ECE462 Spring 2018 Class Calendar:

January 2018

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classes Begin</td>
<td>1st 463 Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Saturday</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 463 Class</td>
<td>2 463 Class</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8 463 Class</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15 463 Class</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22 463 Class</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Saturday</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td>Spring Recess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
April 2018

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>463 Class</td>
<td></td>
<td>463 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Saturday</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 Final Project Due</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spring 2018 Semester

<table>
<thead>
<tr>
<th>Event</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Begin</td>
<td>Wednesday, January 10</td>
</tr>
<tr>
<td>MLK Holiday</td>
<td>Monday, January 15</td>
</tr>
<tr>
<td>1st Session Ends</td>
<td>Wednesday, February 28</td>
</tr>
<tr>
<td>2nd Session Begins</td>
<td>Thursday, March 1</td>
</tr>
<tr>
<td>Spring Break</td>
<td>Monday - Friday, March 12-16</td>
</tr>
<tr>
<td>Spring Recess</td>
<td>Friday, March 30</td>
</tr>
<tr>
<td>Classes End</td>
<td>Friday, April 27</td>
</tr>
<tr>
<td>Study Day</td>
<td>Monday, April 30</td>
</tr>
<tr>
<td>Exams</td>
<td>Tuesday - Tuesday, May 1, 2, 3, 4, 7, 8</td>
</tr>
<tr>
<td>Graduate Hooding</td>
<td>Thursday, May 10</td>
</tr>
<tr>
<td>University College Commencement Ceremonies</td>
<td>Thursday - Saturday, May 10, 11, 12</td>
</tr>
<tr>
<td>Official Graduation Date</td>
<td>Saturday, May 12</td>
</tr>
</tbody>
</table>
Class Description (ECE 462 Cyber-Physical Systems Security)

The phrase "Cyber-Physical Systems" describes systems that include real-time, embedded and/or transactional services systems, with the additional feature of possible communication between system components. This allows cyber and physical processes to collaborate with each other to form a distributed system, increasing the overall complexity of the resulting architecture over traditional real-time, embedded or services systems.

These cyber-physical systems include physical or virtual environments where people live, work and play that are instrumented and controlled by some form of computer system.

Cyber-physical systems include (incomplete list)
- industrial automation systems and robots,
- vehicular systems (e.g.: collision avoidance, autonomous driving),
- transportation systems (highways, airports, railways, ports, etc.),
- avionics,
- medical systems (e.g.: integrated diagnostics and medication, remote surgery)
- power systems (e.g.: load balancing between power demand and supply)
- smart homes and buildings (e.g. cooling, lighting, access)

Most of these applications have strict requirements with respect to some or all of the following
- real-time
- reliability and robustness (dealing with uncertainty)
- correctness assurance (verification and validation)
- "human" in the loop interactions

Topics to be covered will include: (This a topical list, not a syllabus. See the syllabus for the specific semester to view the timing of the various topics.)

- What are Cyber-Physical Systems (CPS)
- Example CPS system structures and related applications
- CPS operating environments/modes: real-time, networked, passive, embedded, interactive, ...
- Standards used in CPS design and operation, and their effects on security
- Security challenges and techniques at the physical layer
 - Physical infrastructure, human interface, sensor environment, control interface, possible faults and threats
- Security challenges and techniques at the cyber layer
 - Communications/networks (wireless, mesh, sensor), embedded systems environment, development tools, data handling/formats, possible faults and threats
- Security exposures in procedures and protocols
 - Maintenance, recovery, data sharing, data archiving
- Example CPSes and their security challenges and practices
 - transportation systems, air-traffic control, building automation and HVAC, smart grids and power plants, industrial automation, vehicle systems, and SCADA systems.
- Emerging security technologies, protocols and procedures.
Recent Example - Distributed Denial of Service Attack on Saturday, October 21, 2016

DNS Amplification Attack (a form of DDoS Attack) - https://www.us-cert.gov/ncas/alerts/TA13-088A

Course Details

Pre-requisite: COSC 102, COSC 313
Registration Restriction(s): Minimum student level – junior.

Required Reading (Class Textbook):

Glossary of Terms CPS Security – available on class BlackBoard portal

Special Issue of Politico - The Cyber Issue

Recommended Reading:

Matt Bishop, *Introduction to Computer Security*, Addison-Wesley, 2005
Introduction to Computer Security pdf DONE.pdf (on BlackBoard class portal) -

Slides per Chapters, *Introduction to Computer Security*, Addison-Wesley, 2005 -

The Three Tenets of Secure Cyber-Physical System Design and Assessment -
http://www.dartmouth.edu/~gvc/ThreeTenetsSPIE.pdf
Guide to Industrial Control Systems Security by NIST
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf

Weekly Schedule & Syllabus (Tentative):

1. Overview of Class, Grading, Topics Covered and Reference Material
2. What are Cyber Physical Systems (CPSs)
 a. Definition
 b. CPS Concept Map
 c. High Level Examples
 d. Challenges
3. CPS
 • Predictable Comp. Architecture
 • Predictable OS Abstractions
 • Timing and Performance Analysis
 • Intro to Models of Computation and Verification.
4. Overview of Computer Security (Chapter 1, Introduction to Computer Security by Matt Bishop)
5. Cyber Physical Security Introduction and History (Chapter 1 & 2, Cyber Physical Attacks by George Loukas)
6. Detailed CPS Attack Examples – Industrial Controls (Chapter 4, Cyber Physical Attacks by George Loukas)
7. Detailed CPS Attack Examples – Power Grid (Chapter 4, Cyber Physical Attacks by George Loukas)
8. Security Policies, Lecture 1 (Chapter 4, Introduction to Computer Security by Matt Bishop
 - Trust
 - Confidentiality
 - Integrity
9. In the Minds of an Attacker (Chapter 5, Cyber Physical Attacks by George Loukas)
10. CPS Threat Modeling – Data Flow Diagrams
11. CPS Threat Modeling – Data Flow Diagram examples
12. CPS Threat Metrics & Identification (STRIDE), Lecture 1 of 2
13. CPS Threat Metrics & Identification (STRIDE), Lecture 2 of 2
14. CPS Threat Modeling – Threat Trees
15. CPS Threat Vulnerability Assessment (DREAD)
16. CPS Threat Vulnerability Assessment, Risk Tables and Mitigation Strategy,
17. CPS Threat Migration Strategy
18. SDL Threat Modeling Tool
19. Protection Mechanisms, Intrusion Detection (Chapter 6, Cyber Physical Attacks by George Loukas)
20. Secure Design Principles (Chapter 6, Cyber Physical Attacks by George Loukas and Chapter 12, Introduction to Computer Security by Matt Bishop)
21. Cryptography – An Overview (Chapter 8, Introduction to Computer Security by Matt Bishop)
24. Detailed CPS Attack Examples – Automotive Systems (Chapter 3, Cyber Physical Attacks by George Loukas)
25. Physical-Cyber Attacks
26. Best Practices in Designing Secure CPSs
27. Open Discussion for Final Project.

Final Project:

Scheduled Meeting Times

<table>
<thead>
<tr>
<th>Type</th>
<th>Time</th>
<th>Days</th>
<th>Where</th>
<th>Date Range</th>
<th>Schedule Type</th>
<th>Instructors</th>
</tr>
</thead>
</table>

Total number of classes – 29 (not including final exam)

Final Exam due May 3.

Check the following website for changes to syllabus: TBD

Note: All class Topics and supporting material are under development.

<table>
<thead>
<tr>
<th>Mtgs</th>
<th>Date</th>
<th>Topic</th>
<th>Materials/Assignments</th>
<th>Misc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/11/2018</td>
<td>Lecture 0 - Overview of Class, Grading, Topics Covered, Reference Material & Final Project</td>
<td>ECE462_Lecture0_Class_Introduction.pptx</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/16/2018</td>
<td>Lecture 1 – Introduction to CPS</td>
<td>ECE462_Lecture1_CPS_Introduction.pptx</td>
<td>Homework #1: Exercises from Chapter 1, Cyber Physical Attacks by George Loukas and 5 additional questions on BlackBoard, Due in one week from today at beginning of class.</td>
</tr>
<tr>
<td>3</td>
<td>1/18/2018</td>
<td>Lecture 2 - What are Cyber Physical Systems (CPSs) - Definition revisited - CPS Concept Map - High Level Examples - Challenges</td>
<td>Chapter 1, Cyber Physical Attacks by George Loukas ECE462_Lecture2_What are Cyber Physical Systems.pptx</td>
<td>References - CPS_CourseIntroduction.ppt</td>
</tr>
<tr>
<td>#</td>
<td>Date</td>
<td>Lecture Topic</td>
<td>Presentation/Readings</td>
<td>Homework/Due Dates</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>1/23/2018</td>
<td>Lecture 3 - CPS –
• Predictable Comp. Architecture
• Predictable OS Abstractions
• Timing and Performance Analysis
• Intro to Models of Computation and Verification.</td>
<td>ECE462_Lecture3_CPS_Design_Challenges.pptx
References - CPS_CourseIntroduction.ppt
Homework #1 Due Today.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1/25/2018</td>
<td>Lecture 4 - Overview of Computer Security</td>
<td>Chapter 1, Introduction to Computer Security by Matt Bishop
ECE462_Lecture4_IntroCompSecurity.pptx</td>
<td>Homework #2: Exercises from Chapter 1, Intro to Computer Security, by Matt Bishop, Questions 1-8
Due one week from today at beginning of class
References –</td>
</tr>
<tr>
<td>6</td>
<td>1/30/2018</td>
<td>Lecture 5 - Cyber Physical Security Introduction and History</td>
<td>Chapter 2, Cyber Physical Attacks by George Loukas
ECE462_Lecture5_Intro_CPS_Security.pptx</td>
<td>Reference - COMP1706-CyberPhysicalSecurity.pptx</td>
</tr>
<tr>
<td>7</td>
<td>2/1/2018</td>
<td>Lecture 6 - Detailed CPS Attack Examples - Industrial Controls Attacks, SCADA Systems</td>
<td>Chapter 4, Cyber Physical Attacks by George Loukas
NIST.SP.800-82r2.pdf
csd-nist-guidetosupervisoryanddatacquisition-scadaandindustrialcontrolsystemssecurity-2007.pdf
https://en.wikipedia.org/wiki/Stuxnet</td>
<td>Homework #2 Due Today.
Homework #3: Exercises from Chapter 2, Cyber Physical Attacks by George Loukas, Questions 2-9.
Due one week from today ...
“Guide to Industrial Control Systems Security” &
“Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems Security”</td>
</tr>
<tr>
<td>#</td>
<td>Date</td>
<td>Lecture Title</td>
<td>Reference</td>
<td>Homework Due Date</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RISI Attack Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three Tenets for Secure Cyber-Physical Systems Design</td>
<td>Chapter 5, Introduction to Computer Security by Matt Bishop</td>
<td>Homework #4: Exercises from Chapter 4, Cyber Physical Attacks by George Loukas, Questions 1-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 6, Introduction to Computer Security by Matt Bishop</td>
<td>Due one week from today ...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ThreeTenetsSPIE.pdf</td>
<td>Reference -usc-csci530-f10-part2.pptx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dana Moore from AT&T to address the class for 10mins about AT&T opportunities.</td>
<td>Chapter 12, Securing Cyber-Physical Critical Infrastructure by Sajal K. Das, et. al.</td>
<td>Homework #5: Exercises from Chapter 5, Cyber Physical Attacks by George Loukas, Questions 1-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arranged by Kevin Bogle</td>
<td></td>
<td>Due one week from today</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threat Modeling by Frank Swiderski & Window Snyder, Chapter 4</td>
<td>ThreeTenetsSPIE.pdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference –</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Lecture/Assignment</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2/20/2018</td>
<td>Lecture 11 – CPS Threat Modeling – Trust Levels, Entry Points, Assets and Data Flow Diagrams Example Exercise</td>
<td>Threat Modeling by Frank Swiderski & Window Snyder, Appendix A</td>
<td></td>
</tr>
</tbody>
</table>
| 13 | 2/22/2018 | CPS Threat Metrics & Identification (STRIDE), Lecture 1 of 2 | Homework #5 Due Today
Homework #6 (optional): Create Level 1 Data Flow Diagram for Final Project (for review only)
Due one week from today |
| 14 | 2/27/2018 | CPS Threat Metrics & Identification (STRIDE), Lecture 2 of 2 | Reference – CyberThreatMetrics_065.pdf
ThreeTenets...Quantitative CPS Metrics (#5 in ThreeTenetsSPIE.pdf) |
| 15 | 3/1/2018 | CPS Threat Modeling – Threat Tree Diagrams | Homework #6 Due Today
Homework #7: Complete STRIDE-per-Element analysis table for Smart Utility System Sensor Data Ingestion operation from Lecture 11.
Due one week from today |
ThreeTenets...Quantitative CPS Metrics (#5 in ThreeTenetsSPIE.pdf) |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Reading Material</th>
<th>Homework Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note:</td>
<td>Spring Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/12/2018</td>
<td>Undergraduate Students have most of the material they need to complete their Final Project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/16/2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3/20/2018</td>
<td>CPS Threat Vulnerability Assessment, Threat Mitigation, Risk Tables and Mitigation Strategy...Examples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3/27/2018</td>
<td>Secure Design Principles</td>
<td>Chapter 6, Cyber Physical Attacks by George Loukas p. 211-217</td>
<td>Homework #9: Due on Tuesday, 4/3 at beginning of class...</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Description</td>
<td>Reading Material</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
usc-csci530-f10-part2.pptx |
Homework #10: Due one week from today at beginning of class...
Exercises from Chapter 19, *Introduction to Computer Security* by Matt Bishop
Reference – IntroComputerSecurityChapter19.ppt
usc-csci530-f10-part2.pptx |
<p>| 23 | 4/5/2018 | Intrusion Detection Lecture 1 of 2 | Chapter 22, Introduction to Computer Security by Matt Bishop | |
| 25 | 4/12/2018 | Detailed CPS Attack Examples – Automotive Systems | Chapter 3, Cyber Physical Attacks by George Loukas | |
| 26 | 4/17/2018 | Hacking Examples – Smartphones & Cars | Real world reports and demonstrations pulled from the internet/broadcast | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Topic</th>
<th>Reading Material</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>4/24/2018</td>
<td>Physical-Cyber Attacks</td>
<td>Chapter 7, Cyber Physical Attacks by George Loukas</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4/26/2018</td>
<td>Open Class to discuss project ... Optional Attendance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/3/2018</td>
<td>Final Project Due</td>
<td></td>
<td>Final Project Due</td>
</tr>
</tbody>
</table>
Elements of Final Grade (ECE462)

High Level Elements:
- Final Project = 50% of grade
- Class assignments = 50% of grade
- Attendance = Students must attend 85% of all lectures (24 classes). 0.7 grade points (out of a 4.0 grade scale) will be deducted from the final grade for the 5th class missed. 0.1 grade points (out of a 4.0 grade scale) will be deducted from the final grade for each class missed beyond the 5th class missed.

Homework Assignments and Final Project Report:
All homework assignments and final project reports must be submitted via PDF file format through the class BlackBoard portal. When possible please make sure all PDF file submitted are readable by PDF readers other than Google Docs (some PDF files created by Google Doc or tablet applications cannot be opened or some content is not visible via other PDF readers).

Course Personnel:
- Faculty member in charge: Dr. Mark E. Dean
 - email: markdean@utk.edu
 - phone: 865-974-5784
 - Office hours: 3:30-5:00pm, Tuesday, Wednesday, & Thursday
 The best way to contact me is via email or during office hours.
- GTA: Eric Reinsmidt
 - Email: eric@reinsmidt.com
 - Phone: TBD
 - Office – MK313
 - Office hours: 11:00am-1:00pm, Tuesday & Thursday
- IT Help: https://ithelp@eecs.utk.edu
- Guest Lecturers: TBD

Work Items for Class Material and Preparation:
Description of CPS for ECE462 (undergraduate) and ECE599 (graduate) Final Project –

Students (teams of 1-2) must develop a ‘threat model” for an Smart City Urban Monitoring System deployed in an urban area (e.g. 25 sq. miles or 40x40 city blocks) and complete a report detailing the security exposures, risks and mitigation strategies. See ECE462FinalProjectInfrastructureDiagram.pptx for details on architecture used to implement the Smart City Urban Monitoring System.

The report for both ECE462 and ECE599 must include the following:

- Assets
- System Layers
- Attack Surfaces & Entry Points
- Trust Levels
- Use Scenarios
- Assumptions and Dependencies
- Data Flow Diagram of “operational system” under evaluation
 - Context/Level 0 Diagram
 - Level 1 Diagram
 - Level 2 Diagrams – expect 13-17 diagrams needed to cover project
- Threats (STRIDE) – STRIDE-per-Element analysis tables (one per Level 2 DFDs)
- Threat Tree(s)
- Vulnerabilities (DREAD and/or CVSS)
- Risk Assessment
- Mitigation Strategy

ECE462 Project Reports should be at least 10 pages (including diagrams, charts, tables, etc.) single-spaced 12pt font. The reports must include all the elements listed above. Note: Given the number of diagrams, charts and tables required by the report, the length of a report is expected to be much higher than 10 pages…the average is typically

ECE599 (graduate) students must also complete the following:

- Create and implement the threat model of the project using Microsoft’s Threat Modeling tool
- Project reports should include all the elements listed above, plus include Threat Model Tool diagrams and analysis results. Description of the model attributes, constraints, challenges and other key design decisions needed to support the Threat Modeling Tool should also be included in the project report.
- The ECE599 project reports should be at least 15 pages (including diagrams, charts, tables, etc.) single-spaced 12pt font.
- ECE599 students must provide a copy of their Threat Modeling Tool files for review
- ECE599 students must be prepared to present their model and results to the professor and students during class. (note: This may not be practical. May consider presenting in separate meeting and/or after projects have been turned in.)

SDL Threat Modeling Tool Demo by Adam Shostack - https://www.youtube.com/watch?v=IV2SAuTxlUc
Threat Modeling Principles - https://www.youtube.com/watch?v=wUt8gVxmO-0
Threat Model/Assessment Process:

1. Understand Adversary View
 1.1. Entry Points & Exit Points
 1.2. Which Assets are of Interest
 - Collect Data
 - Trust Levels
2. Create a Data Flow Diagram
3. Determine, Investigate and Assess the Threats
 3.1. STRIDE – Identify and define the threats
 3.2. Threat Trees to assess vulnerabilities
 3.3. DREAD and/or CVSS to Characterize Risk
 3.4. Create security threat model to analyze risk (e.g. risk assessment)
4. Mitigate Threats – Mitigation Strategy
5. Validate Mitigation Strategy (out of scope for project)

Smart City Urban Monitoring System

Key Features:

- Smart LED Light Fixture on every light-pole in the city. Light Fixture supports three levels of light output: OFF, On-Low, On-High. Light levels are controlled by intensity of natural light (sunrise and sunset) and activity in the area (car traffic and human traffic). Light levels can also be set from central control office via the mesh network. Operational information for each Light Fixture is transmitted to the central office via the mesh network every 15 mins. Updates to the Light Fixture controller is done on the first Sunday of each month at 12am.
- Sensor Array on every light-pole in the city. Light-poles exist on the corner of every street and in the middle of each block. Number of total Sensor Arrays/Light Poles = [(2xCBNS)+1] x [(2xCBEW)+1] where CBNS = number of North-South city blocks in the grid & CBEW = number of East-West city blocks in the grid.
- Capabilities of the Array –
 - Ambient temperature
 - Air Quality (CO2, Ozone, Dust, Smoke)
 - Rain Fall
 - Wind Speed and Direction
 - Sound Levels & Sound Event Detection
 - Road Surface Temperature
 - Density of Human Traffic
 - Power provide via Light Pole
- Software Environment of Sensor Array
 - Custom Embedded System Code
 - No operating system
 - Arduino IDE used in code development
- Sounds Events Detectable by Sensor Array
 - Gun Shot
 - Sirens, Alarms
 - Glass Window Breaking
 - High Crowd Noise
 - Screams
 - Dog Barking
 - High Traffic Noise
 - Water Running (High Water Run-off)
 - Gas Leak

- Communications (sensor array) – Mesh Network
 - ZigBee Network/Protocol (http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeepro/) – also see files referenced below are in BlackBoard class portal
 - Redundant Messaging
 - Periodic Scanning – verify node availability
 - CRC Data Checking
 - Node Time Synchronization
 - Supports two-way communications to Sensor Array and LED Light Fixture.

- Code Updates – scheduled for first Sunday in month at 12am.
- Node Synchronization – every day at 2am

- Central Office Systems – Management and operated by external vendor.
 - All systems use a Windows based operating environment and communicate over a wired/wireless Ethernet network using TCP/IP.
 - Data Collection and Analysis Servers (Database, DAS/SCADA/DCS, Historian)
 - Application Servers (example apps – City Events Calendar, Venue Scheduling, Parking Availability, …) – Wired (Ethernet) access to Internet for public consumption of information.
 - Configuration/Code Update /Node Synchronization Server
 - Alerts/Feeds Servers – Wired (Ethernet) access via WWW for “customers” with authentication & encryption.
 - Smart LED Light Fixture control server
 - HMI Workstations
 - Internal Wireless Network for local PC/Workstation access to servers

- Services Provided by Central Office Server (Contracted Services provided by external vendor)
 - Correlation of City Events and Data Collected, Hazard Alerts
 - Sound Event Analysis and Location Services, Event Alerts
 - Road Service Temperature Analysis, Snow/Ice Alerts
 - Crowd Analysis, Human Congestion Alerts
 - Traffic Analysis, Motor Vehicle Congestion Alerts
 - Micro Climate Analysis, Location Specific Weather Alerts
 - Air Quality Alerts
 - Real-time Feeds of sensor data and/or analytics (customized to customer needs)

- Services and Data provided to
 - Police
 - Fire Department
 - Emergency Medical Services, Ambulance Services
 - Hospitals
 - Department of Transportation
- Road Maintenance
- City Hall & Major’s Office
- Air Quality Administration
- HUD and Homeless Services Department
- Public Web Site
- Department of Homeland Security

- Example Actions taken from Alerts and Data Feeds
 - Stop Light Control (DOT)
 - Dispatch of Parking Lot/Space Management
 - Dispatch of Police, Fire Department, Ambulances
 - Dispatch of Snow Removal & Sand/Salt Road Services
 - Restriction of Landscape/Construction Equipment by Air Quality Administration
 - Dispatch of Utility Maintenance Crews (water, gas, street lights, sensor array)
 - Automated Alerts to Public Web Site
 - Dispatch by Homeland Security

- Access Model to Services
 - Real-time Feed, data streamed on every update from array
 - Real-time Alerts
 - Query-on-Demand, clients can access active data (last 12 months) and analysis via assigned accounts
 - Query-on-Demand, access and analysis of archived data (beyond past 12 months)

- Maintenance
 - Repair and/or Replacement of Sensor Array takes 1 month (min)
 - Diagnostics executed on each Sensor Array monthly

ZigBee Reference Document Files (available on ECE462 BlackBoard Class Portal):

zigbee-specification.pdf
zigbee-pro-stack-profile-2.pdf
IJRITCC_ZigBeeTechStudy.pdf
ZigbeeProtocolMicrochipStackAN965.pdf

See ECE462FinalProjectInfraestructureDiagram.pptx for details on architecture used to implement the Smart City Urban Monitoring System.

List of System Operations to be analyzed for Security Threats:

Notes:

1. When developing Data Flow Diagrams note that some servers contain both processes and data stores.
2. Numbers in () represent number of Level 2 Data Flow Diagrams expected.

Control Center –
• LED Street Light Control (1)
• Retrieve, record, analyze sensor data (includes database, data analytics and SCADA servers) (3)
• Configure, diagnose, maintenance for sensor array infrastructure (3-4)
 o Includes sensor controller synchronization, periodic scanning for availability/function check, code updates, mesh message routing table updates
• Historian Services (1)
• Mesh message re-routing operation (from sensor array controller to control center and from control center to sensor array controller) (1)
• Applications for City Agencies (Alerts and Data Feeds) (3)
 o Correlation of City Events and Data Collected, Hazard Alerts
 o Sound Event Analysis and Location Services, Event Alerts
 o Road Service Temperature Analysis, Snow/Ice Alerts
 o Crowd Analysis, Human Congestion Alerts
 o Traffic Analysis, Motor Vehicle Congestion Alerts
 o Micro Climate Analysis, Location Specific Weather Alerts
 o Air Quality Alerts
 o Real-time Feeds of sensor data and/or analytics (customized to customer needs)

Services Center –

• Database and Archive Services (publicly available information) (1)
• Application Server Services (creates publicly available information stored in data feeds/alerts server) (1)
 o City Event Calendar
 o Venue Scheduling and Availability
 o Sidewalk/Street Congestion Map
 o Sound Levels Map
 o Air Quality/Temp./Wind Levels Maps
 o Visualization services to workstations in services center
• Alerts and Data Feeds to City Agencies (1-2)
 o Correlation of Control Center Alerts with City Events Calendar, Venue Scheduling and Parking Lot Data (note: parting lot data comes from external entity and/or an independent system)
General Illustrations of Smart Cities Infrastructure:

![Diagram of Smart City Actors Interaction](image)

Figure 1. Generic Smart City Actors Interaction
Figure 2. CPS Reference Architecture for Smart City Infrastructure