
An Interactive Environment for
Combinatorial Scientific Computing

Viral B. Shah
John R. Gilbert
Steve Reinhardt

With thanks to: Brad McRae, Stefan Karpinski, Vikram Aggarwal, Min Roh

HPC today is exciting !

Complex software stack

Distributed Sparse Matrices
Arithmetic, matrix multiplication, indexing, solvers (\, eigs)

Graph Analysis & PD Toolbox

Graph querying & manipulation, connectivity, spanning trees,

geometric partitioning, nested dissection, NNMF, . . .

Preconditioned Iterative Methods

CG, BiCGStab, etc. + combinatorial preconditioners (AMG, Vaidya)

Applications
Computational ecology, CFD, data exploration

Star-P

A = rand(4000*p, 4000*p);

x = randn(4000*p, 1);

y = zeros(size(x));

while norm(x-y) / norm(x) > 1e-11

 y = x;

 x = A*x;

 x = x / norm(x);

end;

Star-P architecture

Parallel sorting

• Simple, widely used combinatorial primitive

• [V, perm] = sort (V)

• Used in many sparse matrix and array algorithms: sparse(),
indexing, concatenation, transpose, reshape, repmat etc.

• Communication efficient

3 6 8 1 5 4 7 2 9

1 2 3 4 5 6 7 8 9

Sorting performance

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros (# local edges)
• range of local rows (local vertices)
• nonzeros in a compressed row
 data structure (local edges)

Distributed sparse arrays

1

2 326

53

41

31

59

Sparse matrix operations

• dsparse layout, same semantics as ddense

• Matrix arithmetic: +, max, sum, etc.

• matrix * matrix and matrix * vector

• Matrix indexing and concatenation
 A (1:3, [4 5 2]) = [B(:, J) C] ;

• Linear solvers: x = A \ b; using MUMPS/SuperLU (MPI)

• Eigensolvers: [V, D] = eigs(A); using PARPACK (MPI)

 Sparse matrix multiplication

B

= x

C A

 for j = 1:n
C(:, j) = A * B(:, j)

SPA

gather scatter/
accumulate

 All matrix columns
and vectors are
stored compressed
except the SPA.

See A. Buluc (MS42, Fri 10am)

Interactive data exploration

A graph plotted with relaxed Fiedler co-ordinates

A 2-D density spy plot

Density spy plot of an R-MAT power law graph

Breadth-first search: sparse matvec

AT

1 2

3

4 7

6

5

(AT)2x

x ATx

• Multiply by adjacency matrix step to neighbor vertices

• Work-efficient implementation from sparse data structures

Maximal independent set

1 2

3

4 7

6

5

 degree = sum(G, 2);

 prob = 1 ./ (2 * deg);

 select = rand (n, 1) < prob;

 if ~isempty (select & (G * select);

% keep higher degree vertices

 end

 IndepSet = [IndepSet select];

 neighbor = neighbor | (G * select);

 remain = neighbor == 0;

 G = G(remain, remain);

Luby’s algorithm

• Many tight clusters, loosely interconnected
• Vertices and edges permuted randomly

A graph clustering benchmark

Fine-grained, irregular data access

Clustering by BFS

% Grow each seed to vertices

% reached by at least k

% paths of length 1 or 2

 C = sparse(seeds, 1:ns, 1, n, ns);

 C = A * C;

 C = C + A * C;

 C = C >= k;

• Grow local clusters from many seeds in parallel

• Breadth-first search by sparse matrix * matrix

• Cluster vertices connected by many short paths

1213

12 125

55

1313

13 13

12 12

 [ignore, leader] = max(G);

 S = sparse(leader,1:n,1,n,n) * G;

 [ignore, leader] = max(S);

• Each vertex votes for its highest numbered neighbor as its leader

• Number of leaders is roughly the same as number of clusters

• Matrix multiplication gathers neighbor votes

• S(i,j) is the number of votes for i from j’s neighbors

Clustering by peer pressure

Scaling up

• Graph with 2 million nodes, 321 million directed edges, 89 million
undirected edges, 32 thousand cliques

• Good scaling observed from 8 to 120 processors of an SGI Altix

Graph Laplacian

Graph of Poisson’s Equation on a 2D grid
G = grid5 (10);

Spanning trees

Maximum weight spanning tree
T = mst (G, ‘max’);

A combinatorial preconditioner
V. Aggarwal

Augmented Vaidya’s preconditioner
V = vaidya_support (G);

Quadtree meshes and AMG
V. Aggarwal and M. Roh

Wireless traffic modeling
S. Karpinski

• Non-negative matrix factorizations (NNMF) for wireless traffic modeling

• NNMF algorithms combine linear algebra and optimization methods

• Basic and “improved” NMF factorization algorithms implemented:
– euclidean (Lee & Seung 2000)
– K-L divergence (Lee & Seung 2000)
– semi-nonnegative (Ding et al. 2006)
– left/right-orthogonal (Ding et al. 2006)
– bi-orthogonal tri-factorization (Ding et al. 2006)
– sparse euclidean (Hoyer et al. 2002)
– sparse divergence (Liu et al. 2003)
– non-smooth (Pascual-Montano et al. 2006)

A meta-algorithm

spherical
k-means

ANLS

K-L div.

same as
CDFs

Landscape Connectivity
B. McRae

• Landscape connectivity governs the degree to which
the landscape facilitates or impedes movement

• Need to model important processes like:
– Gene flow (to avoid inbreeding)

– Movement and mortality patterns

• Corridor identification, conservation planning

Pumas in southern California

Joshua Tree National Park

Los Angeles
Palm Springs

Habitat quality model

Model as a resistive network

Habitat

Nonhabitat

Reserve

Processing landscapes

Combinatorial methods
Graph construction

Graph contraction

Connected components

Numerical methods
Linear systems

Combinatorial preconditioners

Results

• Solution time reduced from 3 days
to 5 minutes for typical problems

• Aiming for much larger problems:
Yellowstone-to-Yukon (Y2Y)

Multi-layered software tools

Distributed Sparse Matrices
Arithmetic, matrix multiplication, indexing, solvers (\, eigs)

Graph Analysis & PD Toolbox

Graph querying & manipulation, connectivity, spanning trees,

geometric partitioning, nested dissection, NNMF, . . .

Preconditioned Iterative Methods

CG, BiCGStab, etc. + combinatorial preconditioners (AMG, Vaidya)

Applications
Computational ecology, CFD, data exploration

Thanks for coming

Thank You

