuFFT obtains
better performance for data sizes that are powers of two.
Hence, in our experiments, we padded the matrix A with
zeroes such that its leading dimension becomes the next
power of two.

The sampling step B = QA consists of two steps, projection and
selection:

B = S I1 A
{Xn {Xm mXm mXn

where I1 represents the projection matrix, S is the row selection
matrix which randomly selects £ rows from IT or [1A, and hence
the sampling matrix Q is given by Q = SII. There are two
sampling schemes, full and pruned sampling, which lead to
different computational costs. In the full sampling scheme, the
projected matrix 1A is first computed (e.g., full FFT), and then
{ rows are selected, while in the pruned sampling scheme, the
sampling matrix Q is first computed, and then applied to A,
or the ¢ rows are directly sampled from A (e.g., pruned FFT).
Since only a small number of rows are selected through random
sampling, compared to the full sampling scheme, the pruned
sampling scheme may significantly reduce the computational
cost. For Gaussian sampling, the random sampling matrix Q
is also Gaussian. Hence, we implement the pruned sampling

scheme by first generating an £-by-m Gaussian matrix Q using
CURAND, and then computing the sampled matrix B through a
matrix-matrix multiply (i.e., B = QA). The flop count of this
pruned sampling is O(mn¢), while 6(m?n) flops are needed for
a full Gaussian sampling.

The pruned FFT only computes the ¢ selected rows and
requires a fewer flops compared to the full FFT (i.e., 6(mn log(¢))
instead of ©(mn log(m))). However, compared to the Gaussian
sampling, the reduction in the flop count is less (i.e., a factor
of 6(log(m)/log(¢)) instead of 6(m/¢)). In addition, since
the execution time of FFT is not a function of only flop count
(e.g., data access), the reduction in the execution time using
the pruned FFT could be much less than 6(log(m)/ log(¢)), or
the execution time could even increase. Though we provide
a performance comparison of Gaussian and FFT sampling in
Section 9, cuFFT does not support pruned FFT, and in this paper,
we focus on Gaussian sampling, for which more theoretical work
has been established [9].

Previously, the performance of several tall-skinny orthogonal-
ization schemes on GPUs have been studied [20]. The results of
the studies can be applied on Lines 3 and 5 of the power iteration
in Figure 2 to orthogonalize the £ X n and ¢ X m short-wide
matrices B and C, respectively (i.e., £ < min(m, n)). In this
paper, we focus on the Cholesky QR (CholQR) factorization [18]
that obtains high performance based on BLAS-3 operations and
can be implemented with minimum communication [5]. Specif-
ically, CholQR computes the QR factorization of a matrix B in
the following three steps3:

(i) Form a Gram matrix G; i.e., G = BBT.

(i) Compute the Cholesky factor R of the Gram matrix G; i.e.,
RTR := G, where R is upper-triangular with nonnegative
diagonal.

(iii) Compute the orthogonal matrix Q by the backward-substitutions;

ie,Q=RTB.

Similarly, on Line 10, CholQR is used to compute the QR factor-
ization of the short-wide matrix C.

Classical and modified Gram Schmidt procedures (CGS and
MGS, respectively) [8] are other well-known orthogonalization
algorithms. While CGS orthogonalizes each column of the matrix
against the previous columns one at a time, MGS orthogonalizes
each column against all the previous columns at once. Hence,
MGS and CGS are based on BLAS-1 and BLAS-2 operations,
respectively, and their performance is often lower than the
BLAS-3 based CholQR. In addition, though the Householder QR
(HHQR) [8] is an unconditionally accurate orthogonalization
scheme, its performance is limited by the BLAS-1 and BLAS-
2 operations, which obtain only a fraction of the GPU peak
performance. In Section 8, we study the performance of these
orthogonalization schemes. Though CholQR was stable in our
experiments, it can be unstable for an ill-conditioned matrix A
or for other choices of the parameters (e.g., k and p). This
numerical issue may be overcome by reorthogonalizing the
matrices, using HHQR for orthogonalizing B or when CholQR
fails, using the Communication-Avoiding HHQR [5, 2], or using
mixed-precision arithmetic in CholQR [22]. Orthogonalization
procedures for a stable and efficient implementation of the

3This is the adaptation of CholQR to compute the LQ factoriza-
tion of the short-wide matrix B.
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Figure 4: Ilustration of CholQR on two GPUs, where the
dashed lines show the matrix distribution.

random sampling algorithm are part of our current research
focus.

At Step 2, QRCP of the sampled matrix B is computed using
the truncated QP3 on a GPU (on Line 6). Then, the tall-skinny
QR factorization of the matrix APq.j is computed using CholQR
on the GPU (on Line 8). Finally, the upper-triangular matrix R is
generated by the triangular solve and triangular matrix-multiply
on the GPU (Lines 9 and 10). Since the dimension of the sampled
subspace is much smaller than that of A, the computational and
communication costs at Steps 2 and 3 are of lower order than
that of the first step to generate the sampled subspace. We
list the computation and communication costs of each step in
Section 5.

Finally, to utilize multiple GPUs, the matrix A is distributed in
a 1D block row format among the GPUs such that each GPU owns
about the same number of rows (i.e., the i-th GPU owns the block
row A of size c-by-n, where ¢ ¥ m/ng and ng is the number of
available GPUs). Both matrices Q and C are distributed in the
same 1D block column format as that of A”. Then, on Line 3 of
random sampling or on Line 12 of the power iteration, the i-th
GPU computes the partial result B(;) of the sampled matrix B
by performing the local matrix-matrix multiplication of ;) or
C(;) with A;), respectively (e.g., B(;) := C(;)A(;))- Next, the CPU
accumulates the partial results By;) to form the ¢ X n sampled

matrix B (i.e., B := Z?g B(i))- Since the dimension of B is
small (i.e., { < n < m), we compute the QR factorization
of B on the CPU (using either CholQR or HHQR), and the
resulting orthogonal matrix is copied to the GPU such that it is
duplicated on each GPU. Finally, each GPU performs its local
matrix-matrix multiply to compute the sampled matrix C which
is distributed in the same 1D block column format as that of AT
(ie., Cgy := BAG).

Now, to perform CholQR of C on multiple GPUs, each GPU first
computes the local matrix-matrix multiply, G(;) := C(i)C(Tl.), and
then sends the result to the CPU, where the Gram matrix G :=
Z?ﬁ 1 G(i) is computed. The Cholesky factor R of the matrix G is
then computed on CPU. Finally, the CPU broadcasts the Cholesky
factor R to all the GPUs, and each GPU independently performs
the substitution, Q(i) = R_TC(i) (i.e., QR = C). Figure 4
illustrates our multi-GPU CholQR implementation.

Finally, for Steps 2 and 3 of random sampling, the truncated
QP3 of the sampled matrix B, and the triangular solve and
multiply to compute R are performed on a GPU (on Lines 6, 9,
and 10), while the QR factorization of AP7.j is computed based
on the multi-GPU CholQR (on Line 8).

5. PERFORMANCE MODEL

Figure 5 compares the computational and communication
costs of our random sampling implementation on one GPU

with those of QP3 and its communication-avoiding variant [4].

Here, the computational and communication costs are measured,

#flops #words
Random sampling
Sampling (Gaussian) | 6(mnf) 6(mnt/M?)
Sampling (FFT) 6(mnlog(m)) 6(mnlog(m)/ log(M))
Iter. (mult.) 6(mnfq) 6(mntq/MY/2)
Iter. (orth.) O((m + n)f2%q) o((m + n)t%q/MY?)
QRCP 6(nt?) 6(nt?)
QR 6(mt?) 6(me2 /M%)
Total 6(mné(1 +2q)) | 6(mnf(1 + 2q)/MY2)
QP3 6(mnk) 6(mnk)
CAQP3 6(mn(m + n)) 6(mn?/M'/?)

Figure 5: Computation and communication costs on one
GPU.

respectively, based on the flop count and the words transferred
between the two levels of the local memory hierarchy, where
the the size of the fast memory is M.

e Sampling (Step 1): The sampling is either based on a
FFT or a matrix-matrix multiply, and both can use a
communication-optimal kernel [11].

e Power iteration (Step 1): Each iteration performs two
matrix-matrix multiplies and orthogonalization of two
matrices, one with the dimension £ X m and the other
with the dimension ¢ X n. Communication-optimal orthog-
onalization procedures [5, 18] exist, which can be used
for this step.

e QRCP (Step 2): Since the sampled subspace is small
compared to the global space (i.e., { <« m), this step
only has a marginal computational and communication
costs. Our implementation is based on the standard QP3
algorithm, but a communication-optimal variant of QP3 [4]
can be used for this step.

e QR (Step 3): Just as for the power iteration, a communication-
optimal orthogonalization procedure can be used for this
step.

Thus, both the computation and communication costs on
one GPU are dominated by the matrix-multiply kernel. The
performance model can be extended to multiple GPUs, where

the matrix-multiply kernel remains the bottleneck with #flops

_ £(1+2q) _ £(1+2q)
= @(%) and #words = ©(mZgM—1/2q) [10].

6. EXPERIMENTAL SETUPS

In the following four sections, we studied the accuracy and
performance of random sampling using three different matri-
ces A. The first two matrices A were generated by A := XXY
with randomly generated orthogonal matrices X and Y, and a
diagonal matrix X shown in Table 1. The last matrix comes from
the International Hapmap Project [1]. We used the latest bulk
release (as of August 1, 2014). Each row of A corresponds to a
specific nucleotide basis and a column corresponds to an indi-
vidual from a specific population. We extracted the data using
the first five chromosomes and from four different populations:
Utah residents with Northern and Western European ancestry,
Gujarati Indians in Houston, Texas, Japanese in Tokyo, Japan,



Matrix Name
POWER EXPONENT  HAPMAP
o (i+1)7° 1071/10 —
oo 1 1 9.9e+03
Ok+1 8e-06 1.3e-05 5e+02
k(A) 1.3e+05 7.9e+04 2e+01
m 500,000 500,000 503,783
n 500 500 506
k 50 50 50
P 10 10 10
4 60 60 60
Table 1: Test matrices.
| QPs | g=0 g=1 q=2
POWER 4.47€-05 | 9.08e-05 4.59€-05 4.45e-05
EXPONENT | 2.69e-05 | 5.18e-05 2.69e-05 2.69e-05
HAPMAP 5.99e-01 | 9.86e-01 8.74e-01 8.18e-01

Figure 6: Approximation error norm ||AP — QR||/||A||.

and Yoruban in Ibadan, Nigeria. Computing a low-rank approxi-
mation on such data can be used for population clustering [6,
14].

In Section 7, we first compare the approximation errors of
QP3 and random sampling using the fixed parameters shown in
Table 1. Then, in Section 8, we study the performance of the GPU
kernels, and in Section 9, we study the performance of random
sampling over a range of parameters (i.e., m = 2, 500 ~ 50, 000,
n =500 ~ 5,000, { =32 ~ 512, and ¢ = 0 ~ 12). Finally in
Section 10, we discuss the performance of the adaptive scheme
for solving the fixed-accuracy problem. To the best of our
knowledge, this is the first experimental study of the adaptive
scheme. All the experiments were conducted in 64-bit double
precision.

Since the condition numbers of the sampled matrices B and C
increase exponentially with g, the approximation error diverged
without orthogonalization. To avoid the numerical issue, in our
experiments, we orthogonalized both sampled matrices using
CholQR with one full reorthogonalization, which made the
sampling algorithm stable. All the codes were compiled using
the C++ GNU compiler gcc (version 4.4.7) and the NVIDIA
compiler nvcc (CUDA version 6.0.1), with the optimization flag
-03, and linked to threaded MKL (version 10.3). We conducted
our experiments on two eight-core Genuine Intel(R) 2.60GHz
CPUs and three NVIDIA Tesla K4oc GPUs.

7. NUMERICAL RESULTS

In Figure 6, we compare the approximation errors of the de-
terministic QP3 and the random sampling using the fixed values
of the parameters shown in Table 1. Though the approximation
error decreased with the number of iterations, random sampling
without power iteration (i.e., ¢ = 0) obtained the approximation
with the same order of error as QP3. These results were obtained
for an oversampling equal to p = 10. Without oversampling (i.e.,
p = 0), the error norm was about an order of magnitude greater.
In addition, a greater oversampling (e.g., p = 20 or 50) could
further improve the accuracy, but with a smaller factor (i.e., the
constant factor C(€, p) is roughly proportional to p_l/ 2 [9]).
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Figure 7: Performance of QP3 and tall-skinny QR.

These numbers are reported for Gaussian sampling, but FFT
sampling gave the approximation errors of the same order.

8. KERNEL PERFORMANCE

Before studying the performance of random sampling in
the next section, in this section, we study the performance
of our GPU kernels which are used for our implementation
of the random sampling. First, to study the cost of the QP3
factorization, in Figure 7, we compare the QP3 performance with
the performance of other orthogonalization algorithms on the
GPU, i.e., Householder QR (HHQR), Cholesky QR (CholQR), and
the classical and modified Gram Schmidt (CGS and MGS). For
our performance studies, we focused on the tall-skinny matrices
(i.e., m > n), and varied the number of rows while fixing the
number of columns in A (i.e., m = 2, 500 ~ 50, 000 while
n = 64). In the figure, we see that HHQR was about 5X faster
than QPg, indicating the cost of column pivoting. In addition,
BLAS-3 based CholQR obtained the speedups of up to 33.2x
and an average speedup of 30.5X over HHQR, demonstrating
the cost of the intra GPU communication associated with the
BLAS-1 and BLAS-2 operations required by HHQR. The figure
also shows that due to the intra GPU communication, HHQR,
which uses both BLAS-1 and BLAS-2, was faster than MGS but
slower than CGS because our MGS and CGS perform most of
their flops using BLAS-1 and BLAS-2, respectively [22].

Next, in Figure 8, we compare the performance of the full FFT
sampling with the performance of the matrix-matrix multiply
(GEMM) used for the pruned Gaussian sampling. For the row
sampling in Figure 8(a) (i.e., B = Q A), we varied the dimension
of the sampled matrix B from ¢ = 32 to 512 for a fixed 50, 000 X
2, 500 input matrix A (i.e., sampling about 0.06 to 1.02% of the
rows of A). In the figure, we also show the peak performance
for the double-precision flop (i.e., 1, 430 Gflop/s) and the peak
performance based on the memory bandwidth (i.e., 288 GB/s,
assuming blocksize of 512). The matrix-matrix multiply used
for the pruned Gaussian sampling exhibits a regular memory
access pattern and a high level of data parallelism. Hence, it
can be optimized for the intra GPU communication and obtain
a near peak performance (i.e., about 1, 200 Gflop/s). As a
result, since the multiplication requires 6(mn¢) flops, for a large
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Figure 8: Performance of pruned Gaussian and full FFT sampling.

enough sampling size, the sampling time increases linearly with
the sampling size £. On the other hand, the full FFT sampling
performs only 6(mn log(m)) flops (e.g., log(m) ~ 15.6 when
m = 50,000). As a result, compared to the matrix-matrix
multiply, though its performance is often lower (e.g., about
135 Gflop/s in our experiments), the full FFT sampling can
be as fast as the pruned Gaussian sampling, and it was faster
when £ > 192. This can be seen in the figure as the Gflop/s
of the pruned Gaussian sampling becomes greater than the
“effective” Gflop/s of the full FFT sampling, which is computed
as the ratio of the number of flops required for the pruned
Gaussian sampling over the full FFT sampling time. The figure
also shows that the matrix-vector multiply (GEMV), which is
used to implement CGS, HHQR, and QP3, obtains much lower
performance than the matrix-matrix multiply.

Similarly, Figure 8(b) compares the performance of the full
FFT column sampling with the pruned Gaussian column sam-
pling (i.e., B = Q AT). Again, the Gaussian sampling obtained
near peak performance, but the full FFT was faster when ¢ > 128.
For the rest of the paper, we focus on the pruned Gaussian (row)
sampling with a small sampling size since more theoretical work
has been established for the Gaussian sampling [9].

Besides sampling, computing the orthogonal basis vectors
of the sampled subspace during the power iteration can be-
come expensive. Specifically, on Lines 5 and 10 of Figure 2(a),
we compute the QR factorization of the short-wide matrices
B and C, respectively. While Figure 7 shows the performance
of CholQR for tall-skinny matrices, Figure 9 shows the perfor-
mance for the short-wide matrices with the same number of
rows but with different numbers of columns (i.e., m = 64 and
n = 2,500 ~ 50, 000). Again, CholQR showed excellent per-
formance, obtaining speedups of up to 106.4 and the average
speedup of 72.9 over HHQR.

Since the execution time of the random sampling is dominated
by the sampling and orthogonalization phases, we can estimate
the performance based on the performance results in Figures
7 through 9. This allows us to evaluate the performance of
random sampling on a target computer before implementing the
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Figure 9: Performance of short-wide QR.

algorithm or to verify the performance of the existing implemen-
tation. For instance, Figure 10 shows the estimated performance
of the random sampling and that of the truncated QP3 for
m = 2, 500 ~ 50, 000 with n = 2, 500 and ({; p) = (64;10).
We see that due to its communication costs, QP3 could not fully
utilize the computational power of the GPU, and its performance
was limited under 29 Gflop/s. On the other hand, random
sampling can better utilize the hardware and it is expected to
reach 676 Gflop/s for ¢ = 1 and 489 Gflop/s for ¢ = 0. Hence,
we expect random sampling to obtain 23.8 or 17.1 times higher
Gflop/s than QP3 when q = 1 or 0, respectively. In addition,
random sampling performs roughly 3.6X or 1.2X more flops
than QP3 when g = 1 or 0, respectively. Therefore, we expect
the random sampling to obtain the speedup of 23.8/3.6 = 6.7
or 17.1/1.2 = 14.3 over QP3.

9. PERFORMANCE RESULTS

We now study the performance of random sampling on
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Figure 10: Estimated Gflop/s of random sampling and QP3.

two eight-core Intel SandyBridge CPUs with an NVIDIA K4o0c
GPU. First, Figure 11 shows the total execution time of ran-
dom sampling and QP3 with the same number of columns
but with different numbers of rows in A (i.e., n = 2, 500 and
m = 2, 500 ~ 50, 000 with (k; p; q) = (54;10; 1)). Both com-
putational and communication costs of both random sampling
and QP3 depend linearly on the number of rows, m (see Fig-
ure 5), and their execution time also increased linearly with m.
However, the QP3 factorization time increased at a faster rate
(i.e., QP3 time ~ 9.34m107° + 0.0098, while random sampling
time ~ 1.15m107% + 0.0162). As a result, random sampling
obtained speedups of up to 6.6x and the average speedup of
5.1x over QP3. For these experiments, we performed one power
iteration (i.e., ¢ = 1). We saw in Figure 6 that even without
power iteration (i.e., ¢ = 0), the approximation error norm of
random sampling was already in the same order of magnitude
as that of QP3. Without power iteration, the random sampling
obtained speedups of up to 12.8x and the average speedup of
8.8X%. The speedup of 6.6x obtained for g = 1 agrees with our
estimate in Figure 10.

Figure 11 also shows that for a small m, the QRCP step re-
mained the bottleneck. However, for a large enough m, the
overall run time of random sampling was dominated by the first
step of computing the sampled matrix B. For example, when
m = 50, 000, about 78% of the total run time was spent in the
first step, which includes the generation of the sampling matrix
Q, the sampling time, the matrix-matrix multiply in the power
iteration, and the orthogonalization (0.9, 28.3, 47.3, and 1.4% of
the overall time, respectively). The run time of random sampling
was thus dominated by the matrix-matrix multiply (i.e., about
75% of the overall time). This is one of the main attractive
properties of random sampling since this BLAS-3 operation can
be tuned to exploit high data locality and parallelism, while QP3
performs a half of its total flops using BLAS-2 that obtains much
lower performance (around 30 Gflop/s).

Figure 12 shows the QP3 and random sampling time with
different numbers of columns in A (i.e., n = 500 ~ 5, 000
with m = 50, 000 and (¢; p;q) = (64;10;1)). Again, com-
pared to the random sampling, the QP3 time increased much
quicker with the increase in the number of columns (i.e., QP3
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Figure 11: Random sampling and QP3 time with different
numbers of rows, where “Sampling” and “GEMM (iter)” in
the legends corresponds to the matrix-matrix multiply with
the initial sampling matrix Q) and the matrix-matrix multi-
plies during the power iterations, respectively.

time ~ 1.80n10~* + 181.77, while random sampling time
~ 0.2119n1072 + 239.7). Similarly, Figure 13 shows the ex-
ecution time with varying target rank k (i.e., £ = 32 ~ 512
with (m; n) = (50, 000; 2, 500) and (p; q) = (10; 1)). The QP3
time also increased quicker with the increase in the target rank
(i.e., QP3 time =~ 0.81¢1072 — 0.0235, while random sampling
time ~ 0.10£1072 + 0.0227). At the end, random sampling
outperformed QP3 over large ranges of parameters.

Figure 14 compares the QP3 run time with that of the random
sampling with different numbers of power iterations (i.e., ¢ =
0 ~ 12). As expected, we see that the run time of random
sampling increases linearly with g, and that random sampling
outperforms QP3 for up to twelve iterations (i.e., ¢ < 12). We
note that for our test matrices, the random sampling without
iteration (i.e., ¢ = 0) computed an approximation whose error
norm is in the same order of magnitude as QP3.

Finally, Figure 15 shows the parallel strong scaling of random
sampling over three Kepler GPUs, using the fixed parameters
(m;n) = (150, 000; 2, 500) and (¢; p; q) = (64;10;1). On two
and three GPUs, the respective parallel speedups of the matrix-
matrix multiply were about 2.8x and 5.1X. These superlinear
speedups are due to the fact the chunks A(;) on each GPU get
less tall and skinny when the number of GPUs ng grows, and
we found that the efficiency of the GPU GEMM kernel increases
as the matrix becomes closer to square: it is around 440, 630
and 760 Gflop/s with 1, 2, and 3 GPUs (i.e., m/ng = 150, 000,
75, 000, and 50, 000), respectively. With the communication
optimal CholQR, inter-GPU communications only represented
1.6% of total time for two GPUs, and 4.3% for three GPUs. In
the end, random sampling obtained an overall speedup of about
2.4% and 3.8% on two and three GPUs, respectively.

10. ADAPTIVE PERFORMANCE

Figure 16 shows the convergence of the error estimate € com-
puted at each step of the adaptive-¢ scheme. For this experiment,
we used the 50, 000 X 2, 500 EXPONENT matrix, and computed
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its low-rank approximations without power iteration (i.e., g = 0).
Each line corresponds to a different static parameter {;,., the
amount by which the subspace size is increased at each iteration
(i.e., f(€, €inc) = Cinc). We started with the same initial sub-
space size (i.e., {inir = 8), and iterated until the error estimate
£ was smaller than 10712 (i.e., & = 10712).

In the figure, the dashed black line shows the actual er-
rors ||A — AQTQ||2, which were one or two order of magni-
tude less than the error estimates &, which are the proba-
bilistic estimates, satisfying (4). For example, with a fixed
probability of failure, vy, the constant c,q in (4) is given by
cad = (y/ min(m, n))~Y/tinc where (y/ min(m, n)) < 1. Thus, a
larger value of the parameter ¢;,. decreases the constant c,q,
making the error estimate € less pessimistic. This can be ob-
served in Figure 16, where the error estimates € with £, = 8
were slightly larger and worse than the estimates with a larger
value of {j,.. In addition, a larger value of static £, has a
greater chance of overestimating the sampling size which would
satisfy the tolerance . This increases the computation and
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Figure 14: Random sampling and QP3 time with different
numbers of iterations.
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Figure 15: Strong parallel scaling over 3 GPUs.

storage costs of the random sampling.

Figure 17 shows the same convergence of the error estimate
£ but now with respect to the elapsed time in seconds. We see
that the convergence is slower using a smaller value of £;j;,.. This
is because the performance of the GPU kernel degrades for a
smaller dimension of the input matrices (see Figure 18). Hence,
there is a trade-off when selecting the static parameter {;,.: a
larger (. improves the efficiency of the GPU kernels, but it
increases the chance of overestimating the size of the required
sampling subspace. One potential solution is to adjust the
parameter {;,. based on the convergence of the error estimates.
For example, we show the result of simple linear interpolation
of the previous two steps to select the next £j,.. It works well
for this particular matrix, but we are working on other adaptive
schemes based on the performance and numerical measurements
gathered over the previous adaptive steps and power iterations.

11. CONCLUSION

In this paper, we compared the performance of a deterministic
QRCP with that of a random sampling algorithm on a GPU. While
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QRCP requires synchronization and communication at each step
of the factorization, random sampling can be implemented using
communication-optimal kernels. Our performance results on an
NVIDIA Kepler GPU demonstrated that the random sampling
can obtain a speedup of up to 12.8% over QRCP, while achieving
a comparable approximation accuracy. We then studied the
parallel scaling of the random sampling over multiple GPUs, and
showed that the random sampling can obtain a nearly-linear
speedup over three GPUs. Due to its communication efficiency,
we expect the performance benefits of random sampling to in-
crease on a computer with higher communication cost, like a
distributed-memory computer. The GPU kernels developed for
this study will be released as a part of the MAGMA software
package. Hence, our primary focus was to improve the perfor-
mance and robustness of the algorithm in practice so that it can
be used in many applications.

To improve the performance and stability of random sam-
pling, we are studying other orthogonalization schemes in-

[inc
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Figure 18: Performance of GEMM used for adaptive scheme.

cluding Communication-Avoiding QR [5] and mixed-precision
CholQR [22], and an adaptive scheme based on the numerical
properties of the matrices at run time. We plan to study the
performance of our implementation for real applications and
compare it with other algorithms including the communication-
avoiding QP3 [4]. In particular, we will investigate other error
measurements (e.g., clustering errors) to better understand
the quality of the approximation computed by different algo-
rithms. Previously, we have conducted a performance study of an
Hierarchically Semiseparable (HSS) solver using deterministic
algorithms on a GPU [21]. We plan to extend our study by inte-
grating our GPU implementation of the randomized algorithm
and compare with the performance of the random sampling for
HSS solver that was studied on CPUs in [7].
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