Chapter 1

Fundamentals of Quantitative Design and Analysis

Current Trends in Architecture

- · Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended in 2003
- · New models for performance:
 - Data-level parallelism (DLP)
 - Thread-level parallelism (TLP)
 - Request-level parallelism (RLP)
- · These require explicit restructuring of the application

· Productivity-based managed/interpreted programming languages

- e.g. start phones, tablet computers
- Emphasis on energy efficiency and real-time
- **Desktop Computing**
- Emphasis on price-performance
- Servers
 - Emphasis on availability, scalability, throughput
- Clusters / Warehouse Scale Computers
 - Used for "Software as a Service (SaaS)"
 - Emphasis on availability and price-performance
 - Sub-class: Supercomputers, emphasis: floating-point performance and fast internal networks
- · Embedded Computers
 - Emphasis: price

Flynn's Taxonomy

- · Single instruction stream, single data stream (SISD)
- Single instruction stream, multiple data streams (SIMD)
 - Vector architectures
 Multimedia extensions
 - Graphics processor units
- Multiple instruction streams, single data stream (MISD)
 No commercial implementation
- Multiple instruction streams, multiple data streams (MIMD)
 - Tightly-coupled MIMD
 - Loosely-coupled MIMD
- Compare with...
 - CUDA's SIMT
 - Modern NUMA server with multiple multicore processor and accelerators

Trends in Technology

- · Integrated circuit technology
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
 - LawsMoore, Dennard
- · DRAM capacity: 25-40%/year (slowing)
- Flash capacity: 50-60%/year
 - 15-20X cheaper/bit than DRAM
- · Magnetic disk technology: 40%/year
 - 15-25X cheaper/bit then Flash
 - 300-500X cheaper/bit than DRAM

Defining Computer Architecture

- "Old" view of computer architecture:
 - Instruction Set Architecture (ISA) design
 - i.e. decisions regarding:
 - registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, instruction encoding

· "Real" computer architecture:

- Specific requirements of the target machine
- Design to maximize performance within constraints: cost, power, and availability
- Includes ISA, microarchitecture, hardware

Math Sidebar: Compound Interest

- · Suppose performance improves 50% per year
- How long does it take for performance to quadruple (factor of 4)?
- · Does it take 8 years?
 - $-8 \times 0.5 = 4$
- After 1 year: perf x (1 + 0.5)
- After 2 years: perf x (1 + 0.5)(1+0.5) = perf x (1+0.5)²
- After k years: perf x (1 + 0.5)^k
- Answer:
 - $(1+0.5)^{k} = 4 = k = 3.42$ years

Instruction Set: Debate Won?

- Common instruction sets
 - CISC
 - x86 (but not the micro-code)
 - RISC
 - MIPS, HP PA, IBM Power, Sun SPARC, ARM
 - VLIW
 - Itanium, some GPUs (internally)
 - Vector
 - · Cray, NEC, ... (mostly gone)
- · Hybrids?
 - Intel Xeon Phi
 - x86 CISC
 - · RISC-like microcode?
 - · 512-bit vector floating-point

Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 10,000-25,000X improvement for processors
 - 300-1200X improvement for memory and disks
 - Units
 - · flop/s, B/s, b/s
- · Latency or response time
 - Time between start and completion of an event
 - 30-80X improvement for processors
 - 6-8X improvement for memory and disks
 - Units
 - CPU, memory: nano-second
 - Network: micro-seconds
 - · Disk: milli-seconds

nputer Arc

Dynamic Energy and Power

Dynamic energy

- Transistor switch from 0 -> 1 or 1 -> 0
- 1/2 x Capacitive load x Voltage²

Dynamic power

- 1/2 x Capacitive load x Voltage² x Frequency switched
- Reducing clock rate (frequency) reduces power, not energy

 To reduce energy, lower the frequency of under-utilized or idle units

Transistors and Wires

Feature size

- Minimum size of transistor or wire in x or y dimension
- 10 microns in 1971 to .032 microns in 2011
- Transistor performance scales linearly
 Wire delay does not improve with feature size!
- Integration density scales quadratically

· Law's of silicon chip manufacturing

- Moore
- Dennard

Power and Energy

- · Problem: Get power in, get power out
- Thermal Design Power (TDP)
 - Characterizes sustained power consumption
 - Used as target for power supply and cooling system
 - Lower than peak power, higher than average power consumption
- Clock rate can be reduced dynamically to limit power consumption
- · Energy per task is often a better measurement

Reducing Power

- · Techniques for reducing power:
 - Do nothing well
 - Idle state power
 - C-states, P-states
 - Cost of switching between them
 - Dynamic Voltage-Frequency Scaling
 Implementations: silicon, OS-level, user-level
 - Low power state for DRAM, disks, interconnect
 - Overclocking, turning off cores
 Race to halt
 - Number of power planes in a single chip

Thoughts on Scaling Limits

· Feature size

- Silicon mesh size (quantum effects)
- Litography limits (wavelength)
- Wire cross-talk
- Frequency
 - Dynamic power dissipation
- Voltage
 - Reliability of switching when moving from 5V down to 0.7V
 - Near-threshold circuits
- Core count
 - On-chip interconnect wiring and messaging

Commercial offerings (PaaS, SaaS, ...)
 Service Level Agreements (SLAs) or SLObjectives

Dependability

- Service accomplishment vs. interruption
 - Transitions: failures and restorations
- · Module reliability
 - Mean time to failure (MTTF)
 - 1/MTTF = Failure In Time (FIT)
 - Mean time to repair (MTTR)
 - Mean time between failures (MTBF) = MTTF + MTTR
 - Availability = MTTF / MTBF = MTTF / (MTTF+MTTR)

Trends in Cost

- · Cost driven down by learning curve
 - How much we've learned about the manufacturing process
 - Yield varies at various price-points
 - · High-end vs. low-end parts:
 - IBM Cell and PS3
 - Intel Xeon Phi and Tianhe-2's Xeon Phi
- DRAM: price closely tracks cost
 - Standards, competition, patents
- · Microprocessors: price depends on volume
 - 10% less for each doubling of volume

Measuring Performance

- Typical performance metrics: - Response time
- Response ti
 Throughput
- Speedup of X relative to Y
 - Execution time, / Execution time,
 Geometric average is best suitable for combining relative values
 - - Geometric average = $\sqrt[n]{\prod_{i=1...n} a_i} = \sqrt[n]{a_1 \times a_2 \times ... \times a_n}$
- Execution time
 - Wall clock time: includes all system overheads
 - CPU time: only computation time
- Benchmarks
 - Kernels (e.g. matrix multiply)
 - Toy programs (e.g. sorting)
 - Synthetic benchmarks (e.g. Dhrystone)
 - Benchmark suites (e.g. SPEC06fp, TPC-C)

suring Performance

Optimize CPI or IPC? • 1980s – RISC era

- Minimize CPI
- 1990s
 - Superscalar RISC
 - Maximize IPC
- 2000s+
 - x86 ISA
 - Optimize both: x86 ISA and microcode