ECE 462 Spring 2016 Class Calendar:

January 2016

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class Begins</td>
<td>1st 462 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>MLK H-Day</td>
<td>462 Class</td>
<td>462 Class</td>
<td>462 Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

February 2016

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>462 Class</td>
<td>462 Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
March 2016

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14 SpringBreak</td>
<td>15 SpringBreak</td>
<td>16 SpringBreak</td>
<td>17 SpringBreak</td>
<td>18 SpringBreak</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25 SpringRecess</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

April 2016

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11 462 Class</td>
<td>12 462 Class</td>
<td>13 462 Class</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18 462 Class</td>
<td>19 462 Class</td>
<td>20 462 Class</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25 462 Class</td>
<td>26 462 Class</td>
<td>27 462 Class</td>
<td>28</td>
<td>29 Classes End</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
May 2016

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Study Day</td>
<td>Final Exams</td>
<td>Final Exams</td>
<td>Final Exams</td>
<td>Final Exams</td>
<td>Final Exams</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Final Exams</td>
<td>Final Exams</td>
<td>Commencement</td>
<td>Commencement</td>
<td>Commencement</td>
<td>Commencement</td>
<td>Commencement</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring 2016 Semester

- **Classes Begin**: Wednesday January 13
- **MLK Holiday**: Monday January 18
- **1st Session Ends**: Wednesday March 2
- **2nd Session Begins**: Thursday March 3
- **Spring Break**: Monday-Friday March 14-18
- **Spring Recess**: Friday March 25
- **Classes End**: Friday April 29
- **Study Day**: Monday May 2
- **Exams**: Tuesday-Tuesday May 3, 4, 5, 6, 9, 10
- **Graduate Hooding**: Thursday May 12
- **Commencement**: Wednesday-Saturday May 11-14
- **Official Graduation Date**: Saturday May 14
Class Description (ECE 462 Cyber-Physical Systems Security)

The phrase "Cyber-Physical Systems" describes systems that include real-time, embedded and/or transactional services systems, with the additional feature of possible communication between system components. This allows cyber and physical processes to collaborate with each other to form a distributed system, increasing the overall complexity of the resulting architecture over traditional real-time, embedded or services systems. These cyber-physical systems include physical or virtual environments where people live, work and play that are instrumented and controlled by some form of computer system.

Cyber-physical systems include (incomplete list)
- industrial automation systems and robots,
- vehicular systems (e.g.: collision avoidance, autonomous driving),
- transportation systems (highways, airports, railways, ports, etc.),
- avionics,
- medical systems (e.g.: integrated diagnostics and medication, remote surgery)
- power systems (e.g.: load balancing between power demand and supply)
- smart homes and buildings (e.g. cooling, lighting, access)

Most of these applications have strict requirements with respect to some or all of the following
- real-time
- reliability and robustness (dealing with uncertainty)
- correctness assurance (verification and validation)
- "human" in the loop interactions

Topics to be covered will include: (This a topical list, not a syllabus. See the syllabus for the specific semester to view the timing of the various topics.)

- What are Cyber-Physical Systems (CPS)
- Example CPS system structures and related applications
- CPS operating environments/modes: real-time, networked, passive, embedded, interactive, ...
- Standards used in CPS design and operation, and their effects on security
- Security challenges and techniques at the physical layer
 - Physical infrastructure, human interface, sensor environment, control interface, possible faults and threats
- Security challenges and techniques at the cyber layer
 - Communications/networks (wireless, mesh, sensor), embedded systems environment, development tools, data handling/formats, possible faults and threats
- Security exposures in procedures and protocols
 - Maintenance, recovery, data sharing, data archiving
- Example CPSe and their security challenges and practices
 - transportation systems, air-traffic control, building automation and HVAC, smart grids and power plants, industrial automation, vehicle systems, and SCADA systems.
- Emerging security technologies, protocols and procedures.

Pre-requisite: COSC 160, COSC 302
Registration Restriction(s): Minimum student level – junior.

Required Reading (Class Textbook):

Special Issue of Politico - The Cyber Issue

Recommended Reading:

Matt Bishop, *Introduction to Computer Security*, Addison-Wesley, 2005
Introduction to Computer Security pdf DONE.pdf (on BlackBoard class portal)

Slides per Chapters, *Introduction to Computer Security*, Addison-Wesley, 2005

Weekly Schedule & Syllabus (Tentative):

1. Overview of Class, Grading, Topics Covered and Reference Material
2. What are Cyber Physical Systems (CPSs)
 a. Definition
 b. CPS Concept Map
 c. High Level Examples
 d. Challenges
3. CPS
 • Predictable Comp. Architecture
 • Predictable OS Abstractions
 • Timing and Performance Analysis
 • Intro to Models of Computation and Verification.
4. Overview of Computer Security (Chapter 1, Introduction to Computer Security by Matt Bishop)
5. Cyber Physical Security Introduction and History (Chapter 1 & 2, Cyber Physical Attacks by George Loukas)

6. Detailed CPS Attack Examples – Industrial Controls (Chapter 4, Cyber Physical Attacks by George Loukas)

7. Detailed CPS Attack Examples – Power Grid (Chapter 4, Cyber Physical Attacks by George Loukas)

8. Security Policies, Lecture 1 (Chapter 4, Introduction to Computer Security by Matt Bishop
 - Trust
 - Confidentiality
 - Integrity

9. In the Minds of an Attacker (Chapter 5, Cyber Physical Attacks by George Loukas)

10. CPS Threat Modeling – Data Flow Diagrams

11. CPS Threat Modeling – Data Flow Diagram examples

12. CPS Threat Metrics & Identification (STRIDE), Lecture 1 of 2

13. CPS Threat Metrics & Identification (STRIDE), Lecture 2 of 2

14. CPS Threat Modeling – Threat Trees

15. CPS Threat Vulnerability Assessment (DREAD)

16. CPS Threat Vulnerability Assessment, Risk Tables and Mitigation Strategy,

17. CPS Threat Migration Strategy

18. SDL Threat Modeling Tool

19. Protection Mechanisms, Intrusion Detection (Chapter 6, Cyber Physical Attacks by George Loukas)

20. Secure Design Principles (Chapter 6, Cyber Physical Attacks by George Loukas)

21. Cryptography – An Overview (Chapter 8, Introduction to Computer Security by Matt Bishop)

24. Detailed CPS Attack Examples – Automotive Systems (Chapter 3, Cyber Physical Attacks by George Loukas)

25. Physical-Cyber Attacks

26. Best Practices in Designing Secure CPSs

27. Open Discussion for Final Project.

Final Project:

Scheduled Meeting Times

<table>
<thead>
<tr>
<th>Type</th>
<th>Time</th>
<th>Days</th>
<th>Where</th>
<th>Date Range</th>
<th>Schedule Type</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>9:40 am – 10:55pm</td>
<td>TR</td>
<td>Min Kao Engineering 406</td>
<td>14-Jan-2016 - 28-Apr-2016</td>
<td>Lecture</td>
<td>Mark Edward Dean (P)</td>
</tr>
</tbody>
</table>

Total number of classes – 29 (not including final exam)

Final Exam due May 3.
Check the following website for changes to syllabus: TBD

Note: All class Topics and supporting material are under development.

<table>
<thead>
<tr>
<th>Mtgs</th>
<th>Date</th>
<th>Topic</th>
<th>Materials/Assignments</th>
<th>Misc.</th>
</tr>
</thead>
</table>
| 1 | 1/14/2016 | Lecture 1 - Overview of Class, Grading, Topics Covered, Reference Material & Final Project | ECE462_Lecture0_Class_Introduction.pptx
ECE462_Lecture1_CPS_Introduction.pptx | |
| 2 | 1/19/2016 | Lecture 2 - What are Cyber Physical Systems (CPSs)
- Definition revisited
- CPS Concept Map
- High Level Examples
- Challenges | Chapter 1, Cyber Physical Attacks by George Loukas
ECE462_Lecture2_What are Cyber Physical Systems.pptx
http://cyberphysicalsystems.org/ | References - CPS_CourseIntroduction.ppt
Homework #1: Exercises from Chapter 1, Cyber Physical Attacks by George Loukas and 5 additional questions on BlackBoard, Due in one week from today. |
| 3 | 1/21/2016 | Lecture 3 - CPS –
- Predictable Comp. Architecture
- Predictable OS Abstractions
- Timing and Performance Analysis
- Intro to Models of Computation and Verification. | ECE462_Lecture3_CPS_Design_Challenges.pptx | References - CPS_CourseIntroduction.ppt |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Topic</th>
<th>Chapter(s)</th>
<th>References</th>
<th>Homework/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1/26/16</td>
<td>Lecture 4 - Overview of Computer Security</td>
<td>Chapter 1, Introduction to Computer Security by Matt Bishop</td>
<td>ECE462_Lecture4_IntroCompSecurity.pptx</td>
<td>Homework #2: Exercises from Chapter 1, Intro to Computer Security, by Matt Bishop, Questions 1-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Homework #1 Due Today.</td>
<td>References –</td>
</tr>
<tr>
<td>5</td>
<td>1/28/16</td>
<td>Lecture 5 - Cyber Physical Security Introduction and History</td>
<td>Chapter 2, Cyber Physical Attacks by George Loukas</td>
<td>ECE462_Lecture5_Intro_CPS_Security.pptx</td>
<td>Reference – COMP1706-CyberPhysicalSecurity.pptx</td>
</tr>
<tr>
<td>6</td>
<td>2/2/16</td>
<td>Lecture 6 - Detailed CPS Attack Examples - Industrial Controls Attacks, SCADA Systems</td>
<td>Chapter 4, Cyber Physical Attacks by George Loukas</td>
<td>NIST.SP.800-82r2.pdf</td>
<td>Homework #2 Due Today.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems Security”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by the National Institute of Standards and Technology</td>
</tr>
<tr>
<td>7</td>
<td>2/4/16</td>
<td>Lecture 7 - Detailed CPS Attack Examples - Power-Grid Attacks & Security</td>
<td>Chapter 4, Cyber Physical Attacks by George Loukas</td>
<td></td>
<td>Reference – PowerGridSecurity.pdf</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>Lecture Title</td>
<td>Readings</td>
<td>Assignment</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5, *Introduction to Computer Security* by Matt Bishop
Chapter 6, *Introduction to Computer Security* by Matt Bishop
ThreeTenetsSPIE.pdf | Homework #3 Due Today
Homework #4: Exercises from Chapter 4, *Cyber Physical Attacks* by George Loukas, Questions 1-6
Reference - usc-csci530-f10-part2.pptx |
| 9 | 2/11/2016 | Lecture 9 - In The Minds of an Attacker – Steps to Cyber-Physical Attacks | Chapter 5, *Cyber Physical Attacks* by George Loukas
Chapter 12, *Securing Cyber-Physical Critical Infrastructure* by Sajal K. Das, et. al. | |
Threat Modeling by Frank Swiderski & Window Snyder, Chapter 4
ThreeTenetsSPIE.pdf | Homework #4 Due Today
Homework #5: Exercises from Chapter 5, *Cyber Physical Attacks* by George Loukas, Questions 1-6 |
| 11| 2/18/2016 | Lecture 11 – CPS Threat Modeling – Trust Levels, Entry Points, Assets and Data Flow Diagrams Example Exercise | *Threat Modeling* by Frank Swiderski & Window Snyder, Appendix A | Homework #5 Due Today
Homework #6 (optional): Create Level 1 Data Flow Diagram for Final Project (for review only) |
| 12| 2/23/2016 | CPS Threat Metrics & Identification (STRIDE), Lecture 1 of 2 | Threat Modeling – Designing for Security by Adam Shostack, Chapter 3 | Homework #5 Due Today
Homework #6 (optional): Create Level 1 Data Flow Diagram for Final Project (for review only) |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2/25/2016</td>
<td>CPS Threat Metrics & Identification (STRIDE), Lecture 2 of 2</td>
<td>Threat Modeling – Designing for Security by Adam Shostack, Chapter 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference – CyberThreatMetrics_065.pdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ThreeTenets...Quantitative CPS Metrics (#5 in ThreeTenetSPIE.pdf)</td>
</tr>
<tr>
<td>14</td>
<td>3/1/2016</td>
<td>CPS Threat Modeling – Threat Tree Diagrams</td>
<td>Homework #6 Due Today</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Homework #7: Complete STRIDE-per-Element analysis table for Smart Utility System Sensor Data Ingestion operation from Lecture 11.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ThreeTenets...Quantitative CPS Metrics (#5 in ThreeTenetSPIE.pdf)</td>
</tr>
<tr>
<td>16</td>
<td>3/8/2016</td>
<td>CPS Threat Vulnerability Assessment, Risk Tables and Mitigation Strategy, 2 of 2,</td>
<td>cvss_basic-2.0_Presentation.pdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Homework #7 Due Today</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exercises TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cvss-v30-specification-v1.7.pdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cvss-v30-user_guide_v1.4.pdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cvss-v30-examples_v1.1.pdf</td>
</tr>
<tr>
<td>17</td>
<td>3/10/2016</td>
<td>CPS Threat Mitigation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Spring Break</td>
<td>Undergraduate Students have most of the material they need to complete their Final Project.</td>
</tr>
<tr>
<td>Date</td>
<td>Notes</td>
<td>Chapter/Section</td>
<td>Reference</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3/24/2016</td>
<td>Note: Graduate Students have all the material they need at this point to complete their Final Project.</td>
<td>Protection Mechanisms, Intrusion Detection & Response</td>
<td>https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx</td>
</tr>
<tr>
<td>3/29/2016</td>
<td>Secure Design Principles</td>
<td>Chapter 6, Cyber Physical Attacks by George Loukas p. 182-200</td>
<td></td>
</tr>
<tr>
<td>4/12/2016</td>
<td>Lecture 22 - Detailed CPS Attack Examples – Automotive Systems</td>
<td>Chapter 3, Cyber Physical Attacks by George Loukas</td>
<td></td>
</tr>
<tr>
<td>4/14/2016</td>
<td>Physical-Cyber Attacks</td>
<td>Chapter 7, Cyber Physical Attacks by George Loukas</td>
<td></td>
</tr>
<tr>
<td>4/19/2016</td>
<td>Intrusion Detection</td>
<td>Chapter 22, Introduction to Computer Security by Matt Bishop</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Event Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4/21/2016</td>
<td>Open Class to discuss project ... Optional Attendance.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4/26/2016</td>
<td>Used in case need to cover missed classes due to snow or other issues.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4/28/2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/5/2016</td>
<td>Final Project Due</td>
<td></td>
</tr>
</tbody>
</table>
Elements of Final Grade (ECE462)

High Level Elements:
- Final Project = 50% of grade
- Class assignments = 50% of grade
- Attendance = Students must attend 85% of all lectures (24 classes). 0.7 grade points (out of a 4.0 grade scale) will be deducted from the final grade for the 5th class missed. 0.1 grade points (out of a 4.0 grade scale) will be deducted from the final grade for each class missed beyond the 5th class missed.

Course Personnel:
- Faculty member in charge: Dr. Mark E. Dean
 - email: markdean@utk.edu
 - phone: 865-974-5784
 - Office hours: 3:30-5:00pm, Tuesday, Wednesday, & Thursday

 The best way to contact me is via email or during office hours.

- IT Help: https://ithelp@eecs.utk.edu

- Guest Lecturers: TBD

Work Items for Class Material and Preparation:
Description of CPS for ECE462 (undergraduate) and ECE599 (graduate) Final Project –

Students must develop a ‘threat model” for an Smart City Urban Monitoring System deployed in an urban area (e.g. 25 sq. miles or 40x40 city blocks) and complete a report detailing the security exposures, risks and mitigation strategies. See [ECE462FinalProjectInfrastructureDiagram.pptx](https://example.com/ECE462FinalProjectInfrastructureDiagram.pptx) for details on architecture used to implement the Smart City Urban Monitoring System.

The report for both ECE462 and ECE599 must include the following:

- Assets
- System Layers
- Attack Surfaces & Entry Points
- Trust Levels
- Use Scenarios
- Assumptions and Dependencies
- Data Flow Diagram of “operational system” under evaluation
 - Context/Level 0 Diagram
 - Level 1 Diagram
 - Level 2 Diagrams – expect 13-17 diagrams needed to cover project
- Threats (STRIDE) – STRIDE-per-Element analysis tables (one per Level 2 DFDs)
- Threat Tree(s)
- Vulnerabilities (DREAD and/or CVSS)
- Risk Assessment
- Mitigation Strategy

ECE462 Project Reports should be at least 10 pages (including diagrams, charts, tables, etc.) single-spaced 12pt font. The reports must include all the elements listed above.

ECE599 (graduate) students must also complete the following:

- Create and implement the threat model of the project using Microsoft's Threat Modeling tool
- Project reports should include all the elements listed above, plus include Threat Model Tool diagrams and analysis results. Description of the model attributes, constraints, challenges and other key design decisions needed to support the Threat Modeling Tool should also be included in the project report.
- The ECE599 project reports should be at least 15 pages (including diagrams, charts, tables, etc.) single-spaced 12pt font.
- ECE599 students must provide a copy of their Threat Modeling Tool files for review
- ECE599 students must be prepared to present their model and results to the professor and students during class. (note: This may not be practical. May consider presenting in separate meeting and/or after projects have been turned in.)

Threat Model/Assessment Process:

1. Understand Adversary View
1.1. Entry Points & Exit Points
1.2. Which Assets are of Interest
 - Collect Data
 - Trust Levels

2. Create a Data Flow Diagram

3. Determine, Investigate and Assess the Threats
 3.1. STRIDE – Identify and define the threats
 3.2. Threat Trees to assess vulnerabilities
 3.3. DREAD and/or CVSS to Characterize Risk
 3.4. Create security threat model to analyze risk (e.g. risk assessment)

4. Mitigate Threats – Mitigation Strategy

5. Validate Mitigation Strategy (out of scope for project)

Smart City Urban Monitoring System

Key Features:

- Smart LED Light Fixture on every light-pole in the city. Light Fixture supports three levels of light output: OFF, On-Low, On-High. Light levels are controlled by intensity of natural light (sunrise and sunset) and activity in the area (car traffic and human traffic). Light levels can also be set from central control office via the mesh network. Operational information for each Light Fixture is transmitted to the central office via the mesh network every 15mins. Updates to the Light Fixture controller is done on the first Sunday of each month at 12am.
- Sensor Array on every light-pole in the city. Light poles exist on the corner of every street and in the middle of each block. Number of total Sensor Arrays/Light Poles = [(2xCBNS)+1] x [(2xCBEW)+1] where CBNS = number of North-South city blocks in the grid & CBEW = number of East-West city blocks in the grid.
- Capabilities of the Array –
 - Ambient temperature
 - Air Quality (CO2, Ozone, Dust, Smoke)
 - Rain Fall
 - Wind Speed and Direction
 - Sound Levels & Sound Event Detection
 - Road Surface Temperature
 - Density of Human Traffic
 - Power provide via Light Pole
- Software Environment of Sensor Array
 - Custom Embedded System Code
 - No operating system
 - Arduino IDE used in code development
- Sounds Events Detectable by Sensor Array
 - Gun Shot
 - Sirens, Alarms
 - Glass Window Breaking
 - High Crowd Noise
 - Screams
- Dog Barking
- High Traffic Noise
- Water Running (High Water Run-off)
- Gas Leak

- Communications (sensor array) – Mesh Network
 - ZigBee Network/Protocol (http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeepro/) – also see files referenced below are in BlackBoard class portal
 - Redundant Messaging
 - Periodic Scanning – verify node availability
 - CRC Data Checking
 - Node Time Synchronization
 - Supports two-way communications to Sensor Array and LED Light Fixture.

- Code Updates – scheduled for first Sunday in month at 12am.
- Node Synchronization – every day at 2am
- Central Office Systems – Management and operated by external vendor.
 - All systems use a Windows based operating environment and communicate over a wired/wireless Ethernet network using TCP/IP.
 - Data Collection and Analysis Servers (Database, DAS/SCADA/DCS, Historian)
 - Application Servers (example apps – City Events Calendar, Venue Scheduling, Parking Availability, ...) – Wired (Ethernet) access to Internet for public consumption of information.
 - Configuration/Code Update /Node Synchronization Server
 - Alerts/Feeds Servers – Wired (Ethernet) access via WWW for “customers” with authentication & encryption.
 - Smart LED Light Fixture control server
 - HMI Workstations
 - Internal Wireless Network for local PC/Workstation access to servers

- Services Provided by Central Office Server (Contracted Services provided by external vendor)
 - Correlation of City Events and Data Collected, Hazard Alerts
 - Sound Event Analysis and Location Services, Event Alerts
 - Road Service Temperature Analysis, Snow/Ice Alerts
 - Crowd Analysis, Human Congestion Alerts
 - Traffic Analysis, Motor Vehicle Congestion Alerts
 - Micro Climate Analysis, Location Specific Weather Alerts
 - Air Quality Alerts
 - Real-time Feeds of sensor data and/or analytics (customized to customer needs)

- Services and Data provided to
 - Police
 - Fire Department
 - Emergency Medical Services, Ambulance Services
 - Hospitals
 - Department of Transportation
 - Road Maintenance
 - City Hall & Major’s Office
 - Air Quality Administration
 - HUD and Homeless Services Department
 - Public Web Site
 - Department of Homeland Security
Example Actions taken from Alerts and Data Feeds
 - Stop Light Control (DOT)
 - Dispatch of Parking Lot/Space Management
 - Dispatch of Police, Fire Department, Ambulances
 - Dispatch of Snow Removal & Sand/Salt Road Services
 - Restriction of Landscape/Construction Equipment by Air Quality Administration
 - Dispatch of Utility Maintenance Crews (water, gas, street lights, sensor array)
 - Automated Alerts to Public Web Site
 - Dispatch by Homeland Security

Access Model to Services
 - Real-time Feed, data streamed on every update from array
 - Real-time Alerts
 - Query-on-Demand, clients can access active data (last 12 months) and analysis via assigned accounts
 - Query-on-Demand, access and analysis of archived data (beyond past 12 months)

Maintenance
 - Repair and/or Replacement of Sensor Array takes 1 month (min)
 - Diagnostics executed on each Sensor Array monthly

ZigBee Reference Document Files (available on ECE462 BlackBoard Class Portal):
 - zigbee-specification.pdf
 - zigbee-pro-stack-profile-2.pdf
 - IJRITCC_ZigBeeTechStudy.pdf
 - ZigbeeProtocolMicrochipStackAN965.pdf

See ECE462FinalProjectInfrastructureDiagram.pptx for details on architecture used to implement the Smart City Urban Monitoring System.

List of System Operations to be analyzed for Security Threats:

Notes:
1. When developing Data Flow Diagrams note that some servers contain both processes and data stores.
2. Numbers in () represent number of Level 2 Data Flow Diagrams expected.

Control Center –
 - LED Street Light Control (1)
 - Retrieve, record, analyze sensor data (includes database, data analytics and SCADA servers) (3)
 - Configure, diagnose, maintenance for sensor array infrastructure (3-4)
 - Includes sensor controller synchronization, periodic scanning for availability/function check, code updates, mesh message routing table updates
• Historian Services (1)
• Mesh message re-routing operation (from sensor array controller to control center and from control center to sensor array controller) (1)
• Applications for City Agencies (Alerts and Data Feeds) (3)
 o Correlation of City Events and Data Collected, Hazard Alerts
 o Sound Event Analysis and Location Services, Event Alerts
 o Road Service Temperature Analysis, Snow/Ice Alerts
 o Crowd Analysis, Human Congestion Alerts
 o Traffic Analysis, Motor Vehicle Congestion Alerts
 o Micro Climate Analysis, Location Specific Weather Alerts
 o Air Quality Alerts
 o Real-time Feeds of sensor data and/or analytics (customized to customer needs)

Services Center –

• Database and Archive Services (publicly available information) (1)
• Application Server Services (creates publicly available information stored in data feeds/alerts server) (1)
 o City Event Calendar
 o Venue Scheduling and Availability
 o Sidewalk/Street Congestion Map
 o Sound Levels Map
 o Air Quality/Temp./Wind Levels Maps
 o Visualization services to workstations in services center
• Alerts and Data Feeds to City Agencies (1-2)
 o Correlation of Control Center Alerts with City Events Calendar, Venue Scheduling and Parking Lot Data (note: parting lot data comes from external entity and/or an independent system)
General Illustrations of Smart Cities Infrastructure:

Figure 1. Generic Smart City Actors Interaction
Figure 2. CPS Reference Architecture for Smart City Infrastructure