
  

 

  

Chapter 1

Fundamentals of Quantitative Design and Analysis

Computer Technology

● Performance improvements:
– Improvements in semiconductor technology

● Feature size, clock speed
– Improvements in computer architectures

● Enabled by HLL compilers, UNIX
● Lead to RISC architectures

– Together have enabled:
● Lightweight computers
● Productivity-based managed/interpreted programming 

languages

Introduction

Single Processor Performance

RISC

Move to multi-processor

Introduction

Current Trends in Architecture

● Cannot continue to leverage Instruction-Level parallelism 
(ILP)
– Single processor performance improvement ended in 2003

● New models for performance:
– Data-level parallelism (DLP)
– Thread-level parallelism (TLP)
– Request-level parallelism (RLP)

● These require explicit restructuring of the application

Introduction

Classes of Computers

● Personal Mobile Device (PMD)
– e.g. start phones, tablet computers
– Emphasis on energy efficiency and real-time

● Desktop Computing
– Emphasis on price-performance

● Servers
– Emphasis on availability, scalability, throughput

● Clusters / Warehouse Scale Computers
– Used for “Software as a Service (SaaS)”
– Emphasis on availability and price-performance
– Sub-class:  Supercomputers, emphasis:

● floating-point performance and fast internal networks
● Embedded Computers

– Emphasis:  price

C
lasses of C

om
puters

Parallelism

● Classes of parallelism in applications:
– Data-Level Parallelism (DLP)
– Task-Level Parallelism (TLP)

● Classes of architectural parallelism:
– Instruction-Level Parallelism (ILP)
– Vector architectures/Graphic Processor Units (GPUs)
– Thread-Level Parallelism
– Request-Level Parallelism

C
lasses of C

om
puters



  

 

Flynn’s Taxonomy
● Single instruction stream, single data stream (SISD)

● Single instruction stream, multiple data streams (SIMD)
– Vector architectures
– Multimedia extensions
– Graphics processor units

● Multiple instruction streams, single data stream (MISD)
– No commercial implementation

● Multiple instruction streams, multiple data streams (MIMD)
– Tightly-coupled MIMD
– Loosely-coupled MIMD

● Compare with...
– CUDA's SIMT
– Modern NUMA server with multiple multicore processor and accelerators

C
lasses of C

om
puters

Defining Computer Architecture

● “Old” view of computer architecture:
– Instruction Set Architecture (ISA) design
– i.e. decisions regarding:

● registers, memory addressing, addressing modes, instruction operands, 
available operations, control flow instructions, instruction encoding

● “Real” computer architecture:
– Specific requirements of the target machine
– Design to maximize performance within constraints: cost, power, 

and availability
– Includes ISA, microarchitecture, hardware

D
efining C

om
puter A

rchitecture

Instruction Set: Debate Won?
● Common instruction sets

– CISC
● x86 (but not the micro-code)

– RISC
● MIPS, HP PA, IBM Power, Sun SPARC, ARM

– VLIW
● Itanium, some GPUs (internally)

– Vector
● Cray, NEC, ... (mostly gone)

● Hybrids?
– Intel Xeon Phi

● x86 CISC
● RISC-like microcode?
● 512-bit vector floating-point

Trends in Technology

● Integrated circuit technology
– Transistor density:  35%/year
– Die size:  10-20%/year
– Integration overall:  40-55%/year
– Laws

● Moore, Dennard

● DRAM capacity:  25-40%/year (slowing)

● Flash capacity:  50-60%/year
– 15-20X cheaper/bit than DRAM

● Magnetic disk technology:  40%/year
– 15-25X cheaper/bit then Flash
– 300-500X cheaper/bit than DRAM

Trends in Technology

Math Sidebar: Compound Interest

● Suppose performance improves 50% per year
● How long does it take for performance to quadruple

 (factor of 4)?
● Does it take 8 years?

– 8 x 0.5 = 4
● After 1 year:  perf x (1 + 0.5)
● After 2 years: perf x (1 + 0.5)(1+0.5) = perf x (1+0.5) 2

● After k years: perf x (1 + 0.5)k

● Answer:
(1+0.5)k = 4 => k = 3.42 years

Bandwidth and Latency
● Bandwidth or throughput

– Total work done in a given time
– 10,000-25,000X improvement for processors
– 300-1200X improvement for memory and disks
– Units

● flop/s, B/s, b/s

● Latency or response time
– Time between start and completion of an event
– 30-80X improvement for processors
– 6-8X improvement for memory and disks
– Units

● CPU, memory: nano-second
● Network: micro-seconds
● Disk: milli-seconds

Trends in Technology



  

 

Bandwidth and Latency

Trends in Technology

Transistors and Wires

● Feature size
– Minimum size of transistor or wire in x or y dimension
– 10 microns in 1971 to .032 microns in 2011
– Transistor performance scales linearly

● Wire delay does not improve with feature size!
– Integration density scales quadratically

● Law's of silicon chip manufacturing
– Moore
– Dennard

Trends in Technology

Power and Energy

● Problem:  Get power in, get power out

● Thermal Design Power (TDP)
– Characterizes sustained power consumption
– Used as target for power supply and cooling system
– Lower than peak power, higher than average power consumption

● Clock rate can be reduced dynamically to limit power 
consumption

● Energy per task is often a better measurement

Trends in P
ow

er and E
nergy

Dynamic Energy and Power

● Dynamic energy
– Transistor switch from 0 -> 1 or 1 -> 0
– ½ x Capacitive load x Voltage2

● Dynamic power
– ½ x Capacitive load x Voltage2 x Frequency switched

● Reducing clock rate (frequency) reduces power, not energy
– To reduce energy, lower the frequency of under-utilized 

or idle units

Trends in P
ow

er and E
nergy

Power
● Intel 80386 consumed ~ 2 W
● 3.3 GHz Intel Core i7 consumes 130 W
● Heat must be dissipated from 1.5 x 1.5 cm chip
● This is the limit of what can be cooled by air

Trends in P
ow

er and E
nergy

Reducing Power

● Techniques for reducing power:
– Do nothing well

● Idle state power
● C-states, P-states

– Cost of switching between them

– Dynamic Voltage-Frequency Scaling
● Implementations: silicon, OS-level, user-level

– Low power state for DRAM, disks, interconnect

– Overclocking, turning off cores
● Race to halt
● Number of power planes in a single chip

Trends in P
ow

er and E
nergy



  

 

Static Power

● Static power consumption
– Currentstatic x Voltage

– Scales with number of transistors
● Another limit on Moore's law

– Reduction achieved through  power gating

Trends in P
ow

er and E
nergy

Thoughts on Scaling Limits

● Feature size
– Silicon mesh size (quantum effects)
– Litography limits (wavelength)
– Wire cross-talk

● Frequency
– Dynamic power dissipation

● Voltage
– Reliability of switching when moving from 5V down to 0.7V
– Near-threshold circuits

● Core count
– On-chip interconnect wiring and messaging

Trends in Cost

● Cost driven down by learning curve
– How much we've learned about the manufacturing process
– Yield varies at various price-points

● High-end vs. low-end parts:
– IBM Cell and PS3
– Intel Xeon Phi and Tianhe-2's Xeon Phi

● DRAM:  price closely tracks cost
– Standards, competition, patents

● Microprocessors:  price depends on volume
– 10% less for each doubling of volume

Trends in C
ost

Integrated Circuit Cost
● Formulas for integrated circuit

● Bose-Einstein formula (empirical) [Sydow 2006]:

– Defects per unit area = 0.016-0.057 defects per square 
cm (2010)

– N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

Trends in C
ost

Cost of integrated circuit = Cost of die + Cost of testing + Cost of packaging and final test
Final test yield

Cost of die = Cost of wafer
Dies per wafer×Die yield

Dies per wafer=
π×( 1

2
×Wafer diameter )2

Die area
−π×Wafer diameter

√2×Die area

Die yield= Wafer yield
(1+Defects per unit area×Die area )N

Dependability

● Commercial offerings (PaaS, SaaS, …)
– Service Level Agreements (SLAs) or SLObjectives
– Service accomplishment vs. interruption

● Transitions: failures and restorations

● Module reliability
– Mean time to failure (MTTF)

● 1/MTTF = Failure In Time (FIT)
– Mean time to repair (MTTR)
– Mean time between failures (MTBF) = MTTF + MTTR
– Availability = MTTF / MTBF = MTTF / (MTTF+MTTR)

D
ependability

Measuring Performance
● Typical performance metrics:

– Response time
– Throughput

● Speedup of X relative to Y
– Execution timeY / Execution timeX

– Geometric average is best suitable for combining relative values

● Execution time
– Wall clock time:  includes all system overheads
– CPU time:  only computation time

● Benchmarks
– Kernels (e.g. matrix multiply)
– Toy programs (e.g. sorting)
– Synthetic benchmarks (e.g. Dhrystone)
– Benchmark suites (e.g. SPEC06fp, TPC-C)

M
easuring Perform

ance

Geometric average = n√ ∏
i=1…n

ai =
n√a1×a2×…×an



  

 

Principles of Computer Design
● Take Advantage of Parallelism

– e.g. multiple processors, disks, memory banks, pipelining, multiple 
functional units

● Principle of Locality
– Reuse of data and instructions
– Rules of thumb: 10/90, 20/80
– Temporal vs. Spatial

● Focus on the Common Case
– Amdahl’s Law

P
rinciples

Execution timenew = Execution timeold×((1−Fractionenhanced)+
Fractionenhanced

Speedupenhanced
)

Speedupoverall=
Execution timeold

Execution timenew
= 1

(1−Fractionenhanced)+
Fractionenhanced

Speedupenhanced

Observations on Amdahl's Law

lim
f →0
S overall= lim

f → 0

1

(1− f )+ f S e

=1

lim
f →1
S overall= lim

f → 1

1

(1− f )+ f S e

=Se

lim
Se→∞

S overall= lim
S e→ ∞

1

(1− f )+ f S e

= 1
1− f

Too small of a portion parallelized

Everything is parallelized

Perfect parallelism

Also see Gustafson's Law: Reevaluating of Amdahl's Law

Amdahl's Law Example

● A database server spends 60% of time in I/O transactions 
and 40% of time in computing

● After an upgrade, the processor is 10x faster
● What is the speedup after the upgrade?

Speedupoverall =
1

(1−Fractionenhanced )+Fractionenhanced

Speedupenhanced

= 1

(1−0.4 )+ 0.4
10

= 1
0.64

= 1.56

Principles of Computer Design
● The Processor Performance Equation

P
rinciples

CPU time = CPU clock cycles for a program×Clock cycle time

CPU time = CPU clock cycles for a program
Clock rate

CPI = CPU clock cycles for a program
Instruction count

CPU time = Instruction count×Cycles per instruction×Clock cycle time

Instructions
Program

×Clock cycles
Instruction

× Seconds
Clock cycle

= Seconds
Program

= CPU time

Algorithm CPI Cycle time

Principles of Computer Design

P
rinciples

● Different instruction types might have different CPIs

CPU clock cycles = ∑
i=1

n

ICi×CPIi = ( ICload×CPIload ) + (ICstore×CPIstore )+…

CPU time = (∑
i=1

n

ICi×CPI i)×Clock cycle time

Remember Amdahl: focus on common case

Optimize CPI or IPC?

● 1980s
– RISC era
– Minimize CPI

● 1990s
– Superscalar RISC
– Maximize IPC

● 2000s+
– x86 ISA
– Optimize both: x86 ISA and microcode


