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Typical Batch Operation ScenarioTypical Batch Operation Scenario

● A lot of small matrix problems available at once
– for A#i in [ A#1, A#2, …, A#n ]

Generate(A#i)
– for A#i in [ A#1, A#2, …, A#n ]

Factorize(A#i)

● Sources of batch computation
– Astrophysics, Quantum Physics (Hall effect, tensor contraction)
– Metabolic networks
– Higher order FEM schemes and for hydrodynamics
– Direct solvers for PDEs
– Signal processing
– Image processing
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Potential Solutions for BatchPotential Solutions for Batch
FactorizationsFactorizations

● Library
– The current (HPC) libraries will

handle correctly small
matrices

● We know, we wrote some!
● Often, small matrices won't

even be sent to GPU.
● APIs are oriented toward

single large matrix.
– New interfaces emerge

● CUBLAS makes new batch
routines available in each
release, and

● cuSolvers started addressing
factorizations.

● Compiler
– Trivial: only an extra outer loop

over all batch calls
– But inter-iteration optimization

non-trivial
● Needed: introspection into

the batch routines
(telescoping, etc.)

● To in-line a factorization
routine is a tall task as most
factorization codes:

– are not trivial
● switch yards
● clean-up code, …

– call other routines, mostly
proprietary



MHPC
Trieste, Italy
January 13, 2017

GPGPU8, San Francisco, CA 4/20

One-Sided Factorization: the BasicsOne-Sided Factorization: the Basics

● Factorization loops over:
– Panel factorization

● Fits well on CPU
● Latency-bound

– Vector operations
– Dependent computation
– Bandwidth-sensitive

● Few flop/s overall
– Trailing matrix update

● Fits well on GPU
● Compute-bound

– Matrix operations
– Abundant parallelism
– Good data reuse

● Majority of flop/s

[A11 A12
A21 A22] →[ X 11 X 12

X 21 X 22
] ×[Y 11 Y 12

Y 21 Y 22]
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LU Factorization Details - DGETRFLU Factorization Details - DGETRF

DGETF2 DLASWP DTRSM DGEMM

● DGETF2 Panel factorization mostly sequential due to memory bottleneck
● DTRSM  Triangular solve has little parallelism
● DGEMM  Schur complement update is the only easy to parallelize task
● DLASWP Partial pivoting complicates things even further
● Bulk synchronous parallelism (fork-join) unless dynamic runtime is

employed that provides dataflow scheduling
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Optimization SummaryOptimization Summary

● Cholesky factorization
– Panel factorization

● Vectors loaded to shared
memory and reused

● Custom kernels instead of
NVIDIA CUBLAS

– Replace DSYRK with
DGEMM and extra cost
absorbed by performance
gains

– Violate symmetry of storage
in GPU memory and only
preserve it in CPU memory

● LU factorization
– Current column loaded to

shared memory
● Reused for MAX and SCALE

operations
– Explicitly invert diagonal

blocks
● Numerical stability becomes

an issue
– But it's already widely used

on GPUs
– Mostly stable due to pivoting
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Performance: LU x 2000Performance: LU x 2000
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Performance: LU x 2000Performance: LU x 2000
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The Cost of Pivoting - DLASWPThe Cost of Pivoting - DLASWP

Swap is expensive: it consumes around 60% of the total time.
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LU Pivoting DetailsLU Pivoting Details

Problems and bottlenecks:
● Swap is sequential and data dependent.
● Data is not coalescent: a GPU warp cannot read 32 values

at the same time unless matrix is stored in transposed form.
However, if matrix is stored in transposed form the swap is
fast BUT the other components becomes very slow.

Solutions:
● Develop a parallel swap and new permutation

representation.
● Improve the write-back of the swapped rows as the data is

now coalescent.
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LU Pivoting: from Sequential to ParallelLU Pivoting: from Sequential to Parallel
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Performance: LU x 2000Performance: LU x 2000
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LU Panel Factorization Details - DGETF2LU Panel Factorization Details - DGETF2

1) Find the max absolute value for the current column below the
diagonal – the “pivots”

2) Swap the row of size nb DSWAP
3) Scale the column below the diagonal by the inverse of the

pivots DSCAL
4) Update the panel to the right of the current column DGER 

DGETF2 consumes 30% of the time
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Nested Blocking for LU PanelNested Blocking for LU Panel
FactorizationFactorization

● Use nested blocking to
factorize the panel

● Allows to replace the DGER 
kernel by DGEMM kernel.

● Reduces panel time from 30%
to 8% of the total time.
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Performance: LU x 2000Performance: LU x 2000
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Performance of DGEMM Variants (60% ofPerformance of DGEMM Variants (60% of
total time)total time)
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Execution Trace of DGEMM VariantsExecution Trace of DGEMM Variants
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Performance: LU x 2000Performance: LU x 2000
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Performance: LU x 2000Performance: LU x 2000
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Conclusions and Future WorkConclusions and Future Work

● One sided factorizations need reworking to work in batch scenario
– Our DGETRF and DPOTRF are much better now than anything available
– Similar optimizations work across both
– Improving DGEQRF is next on the agenda

● Two sided factorizations are an important next target
– These includes: symmetric and non-symmetric eigenvalues as well as

SVD
– Factorizations: tri-diagonal, bi-diagonal, Hessenberg

● Routine names: DSYTRD, DGEBRD, DGEHRD 
– Much more complicated dependence structure and memory access

patterns
– But applications demand it: recommender systems, electronic

structure calculation, …
● GPU-only implementations for self-hosted and weak CPU chips
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