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HPC today is exciting !



Complex software stack

Distributed Sparse Matrices
Arithmetic, matrix multiplication, indexing, solvers (\, eigs)

Graph Analysis & PD Toolbox

Graph querying & manipulation, connectivity, spanning trees,

geometric partitioning, nested dissection, NNMF, . . .

Preconditioned Iterative Methods

CG, BiCGStab, etc. + combinatorial preconditioners (AMG, Vaidya)

Applications
Computational ecology, CFD, data exploration



Star-P

A = rand(4000*p, 4000*p);

x = randn(4000*p, 1);

y = zeros(size(x));

while norm(x-y) / norm(x) > 1e-11

    y = x;

    x = A*x;

    x = x / norm(x);

end;



Star-P architecture



Parallel sorting

• Simple, widely used combinatorial primitive

• [V, perm] = sort (V)

• Used in many sparse matrix and array algorithms: sparse(),
indexing, concatenation, transpose, reshape, repmat etc.

• Communication efficient
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Sorting performance
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Each processor stores:
•  # of local nonzeros (# local edges)
•  range of local rows (local vertices)
•  nonzeros in a compressed row
   data structure (local edges)

Distributed sparse arrays
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Sparse matrix operations

• dsparse layout, same semantics as ddense

• Matrix arithmetic:  +, max, sum, etc.

• matrix * matrix  and  matrix * vector

• Matrix indexing and concatenation
          A (1:3, [4 5 2])  =  [ B(:, J)  C ] ;

• Linear solvers: x = A \ b; using MUMPS/SuperLU (MPI)

• Eigensolvers:  [V, D] = eigs(A);  using PARPACK (MPI)



 Sparse matrix multiplication

B

= x

C A

     for j = 1:n
C(:, j) = A * B(:, j)

SPA

gather scatter/
accumulate

       All matrix columns
and vectors are
stored compressed
except the SPA.

See A. Buluc (MS42, Fri 10am)



Interactive data exploration

A graph plotted with relaxed Fiedler co-ordinates



A 2-D density spy plot

Density spy plot of an R-MAT power law graph



Breadth-first search: sparse matvec
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x ATx

• Multiply by adjacency matrix  step to neighbor vertices

• Work-efficient implementation from sparse data structures



Maximal independent set
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 degree = sum(G, 2);

 prob = 1 ./ (2 * deg);

 select = rand (n, 1) < prob;

 if ~isempty (select & (G * select);

% keep higher degree vertices

 end

 IndepSet = [IndepSet select];

 neighbor = neighbor | (G * select);

 remain = neighbor == 0;

 G = G(remain, remain);

Luby’s algorithm



• Many tight clusters, loosely interconnected
• Vertices and edges permuted randomly

A graph clustering benchmark

Fine-grained, irregular data access



Clustering by BFS

% Grow each seed to vertices

%    reached by at least k

%    paths of length 1 or 2

 C = sparse(seeds, 1:ns, 1, n, ns);

 C = A * C;

 C = C + A * C;

 C = C >= k;

•  Grow local clusters from many seeds in parallel

•  Breadth-first search by sparse matrix * matrix

•  Cluster vertices connected by many short paths
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 [ignore, leader] = max(G);

 S = sparse(leader,1:n,1,n,n) * G;

 [ignore, leader] = max(S);

• Each vertex votes for its highest numbered neighbor as its leader

• Number of leaders is roughly the same as number of clusters

• Matrix multiplication gathers neighbor votes

• S(i,j) is the number of votes for i from j’s neighbors

Clustering by peer pressure



Scaling up

• Graph with 2 million nodes, 321 million directed edges, 89 million
undirected edges, 32 thousand cliques

• Good scaling observed from 8 to 120 processors of an SGI Altix



Graph Laplacian

Graph of Poisson’s Equation on a 2D grid
G = grid5 (10);



Spanning trees

Maximum weight spanning tree 
T = mst (G, ‘max’);



A combinatorial preconditioner
V. Aggarwal

Augmented Vaidya’s preconditioner
V = vaidya_support (G);



Quadtree meshes and AMG
V. Aggarwal and M. Roh



Wireless traffic modeling
S. Karpinski

• Non-negative matrix factorizations (NNMF) for wireless traffic modeling

•  NNMF algorithms combine linear algebra and optimization methods

• Basic and “improved” NMF factorization algorithms implemented:
– euclidean (Lee & Seung 2000)
– K-L divergence (Lee & Seung 2000)
– semi-nonnegative (Ding et al. 2006)
– left/right-orthogonal (Ding et al. 2006)
– bi-orthogonal tri-factorization (Ding et al. 2006)
– sparse euclidean (Hoyer et al. 2002)
– sparse divergence (Liu et al. 2003)
– non-smooth (Pascual-Montano et al. 2006)



A meta-algorithm

spherical
k-means

ANLS

K-L div.

same as
CDFs



Landscape Connectivity
B. McRae

• Landscape connectivity governs the degree to which
the landscape facilitates or impedes movement

• Need to model important processes like:
– Gene flow (to avoid inbreeding)

– Movement and mortality patterns

• Corridor identification, conservation planning



Pumas in southern California

Joshua Tree National Park

Los Angeles
Palm Springs

Habitat quality model



Model as a resistive network

Habitat

Nonhabitat

Reserve



Processing landscapes

Combinatorial methods
Graph construction 

Graph contraction

Connected components

Numerical methods
Linear systems

Combinatorial preconditioners



Results

• Solution time reduced from 3 days
to 5 minutes for typical problems

• Aiming for much larger problems:
Yellowstone-to-Yukon (Y2Y)



Multi-layered software tools

Distributed Sparse Matrices
Arithmetic, matrix multiplication, indexing, solvers (\, eigs)

Graph Analysis & PD Toolbox

Graph querying & manipulation, connectivity, spanning trees,

geometric partitioning, nested dissection, NNMF, . . .

Preconditioned Iterative Methods

CG, BiCGStab, etc. + combinatorial preconditioners (AMG, Vaidya)

Applications
Computational ecology, CFD, data exploration



Thanks for coming

Thank You


