Piotr Luszczek

Introduction

to

Numerical Libraries for Linear Algebra

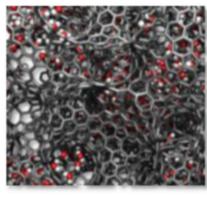
Topics and Schedule

General topics

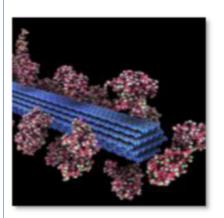
- Tuesday
 Jan 10
 Hardware for numerical software
 - Lab: download, install, test
- Wednesday Jan 11 CUDA: beyond basics. Libraries' basics
 - Lab: nvprof, nvvp, measure performance, locate bottlenecks
- Thursday
 Jan 12
 Numerical libraries: dense, batch
 - Lab: profiling libraries
- Friday Jan 13 Numerical libraries: batch (cont.), sparse
 - Lab: profiling libraries

Schedule

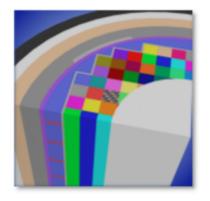
- 9:30-11:00 Lecture
- Break
- 11:30-13:00 Lecture
- Lunch break
- 14:00-17:00 Lab


Computational Science

Applications to Energy


Turbulence

Understanding the statistical geometry of turbulent dispersion of pollutants in the environment.


Energy Storage

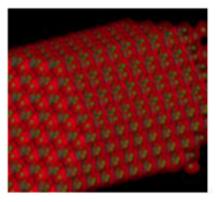
Understanding the storage and flow of energy in nextgeneration nanostructured carbon tube supercapacitors

Biofuels

A comprehensive simulation model of lignocellulosic biomass to understand the bottleneck to sustainable and economical ethanol production.

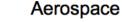
Nuclear Energy

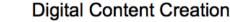
High-fidelity predictive simulation tools for the design of next-generation nuclear reactors to safely increase operating margins.



Aerodynamic forces account for ~53% of long haul truck fuel use. ORNL's Jaguar predicted 12% drag reduction and yielded EPA-certified 6.9% increase in fuel efficiency.

Nano Science


Understanding the atomic and electronic properties of nanostructures in next-generation photovoltaic solar cell materials.



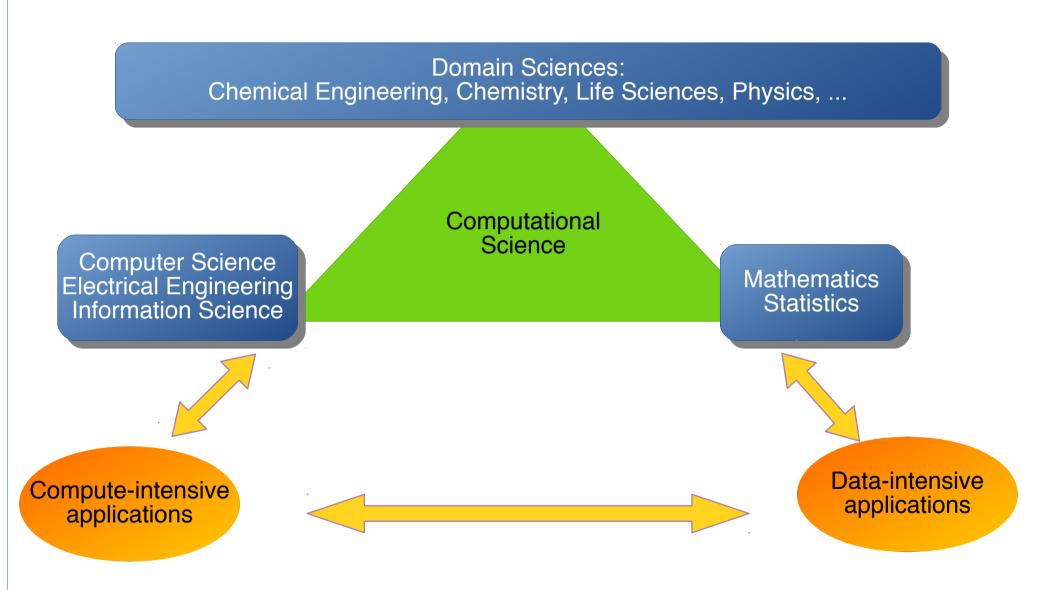
Industrial Use of Supercomputers

50% of the 500 fastest supercomputers worldwide are used by industry

- **Automotive**
- **Biology**
- CFD
- Database
- Defense

- **Digital Media**
- **Electronics**
- Energy
- **Environment**
- Finance Gaming
- Geophysics
- Image Proc./Rendering
- Information Processing Service
- Information Service
- Life Science
- Media
- Medicine
- **Pharmaceutics**
- Research
 - Retail
- Semiconductor
- Telecomm
- Weather and Climate Research
 - Weather Forecasting





Computational Science Fuses 3 Elements

Units of Measure

- High Performance Computing (HPC) units are:
 - flop: floating point operation, usually double precision unless noted
 - flop/s: floating point operations per second
 - bytes: size of data (a double precision floating point number is 8)
 - Note: computer scientists like to abbreviate byte(s) as B forgetting about units of loudness (Bells): dB.
- Typical sizes are millions, billions, trillions...

```
Mega Mflop/s = 10^6 flop/s MiB = 2^{20} = 10^48576 ~ 10^6 bytes Giga Gflop/s = 10^9 flop/s GiB = 2^{30} ~ 10^9 bytes Tera Tflop/s = 10^{12} flop/s TiB = 2^{40} ~ 10^{12} bytes Peta Pflop/s = 10^{15} flop/s PiB = 2^{50} ~ 10^{15} bytes Exa Eflop/s = 10^{18} flop/s EiB = 2^{60} ~ 10^{18} bytes Yotta Yflop/s = 10^{24} flop/s
```

Currently fastest (public) machine ~ 90 Pflop/s (www.top500.org)

More Units: Power and Energy

- Power
 - Watt
 - Single server chip: 100, 200, 300 W
 - MW
 - Supercomputer: 10 MW
 - Data center: 50 MW
- Energy
 - Joule
 - Single register instruction: 1 pJ
 - kWh
 - Electricity cost: 10 cents per kWh

Looking at the Gordon Bell Prize

- Founding principles and goals

 Recognize outstanding achievement in high-performance computing applications and encourage development of parallel processing
- 1988 1 Gflop/s Cray Y-MP 8 Processors
 - Static finite element analysis
- 1998 1 Tflop/s Cray T3E 1024 Processors
 - Modeling of metallic magnet atoms, using a variation of the locally self-consistent multiple scattering method
- 2008 1 Pflop/s Cray XT5 1.5*10⁵ Processors
 - Superconductive materials
- 2018(?) 1 Eflop/s ??? 10⁷ Processors (10⁹ threads)
 - Machine learning? Artificial Intelligence?