

 1

Massively Parallel and Distributed Visualization of Neuronal Fibers in Diffusion
Tensor MRI Enabled by Logistical Computing and Internetworking

Micah Beck1, Jian Huang1, Yong Zheng1, Jean-Patrick Gelas1, Terry Moore1, Nathan Fout2 and Zhaohua Ding3

 1Department of Computer Science, The University of Tennessee, Knoxville, TN
2Department of Computer Science, University of California, Davis, CA

3Department of Radiology, Vanderbilt University, Nashville, TN

Abstract
Successful visualization of neuronal connectivity in

Diffusion Tensor MRI is a necessary tool for neuroscience
research. Here, we describe a method that visualizes
neuronal fibers by leveraging Bayes rule. Like many other
DT-MRI visualization algorithms, significant computing
resources are necessary for our software tool to be useful
for routine medical research.

Since most medical research institutions do not have
in house large-scale parallel computers, it would be
beneficial to leverage the computing resources available in
the Grid. Using Logistical Computing and Internetworking
(LoCI) tools, we built a prototype distributed visualization
system that: (i) is easy to use, (ii) does not require
scheduling, reservation or authorization and (iii) has
sufficient performance to complete a job in a reasonable
amount of time. With a fault-tolerant method of parallel job
scheduling, we have consistently obtained close to 80%
parallel utilization using up to 60 heterogeneous processors
distributed across US and Canada.

Keywords: DT-MRI, fiber tracking, conditional probability and
Bayes rule, distributed computing, dynamic job scheduling.

1. Introduction
Understanding the structure and function of the

human brain has long been a fundamental goal of
neuroscience research. Recent advances in medical
imaging, in particular, diffusion tensor MRI (DT-MRI) [4]
has emerged as potentially powerful tools for the
exploration of brain structure by providing clues regarding
neuronal connectivity between functionally related cortical
regions. Although still on a coarse resolution, DT-MRI is
considered revolutionary in that such neuronal orientation
information cannot be detected in other imaging modalities.

Discovery of neuronal patterns within the brain by
fiber tracking in DT-MRI datasets has been widely studied
in the field by many researchers. The resulting visualization
would sometimes contain neuronal fibers amounting to tens
of thousands to accurately describe the intricate brain
structures. To address problems caused by signal noise and
partial volume effects (PVE), sophisticated procedures
beyond the conventional streamline reconstruction are
necessary. In this paper, we describe a scheme of fiber
reconstruction leveraging Bayes rule on conditional
probability, for which continuous space probability

distribution functions (pdf) must be discretized and
evaluated at high angular resolutions. A number of
pioneering DT-MRI visualization approaches rely on
reducing a diffusion tensor field to a vector field of major
eigenvectors. Doing so could cause significant error during
fiber tracking in brain areas where the major eigenvector is
not unique, that is in areas where the tensor is deprolated
(i.e. the ellipsoid represented by the tensor matrix is not
prolate, or “cigar-shaped”, but oblate, “disc-shaped” or
spherical). PVE stems from imaging resolutions insufficient
to capture regions where nerve fibers branch or cross.
Traditional streamline tracking algorithms could be misled
by such areas in a way that results in significant deviations
in the constructed neuronal fibers. Our visualization
algorithm addresses signal noise and PVE by treating local
diffusion tensors as true probability distribution functions
(pdf) and dynamically follow the underlying track guided
by varying local conditional probability. As a result, like
many other alternative DT-MRI visualization methods,
much computational resource is required.

However, most medical research institutions do not
maintain high performance parallel computers in house. It
carries much potential impact to provide large-scale
visualization capabilities in a scalable manner that
leverages the great amount of free resources that exist in the
Grid. In addition, their research also demands a high level
of interactivity in three respects: it needs to be (i) easy of
use, (ii) available on demand without reservation or
scheduling and (iii) it needs to deliver results quickly.
These requirements motivate a need for a scalable
distributed computing framework. While several large-scale
computing alternatives exist, the infrastructure provided by
Logistical Computing and Internetworking, enables our
system to be easily deployed on the world’s academic
research networks. Internet. With this deployment and
using a dynamic and fault tolerant method of job
scheduling, we have consistently obtained close to linear
speedups using more than 60 heterogeneous processors on
NFU-enabled nodes spread across the North American
continent [19], without authorization, reservation or
scheduling any of those processors. Medical researchers at
Vanderbilt Medical School currently use our system for
their daily research.

The remainder of the paper describes our approach
and the results we achieved. In section 2, we first describe
the background of DT-MRI visualization by fiber tracking

 2

and the Logistical Networking technology we use. In
Sections 3, we present the details of our visualization
algorithm and the NFU enabled distributed computing
infrastructure, respectively. A description of our
preliminary results and the relevant issues on scalability are
in Sections 4 and 5 respectively. We then conclude in
Section 6.

2. Background

2.1 DT-MRI Visualization
Water molecules undergo random motion commonly

referred to as diffusion, which can be described by a
symmetric rank-2 tensor matrix of size 33× . A common
geometric representation of this matrix is an ellipsoid,
where the surface of the ellipsoid marks the probability of
diffusion in every direction for a given point in space. The
size, shape and orientation of the ellipsoid give a complete
description of the tensor. The tensor ellipsoid may take on
the shape of a sphere, a disc or spindle, depending on the
relative magnitude of the tensor eigenvalues. DT-MRI
measures the direction-dependency motion of water
molecules [4], producing a set of coefficients which are
then used to calculate a diffusion tensor. As the direction-
dependency of water diffusion is closely related to
structural anisotropy of the media, DT-MRI can be used to
probe structural features of living tissue. Although still on
a coarse spatial scale, DT-MRI is deemed to be
revolutionary in that the structural information it provides is
invisible to other imaging modalities.

To track linear structural features (e.g. neuronal
fibers) in a tensor field, many methods replace each tensor
matrix with the major eigenvector. This reduction converts
the tensor field to a vector field in which neuronal fibers are
constructed as hyper-streamlines or simply streamlines [5,
14, 21]. To address the unavoidable signal noises, these
methods employ filtering or regularization [30], which may
unfortunately smooth out local details during the process.
Poupon et. al [21] regularized the diffusion field by
estimating the true tensor matrix on each voxel. They
accomplished this by evaluating the conditional probability
in the local neighborhood. A heuristic rule-based streamline
tracing is then used to trace fibers in the regularized dataset.
To address the issue of PVE, tensorlines were developed
based on advection-diffusion of particles [28]. In this
method, each particle not only tracks local orientation but
also considers orientations in its neighborhood and tracing
history. While effective in handling isotropic areas by
averaging of optional directions to follow, the tensorline
approach requires proper weights to be supplied. An
evident drawback is that tracking results could be heavily
dependent on the values of the weighting parameters. It is
not clear what weight values represent “real” fibers.
Recently, also by reducing tensors to major eigenvectors, a
method is proposed to first segment regions of the most
consistent distribution of major eigenvectors with Hough

Transform [29]. In the segmented regions, a fiber can be
traced from a user-chosen seed and optimized with a cost
function penalizing change of fiber directions. This method
addresses some aspects of signal noise but not problems
caused by PVE.

As the tensor matrix really represents a probability
distribution function (pdf), another class of methods
incorporates this idea in tracking. For instance, in [13]
tensor matrices are regarded as a pdf which is modulated by
Bayes rule on conditional probability. Tracing a fiber from
a given seed is equivalent to finding a path through the 3D
volume that attains a maximal likelihood, which requires a
3D integration process. Such integration is difficult to
compute analytically. A Monte Carlo method is then
developed for this purpose. As a more efficient alternative,
Poupon et. al [21] approximate the global optimization
process with a regularization stage that estimates the true
tensor matrix free from noise on each voxel. Their
regularization also draws upon conditional probability.
After regularization, the conventional numerical integration
is then used to trace fibers in the dataset. Besides these
known techniques, there are other ways to leverage the idea
of conditional probability for neuronal fiber visualization,
such as our method in this paper.

2.2 Logistical Computing and
Internetworking (LoCI)

The computational demands of the DT-MRI
visualization by fiber tracking imposes a delay of up to
eight hours in reconstructing 10,000 fibers from a
64x64x18 DT-MRI scan when implemented sequentially on
a single Pentium 4 processor of 2.4 GHz. The need for
faster response times in clinical settings, together with a
desire to offload such computation intensive jobs from
personal computing resources suggests the use of a local
parallel computing platform, such as a departmental Linux
cluster or shared memory processor, or the use of a remote
computing center via Grid middleware.

Parallel implementations of DT-MRI over MPI have
been tried and very good performance results have been
obtained. However, the availability of locally owned
solutions is limited by parallel processing resources, which
may be in high demand, and so may be unavailable when
needed. In fact, many medical institutions do not maintain
such computing facility on campus for both technical and
policy reasons. At the same time, the usability of some Grid
solutions has been found to be limited by the need to
integrate the application and the user into a global Grid
middleware framework, and to support that middleware
framework on the client systems [17]. While such
approaches are technically feasible, in our experience they
have not provided either the flexibility of use or scalability
of deployment that was desired for this application
environment. Experience with such systems by author
Ding, a radiologist, has shown that analysis and
visualization algorithms have parameters that are tricky to

 3

set correctly in general. In addition, there are often several
alternative algorithms, such as smoothing, registration and
segmentation that may apply well to a particular group of
datasets. It would be ideal to be able to spontaneously
refine, start or cancel test runs. Therefore, radiologists
would desire a computing service that (i) is easy to use, (ii)
does not require restrictive scheduling, reservation or
authorization and (iii) have sufficient performance.

We built a prototype massively parallel and
distributed system to visualize neuronal fibers with these
goals in mind. Our system leverages Logistical Computing
and Internetworking (LoCI), which takes an approach to the
sharing of storage and processing resources that is modeled
on the Internet approach to the sharing of network
resources. The strategy enables the free sharing of such
resources within a community of users, employing a service
model that is well adapted to multiplexing resources among
competing applications for the sake of scalability, and yet is
highly generic, in order to support the greatest flexibility in
its use. Like the Internet, the resulting system is not
tailored in advance to provide the very highest levels of
performance for any single application, and it places on the
endpoint the burden of managing and utilizing primitive,
generic network services. But, for these same reasons, it is
highly scalable and deployable, and these attributes are
required in many data intensive medical and scientific
applications, such as the kind of diagnostic visualization we
are studying here.
2.2.1 Logistical Networking

To achieve the kind of global deployment scalability
some high-end applications require for data management,
Logistical Networking (LN) uses a highly generic, best
effort storage service, called the Internet Backplane
Protocol (IBP), the design of which is shaped by analogy
with the design of IP in order to produce a common storage
service with similar characteristics. Though it has been
implemented as an overlay on TCP/IP (Figure 1), it
represents the foundational layer of the ”network storage
stack” [6, 20]. Just as IP datagram service is a more abstract
service based on link-layer packet delivery, so IBP is a
more abstract service based on blocks of data (on disk,
memory, tape or other media) that are managed as “byte
arrays.” By masking the details of the local disk storage —
fixed block size, different failure modes, local addressing
schemes — this byte array abstraction allows a uniform IBP
model to be applied to storage resources generally. The use
of IP networking to access IBP storage resources creates a
globally accessible storage service.

As the case of IP shows, however, in order to scale
globally the service guarantees that IBP offers must be
weakened, i.e. it must present a “best effort” storage
service. First and foremost, this means that, by default, IBP
storage allocations are time limited. When the lease on an
IBP allocation expires, the storage resource can be reused
and all data structures associated with it can be deleted.

Additionally an IBP allocation can be refused by a storage
resource in response to over-allocation, much as routers can
drop packets; such “admission decisions” can be based on
both size and duration. Forcing time limits puts transience
into storage allocation, giving it some of the fluidity of
datagram delivery. More importantly, it makes network
storage far more sharable, and therefore easier to scale up.

The semantics of IBP storage allocation also assume
that an IBP storage resource can be transiently unavailable.
Since the user of remote storage resources depends on so
many uncontrolled, remote variables, it may be necessary to
assume that storage can be permanently lost. In all cases
such weak semantics mean that the level of service must be
characterized statistically.

IBP storage resources are managed by “storage
intermediate nodes”, or “depots,” which are servers on
which clients perform remote storage operations. IBP
client calls fall into three different groups [20]:
IBP_allocate and IBP_manage for storage
management; IBP_store, IBP_load, IBP_copy, and
IBP_mcopy for data transfer; and IBP_status, for
depot management. The IBP_allocate function is the
most important operation. It is used to allocate a byte array
at an IBP depot, specifying the size, duration and other
attributes. A chief design feature is the use of capabilities
(cryptographically secure passwords) [15]. A successful
IBP_allocate call returns a set of three capabilities for
the allocated byte array — one for reading, one for writing,
and one for management — that may be passed from client
to client, requiring no registration from or notification to the
depot.

Basic middleware tools for using this network storage
infrastructure have already been developed and are freely
available (http://loci.cs.utk.edu). The Logistical Runtime
System (LoRS) consists of
a set of tools and
associated APIs that
allows users to draw on a
pool of depots in order to
enable the implementation
of files and other storage
abstractions with a wide
range of characteristics,
such as large size
(through fragmentation),
fast access (through
caching), and reliability
(through replication).
LoRS tools also implement some transport layer services
such as checksums, encryption, compression, and erasure
codes, all of which is implemented at the end-points. The
Logistical Backbone (L-Bone) is the LN resource discovery
service [7]; it maintains information about IBP depots such
as hostname, port, storage availability, proximity between
depots, etc. Users can also query the L-Bone to determine

Figure 1. Overlay
implementation of the network
storage stack.

 4

proximity between depots and the user to improve upload
or download performance. This middleware can be used in
an open, wide area testbed of IBP depots (currently over
33TB), which today encompasses more than 300 public
nodes in 21 countries. This deployment of LN technology
provides a rich platform for experimentation with the new
approach to scalable network computation described here.
2.2.2 The Network Functional Unit (NFU)

To add processing power to the storage intermediate
nodes in a logistical network while retaining deployment
scalability, the LoCI approach must supply an abstraction
of processing resources local to the depot (i.e. time-sliced
operating system execution services) that satisfies the twin
goals of providing a generic but sharable computing
service, while at the same time leaving that service as
exposed as possible to serve the broadest range of purposes
of application developers [22]. Following the familiar
pattern of other network stacks, all higher layer functions
would then be built up on top of these primitive services.
We call our new abstraction of the depot’s local processing
resources the Network Functional Unit (NFU) [11], and
implement it as an orthogonal extension to the functionality
of IBP.

In order to achieve its design goals, the abstraction
embodied in the NFU must mask enough of the
particularities of the local layer processing resources, (e.g.
fixed time slice, differing failure modes, local architecture
and operating system) to enable lightweight allocations of
those resources to be made by any participant in the
network. As in the case of IBP storage [10], the strategy for
implementing this requirement is to mirror the IP paradigm.
Just as IP is a more abstract service based on link-layer
datagram delivery, IBP’s Network Functional Unit is a
more abstract service based on computational fragments
(e.g. OS time slices) that are managed as "operations." The
independence of NFU operations from the attributes of the
particular local layer is established by working through the
same features of resource aggregation, fault detection, and
global addressing. Table 1 displays the results for the NFU
side by side with IBP.

The name “Network Functional Unit” was chosen to
fit the pattern established by other components of the LN
infrastructure, which expresses an underlying vision of the
network as a computing platform with exposed resources
that are externally scheduled by endpoints. The archetype
here is a more conventional computing network: the system
bus of a single computer (historically implemented as a
backplane bus), which provides a uniform fabric for storing
and moving data. This was the analysis that was invoked in
the naming of the fundamental protocol for data transfer
and storage the “Internet Backplane Protocol.” In
extending that analogy to include computation, we looked
for that component of a computer that has no part in data
transfer or storage, serving only to transform data placed
within its reach. The Arithmetic Logic Unit (ALU) seemed

a good model, with its input and output latches serving as
its only interfaces to the larger system. For this reason, we
have named the component of an IBP depot that transforms
data stored at that depot the Network Functional Unit.

 IBP (Storage) NFU (Processing)

Resource
Aggregation

Aggregation
of access layer
blocks masks the
fixed block size

Aggregation
of execution layer
time slices masks
the fixed slice size

Fault
Detection

Fault
detection with a
simple failure
model (faulty byte
arrays are
discarded) masks
the variety of
different failure
modes

Fault
detection with a
simple failure
model (faulty
operations
terminate with
unknown state for
write-accessible
storage) masks the
variety of different
failure modes

Global
Addressing

A uniform
capability name
space masks the
difference between
local layer storage
addressing
schemes.

A uniform
operation
namespace, masks
the difference
between local layer
processing
resources

Table 1. A comparison between IBP and NFU.

However, since NFU service, like the IBP core
storage service, is implemented as an overlay on top of
TCP/IP, this gives rise to a serious problem. The chronic
vulnerability of IP networks and LN to Denial of Service
(DoS) attacks, on bandwidth and storage resources
respectively, will apply equally to the NFU’s computational
resources. Another problem is that the classic definition of a
time slice processing service is based on execution on a
local processor, so it includes strong semantics that are
difficult to implement scalably in the wide area network.

Following that line of analysis, and the model of IBP,
we address both of these issues by weakening the semantics
of compute resource allocation in the NFU. Most
importantly, NFU allocations are time limited, and the time
limits established by local depot policy makes the compute
allocations that occur on them transient. But all the
semantics of NFU operations are weaker in ways that
model computation accessed over the network. In all cases
the weak semantics mean that the level of service must be
characterized statistically.

As illustrated in Figure 2, we can identify a logical
progression of functionality in intermediate nodes: the
router forwards datagrams, exercising control over
movement in the spatial dimension by choosing between
output buffers. The depot adds control over movement in
the temporal dimension by enabling the storage of data in
an IBP allocation as it passes through. Finally, the NFU is
implemented as a module, added to an IBP storage depot,

 5

that transforms stored data. If we consider spatial direction,
time and value to be coordinates of a single space, then the
state of any data item is a point in this vector space, and the
progression is one of increasing simultaneous control over
multiple dimensions.

Figure 2: Intermediate nodes to manage bandwidth (IP router),
storage (IBP Depot), and computation (NFU-enabled Depot)

Since a depot may model either disk or RAM storage
resources, some NFU operations may apply only to data
stored in RAM, while others may also apply to data stored
on disk. Restricting an operation to data held in RAM
forces any necessary movement between disk and RAM to
be explicitly directed by the end-point using IBP, just as in
data movement between depots. The NFU extends the IBP
protocol and API by implementing a single additional
operation, NFU_op:

NFU_op(depot, port, operation,
cap_0,... cap_8)

The details of the current NFU API can be found in
the reference manual [12]. The asynchronous nature of the
pipelined API described in the technical report on our
experimental results [18] adds considerably to the
complexity of the actual API calls. The NFU_op is used to
invoke an operation at an IBP depot, specified by the IP
address and port it binds to. The operation is specified as
an integer argument, whose meaning is set by a global
registry of operation numbers. The arguments to an
operation consist of a list of capabilities (cryptographically
secure names) [15] for storage allocations on the same
depot where the operation is being performed. Thus, there
is no implicit network communication performed by a given
depot in responding to an NFU_op call. The capabilities
specified in this call can enable reading or writing, and the
limitations of each are reflected in the allowed use of the
underlying storage as input or output parameters. The
number and type of each capability are part of the signature
of the operation, specified at the time the operation number
is registered. Any violation of this type information (for
instance, passing a read capability for an output parameter)
may cause a runtime error, but it is not checked by the
implementation of NFU_op at the client side. Aliasing
between capabilities is also not detected, since in some
operations it is desirable and an interface that declares when
to allow it would add unnecessary complexity.

3. Our System

3.1 Fiber Segment Probabilities
As alluded to in the previous discussion, fiber tracking

methods need to address signal noise and partial volume
effects (PVE). Both may cause reconstructed fibers to
deviate from the underlying physical neuronal fiber. We
approach is based on obtaining an accurate estimate of the
probability of a given fiber segment connecting two voxels.
This probability is certainly a function of the local tensor,
but how should it be computed? We could directly use the
local tensor, which provides a pdf capable of answering the
question, but PVE still cause errors in deprolated regions.

In order to address this problem we developed a
framework based on conditional probabilities. The idea
behind conditional probabilities is that of updating an
estimate of the current probability based on past
information. More specifically, conditional probability
allows us to better calculate the probability of an event Di
occurring given the fact that another event Dk has occurred.
If we further consider the events Dk and Di as members of
an event space U of size n containing many events D, then
the conditional probability P(Di|Dk) for any Dk and Di in U
can be computed using Bayes Rule:

∑
=

= n

j
jkj

iki
ki

DDPDP

DDPDP
DDP

1
)()(

)()(
)(

(1)

The analogy to computing fiber segment probabilities
can be found by letting the event space U be all possible
directions of fiber propagation. The event Di is the fiber
following direction i, and thus the term P(Di| Dk) is the
probability of a fiber taking the outgoing direction i given
that it came from direction k. The term P(Di) is the
unconditional probability of a fiber following direction i
and can be taken directly from the pdf given by the local
tensor.

Figure 3. Two different tensors represented as ellipsoids (left)
and pdfs (right).

A convenient visualization of this probability profile

can be obtained by plotting probability as a function of the
two spherical angles θ and φ. This creates a surface
representing the probability as a function of direction, as
shown in Figure 3.

 6

The term P(Dk| Di) is the probability of a fiber
entering from direction k, given that it leaves in direction i.
Intuitively this term is related to the concept of bending
energy; that is, the energy needed to bend the fiber from k
to i. The selection of P(Dk|Di) can therefore be made based
on fiber modeling. If we assume fibers to be somewhat
stiff, then P(Dk|Di) will have a maximum probability along
the incoming direction (i.e. no bending) and decrease as the
angle widens. The profile of this fall-off will determine the
stiffness of the fibers. In practice we choose a smooth
profile like a Gaussian or elevated cosine, which allows us
to use a single parameter to vary the profile. The cosine-
shaped profile is favored due to the simplicity of its
computation (a single dot product).

Figure 4. Application of Bayes Rule to different types of tensors
using a cosine profile for P(Dk|Di). The input direction is the z-
axis (red line in leftmost column).

Once the selection of the profile of P(Dk|Di) has been

made then the conditional probabilities P(Di|Dk) can be
computed for each outgoing direction Di given an incoming
direction Dk. Figure 4 shows the resulting pdfs for the
three types of tensors (prolate, oblate, and spherical) using a
cosine profile for P(Dk|Di). Notice the ambiguity in the
case of oblate and spherical tensors is resolved.

With probability analysis, neuronal fiber
reconstruction is computed in the following steps. First, a
set of starting seeds are chosen by human experts, for
instance in the corpus callosum where consistently oriented
neuronal fibers are known to exist and PVE effects are low.
The initial direction to follow is the major eigenvector
direction. Using a given step size, such as 0.1 in voxel size,
the next sample point on each fiber is determined. Second,
on the new sample point, the local tensor direction is
interpolated. From our experiments, high quality
interpolation kernels are necessary. We use a 3D Gaussian
kernel of 2.0 radii, again measured in voxel sizes along the
three coordinate axes. The resulting tensor is then
discretized into a 2D absolution probability table (APT)
indexed by the two spherical angles θ and φ. The resolution
that we use is 40 by 40. Third, a second 40 by 40
conditional probability table (CPT) is created to model
bending energy using the profile of elevated cosine. In our
implementation, we compute this conditional probability
table by computing the dot product of the incoming

direction of fiber and the direction that each entry in the 40
by 40 table represents according to the corresponding
combination of θ and φ. Forth, a element-by-element
product of APT and CPT is computed, from which we
search for the maximum resulting probability. The
corresponding direction is the next direction to follow. This
procedure is repeated until either (i) the fiber abruptly
bends more than 90 degrees or (ii) the new sample point is
outside white matter. We discover the boundary of white
matter using an anisotropy index proposed by [26].

() 




 +++∑

=
−×= 22222

,,6

1
yzDxzDxyD

zyxi
DiiD

D
Aσ (1)

where () 3/zzyyxx DDDD ++= . σA is based on the
variance of the average diffusivity in all directions. , as in:

())2(DTA σσ = . ()Tσ is the standard deviation of the
diffusion coefficients measured by the MRI and then
encoded as the tensor matrix, T, which symmetric:

















zzyzxz

yzyyxy

xzxyxx

DDD
DDD
DDD

.

A 0.25 value of σA was found to best describe the
surface of the white matter (WM) via repeated experiments.
We then construct the WM volume by simulating particles
diffusing from corpus callosum within WM and stopping on
boundaries marked by 0.25 σA . In result, a volumetric
mask of WM can be obtained. In Figure 5, the left is a
photo of a real WM from a human subject. We were able to
obtain a volumetric WM volume with similar visual
appearance (Fig. 5 right) as the real photo.

Figure 5. Picture taken of actual WM in the brain (left).
Reconstructed WM using Aσ (right).

Figure 6. (left) 50,000 reconstructed nerve fibers and 200 bundles
among these 50,000 fibers (shown with a different color per bundle)

 7

Using our method of Bayesian fiber reconstruction,
very smooth nerve fibers can be obtained from DT-MRI
datasets. In Figure 6, we show one sample set of results.
From a 64x64x18 DT-MRI dataset, we have tracked 50,000
neuronal fibers (Figure 6 left) and also bundled them
according to geometric similarity (Figure 6 right).

To summarize our neuronal fiber visualization
algorithm, we provide a rather detailed pseudo code in
Figure 7. All operations we use are generic and can be
implemented by using conventional numeric libraries.

fiber_reconstruction (vector3 current_position,
 vector3 in_direction,
 float stepsize)
{
 matrix APT, CPT; // 40 by 40
 matrix tensor; // 3 by 3
 matrix3 dtmri; // 3D volume of DT-MRI
 matrix3 WM; // 3D volume of WM mask

 //40 by 40 matrix with each element being a.
 //vector. This stores the direction
 //corresponding to each combination of
 //spherical angles used in APT and CPT
 matrix directions;

 vector3 new_direction;
 vector3 new_position;
 int maximum_id;

 tensor = interpolate(dtmri, current_position);

 //check whether in white matter
 if !lookup(WM, current_position) return;

 APT = discretize(tensor);
 CPT = batch_dotproduct(directions,
 input_direction);

 APT = elementwise_ matrix_multiply(APT, CPT);
 maximum_id = maximum(APT);
 new_direction = convert(maximum_id);

 //check whether making a sharp turn
 if (dotproduct(in_direction,new_direction)<= 0)

return;

 //4th order runga cutta numeric integration
 new_position = runga_cutta4(current_position,
 new_direction, stepsize);

 store(new_position);
 fiber_reconstruction(new_position,

new_direction,
stepsize);

}

Figure 7: The pseudo code of Bayesian fiber reconstruction.

When the NFU library contains numeric libraries like

LAPACK and LINPACK [2], we can implement fiber
reconstruction in NFU with little efforts. All that is needed
is to implement NFU operations, such as interpolate,
discretize, anisotropy, dotproduct, batch_dotproduct,
elementwise matrix multiply, etc., with the numeric
libraries.

Currently due to lack of time, we haven’t completed
the full NFU operation library to implement fiber
reconstruction at such low level granularity, although we
expect to finish this work in a few weeks. Now, we created
a coarse level NFU operation called ‘fiber_reconstruction’
directly from our production visualization code. We do not
expect the obtained test results in performances to vary
between the coarse and fine level NFU operations.

3.2 Parallelization and Job Scheduling
In our system, we put seeds in the DT-MRI volume in

areas specified by users. In a typical run, a user could
position seeds in an area corresponding to the center of
corpus callosum, by moving a 3D bounding box in 3D
within the white matter surface that we have constructed.

Our system then automatically generates a user
controllable number of seeds, each corresponds to a
neuronal fiber. The entire set of seeds is then partitioned
into a linear list of job assignments containing equal
number of seeds. After a one-time data deployment stage
during which the DT-MRI dataset is replicated on
distributed processors, we start to assign jobs to processors
from the job list for parallel processing.

In neuronal fiber reconstruction, little inter-fiber
dependency exists. Therefore, parallelizing the algorithm
would seemingly be straightforward. However, due to the
arbitrary length of each individual fiber, the workload to
compute neuronal fibers varies between partitions. It is
difficult to predict the exact workload beforehand and
dynamic load balancing is indispensable. In addition, our
job-scheduling scheme must be fairly robust for a rather
open environment of distributed computing. Since our
targeted computation infrastructure is completely
distributed and has no mechanisms for reservation or
scheduling, we can make few assumptions in regard to
reliability or quality of service. A processor may be down
or busy. In addition, processors as well as the
corresponding network connections from the client will be
of differing speeds. Hence, in general we would like to
dynamically discover fast processors and assign as many
jobs to them as possible and at the same time avoid being
stalled by slow or faulty processors.

We devised three mechanisms for heterogeneous
parallel processing: (i) a priority queue of measured speed
of processors, (ii) a priority queue of unfinished jobs and
(iii) a buffered job assignment scheme.

The priority queue for processors is indexed by the
number of jobs that each processor has completed. This
measurement roughly reflects the performance of each
processor. The more jobs a processor has finished, the
higher priority this processor has. The second priority
queue, which maintains unfinished jobs, is indexed by the
number of processors currently working on each job. This
priority helps to rank unfinished jobs in “likelihood to
quickly finish”. The fewer processors are competing to
finish an unfinished job, the higher the priority. Initially, all

 8

processors are assigned equally the same priority, ‘0’.
During parallel computing, after a job is completed and
returned to the client, the corresponding processor’s priority
is incremented. At first, the priority of each job is ‘0”,
signifying that no processors are working on it.

Figure 8. A typical case of job assignment on 20 processors using
50 partitions. The domain name of each processor used is listed to
the left. The horizontal axis depicts the duration of the run in
seconds. Each number in the graph is an ID of a job partition. All
numbers with “*” behind it represent jobs that has never been
finished.

When parallel computing first starts, the scheduler
randomly assigns one job to each processor, incrementing
the corresponding priorities in both priority queues. When a
processor completes its job and returns the results, the
completed job is removed from job queue. Then, there are
three possible scenarios: (1) there are still unassigned jobs,
(2) there are still unfinished jobs and (3) all jobs are
finished. Case 3 signifies the completion of the entire
process. In Case 1, one would directly assign any one of the
unassigned jobs to the empty processor, since there are no
differences among those jobs. However, Case 2 would
require some special consideration. In theory, we would
like to always use our fastest processor for the unfinished
job that is least likely to finish quickly. If we always
immediately assign a new job to each processor that has just
become empty, it would be hard to implement this concept.
We opt to use a buffered job assignment scheme.
Specifically, after the initial round of job assignments, we
process any further job assignments every three seconds.
That is, we wait three seconds for processors to finish jobs.
In each three-second span, a few processors may get done.
Among them, we assign the highest priority unfinished job
to the processor that has become empty during the past
three seconds. We then assign the unfinished job with the

second highest priority to the second highest priority empty
processor. In this manner, we inherently address fault
tolerance in the same framework.

For the sake of resource control, we limit the
maximum number of processors that can work on the same
job simultaneously. In our test, this number is set to 4.

We illustrate a typical result of job scheduling in
Figure 8. Here we show the domain name of each machine
in the Planet Lab [1, 19] that we used via LoCI tools. The
shaded areas in the graph shows the duration of each
numbered job being computed on various processors. The
time as measured in seconds is recorded on the horizontal
axis. All job IDs’ with an “*” behind are jobs that were
never finished on each respective processor during the run.
In this test run on 20 processors with 50 partitions, we can
very easily notice highly varying performances in the
distributed wide area system. We chose this relatively small
run for ease of illustration.

4. Results
In this section, we present the results of our prototype

system for massively parallel and distributed visualization
of DT-MRI datasets. All testing was performed using NFU-
enabled IBP depots in PlanetLab [1, 19]. Up to 80
processors were used. The hardware configurations of these
processors vary. The hardware configuration ranges from
1.3GHz to 2.66 GHz Pentium 4 processors, with 300MB to
2GB RAM. For details of PlanetLab hardware
configuration, please refer to [1]. The DT-MRI testing
dataset is of a clinical resolution of 64x64x18 of 2.6 MB in
storage. The white matter data that is constructed requires
roughly 2.4 MB storage. In total, each processor needs
5MB of data to proceed. In all tests, we reconstruct a total
of 9368 fibers from a typical area of interest specified by
user in the center of corpus callosum.

0

200
400

600

800
1000

1200

1400
1600

1800

20 30 40 50 60 70 80

Number of Processors

To
ta

l T
im

e
(s

ec
on

ds
)

50 Partitions 60 Partitions 70 Partitions

80 Partitions 100 Partitions

Figure 9. The total running time for jobs using 50 to 100 partitions
run on 20 to 80 processors. Each data point in this graph
represents an average of 5 test runs.

In Figure 9, we plot the wall clock time for test runs
with combinations using 50 to 100 job partitions and using
10 to 80 processors. With each particular combination, 5
tests were run and only the average running time is shown.
Due to the large dynamic range of measured time, the

 9

difference among curves needs to be closely examined. The
overall speedup effects are very obvious no matter how
many partitions are used. In general, we need a sufficient
number of partitions (usually as many as the number of
processors being used) to obtain good load balancing, but
increasing the number of partitions much beyond that
would not further lead to significant improvements in
performance. For instance, we would expect to use 200
partitions, had there been more than 150 processors for us
to use for good load balancing.

50 Partitions

1

10

100

1000

10000

2 5 10 20 30 40 50 60 70 80

Number of Processors

lo
g(

To
ta

l R
un

ni
ng

 T
im

e)
, T

im
e

is

m
ea

su
re

d
in

 s
ec

on
ds

.

Check Depot Deploy Data Run NFU

Figure 10. The total running time (shown in logarithm scale) for a
job to complete with 50 partitions using 2 to 80 processors,
respectively. In the total running time, three operations are
included: “run NFU”, “Deploy Data” and “Check Depot”.

We further analyze the overheads in NFU calls in
Figure 10, which illustrates the total running time (in
logarithm scale to show differences in orders of
magnitudes) for a job to complete with 50 partitions using 2
to 80 processors, respectively. In the total running time,
three operations are included: “run NFU”, “Deploy Data”
and “Check Depot”. The latter two operations are both
executed only at the beginning of the parallel run, while
“run NFU” is the fiber reconstruction function that is
repeatedly invoked. When more processors are used than
the total number of partitions, in a way we use several
processors to compute a common partition and compete for
speed. From Figure 10 we can see that “Check Depot” runs
in a small constant time and “Deploy Data” requires time
that increases with the number of processors. Our current
implementation of “Deploy Data” uses a straightforward
unicast approach. The effects on our overall results are
minimal, however, because the “run NFU” operations
consume at least an order of magnitude more time than
either of the other two services.

To better analyze the full overhead caused by using
load-balancing issues we show results in Figure 11 and 12.
We measure a total processor time as the total running time
of the parallel run times the number of processors used.
Figure 11 shows a roughly linear increase in total processor
time (P) versus the total number of processors (n). That is
we can model P with the following formula: TnaP +×= ,

where T corresponds to the total work of the run
independent of the number of processors used and a is a
measure of parallel processor inefficiency. A linear
regression analysis estimates T to be 16,817 seconds and a
as 180.5 seconds. Most of such overhead is due to
inefficiency caused by load imbalance. To this end, a
system with perfect linear speedup and zero inefficiency
would produce a horizontal line in Figure 11.

However, this is not the most interesting way to
examine the result in Figure 11. TnaP +×= can be
rewritten as n/Tan/PD +== , where D is simply the
total running time or duration. After a certain point, such as
60 processors, the speedup or parallel utilization one
obtains in parallel becomes less significant as shown in
Figure 12.

Total Processor Time (50 Partitions)

y = 180.5x + 16817

0
5000

10000
15000
20000
25000
30000
35000
40000

10 20 30 40 50 60 70 80

Number of processors

To
ta

l P
ro

ce
ss

or
 T

im
e

(s
ec

)

actual time Linear (actual time)

Figure 11. (Curve) The total processor time vs. the number of
processors used, from 10 to 80. Here, 50 partitions are used. The
vertical axis is the result of multiplying the total running time for
the run and the number of processors used. (Straight line) The
result of a linear regression analysis on the curve obtained.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10 20 30 40 50 60 70 80

Number of Processors

Pa
ra

lle
l U

til
iz

at
io

n

Figure 12. Parallel Utilization measured up to 80 processors using
50 partitions in this particular run.

Parallel processor utilization is a common metric used
to measure the efficiency of the parallel algorithm. To
compute parallel utilization, the total running time using
one processor is often used as the reference, R. The parallel
utilization with x processors, whose total running time is P,

 10

is computed as: x
P/R . However, when heterogeneous

processors are used, a different reference is necessary. To
choose any single processor as the benchmark would be
misleading. In our experiments, we use an ensemble of 10
processors as the benchmark and compute parallel
utilization using 10/x

P/R . In this case R is the total

running time using 10 processors. The resulting curve is
shown in Figure 12. It is obvious that around 80% parallel
utilization can be obtained with as many as 60 processors.
Any additional processors beyond 60 may still help to
obtain better absolute performance via competition;
however, the scalability already starts to drop. In fact, this
result should be expected since parallel processors won’t be
kept busy unless there are sufficient job partitions to go
around.

5. Issues in Scalable Computing
The NFU can be thought of as a primitive mechanism for
invoking remote processing, and in that sense it is similar to
distributed computing mechanisms such as Network
Enabled Servers used in the Grid Computing environments
[3, 16, 17, 25, 27], or EveryWare [23]. However, a primary
design goal of the NFU is to define a common service that
is as scalable as possible, so that the limits of scalability are
determined by the particular functions defined, not by the
service framework itself. To that end, the NFU requires an
administrative interface to install procedure calls (referred
to as an installation interface) different from the interface to
invoke a procedure call (referred to as an invocation
interface). This is due to the fact that installing code is a
heavyweight operation requiring a level of trust between
client and depot that imposes scalability constraints.
Currently, adding an NFU operation to a depot through the
installation interface is a manual administrative procedure
that involves installing an operation executable image in a
depot directory or re-linking of the depot process with an
operation library. By separating the installation and
invocation interfaces, we make the invocation interface
lightweight and achieve maximum scalability.

Besides separating interfaces, in order to achieve
maximum scalability there are three additional aspects of
scalability to address. First, an NFU operation must place
limits on the size of the allocations that it operates on and
the amount of processor resources that it can use. For
instance, if an operation is defined to operate on allocations
that are larger than 4GB in size, it may not be efficiently
implemented on a depot running a 32-bit operating system.
Second, an operation cannot run for a very long time. Each
call represents a large allocation of processor resources, and
so it makes it more difficult for a depot to fairly serve a
large community of users, maintaining a minimum level of
service to each.
The third aspect of scalability stems from the notion that the
functions implemented on a depot must be generic, which

is less intuitive outside of the networking community. The
widespread deployment of an operation that supports a
specific application requires a large community of depot
owners to make an administrative decision to deploy that
operation on their depot, which they may be loathe to do if
it does not serve a sufficiently large segment of the user
community that share the depot. Each installation of an
additional NFU operation takes some resources on the
depot, whether the operation is invoked or not, potentially
diminishes the locality of caches and memory management
on the network node, and adds to the complexity of depot
management if updates to the operation implementation are
issued. After all, each operation added to the depot
increases the number of trusted parties. Due to design or
programming errors or malicious actions, there would be
more chances for the depot to misbehave or be
compromised. For these reasons, scalability is improved by
constructing a minimally necessary set of NFU operations
comprised of generic functions that are basic and thus more
likely to be reliable. This argues for the NFU operations to
be very primitive at the level of ALU and FPU operations,
and for the IBP protocol to be used for composing large
numbers of such fine-grained operations. The arguments
against this approach are those of complexity at the
endpoints and performance.

The idea that maximal scalability is achieved by the
minimization of trust between client and depot brings up
the issue of whether an depot can be used in the
implementation of processing as part of a reliable server by
endpoints that do not trust it at all. If such a service were
highly scalable but could not be used to create a reliable
service, then it might be useless. In that case, we might
need to accept some requirements of trust, and lower our
expectations of scalability.

5.1 Generality Mapping Fiber
Reconstruction of NFU

The NFU operation that we used in our experiments is
called fiber_reconstruction, and it is quite specific
to the DT-MRI application. According to our analysis, this
specificity will have a negative impact on the scalability of
its deployment in a public network, so we are interested in
expressing it in terms of more primitive, generic operations.

If the NFU library contains numeric libraries like
LAPACK [2] and LINPACK, we can implement fiber
reconstruction by invoking the more generic operations in
these libraries, and composing these operations using the
IBP protocol, to correspond to the pseudo code given in
Figure 7. The operations required include interpolation,
discretization, anisotropy, dotproduct, and matrix multiply.

Due to lack of time, we haven’t completed the full
NFU operation library required to implement fiber
reconstruction at such low level granularity, although we
expect to finish this work and present performance results
in the full version of the paper. Because of the fact that the
code is straight line, there are no complex control

 11

dependences that must be resolved by the client, as can be
seen by inspection of the pseudo code given in Figure 7.
The IBP protocol is also evolving to allow some control
dependences to be resolved without requiring the
intervention of the client [11].

5.2 Data Distribution
One of the limitations of scalability that can be seen in

our experimental results is due to the need to distribute the
entire MRI dataset to every node participating in the fiber
tracing computation. While the size of the dataset, 6 MB, is
not large enough to inhibit its implementation on any
depots that currently comprise of the L-Bone, the need to
move the data to every depot in order to process it strains
the data movement capabilities of the network that connects
them.

Part of the problem is simply the implementation
strategy. The current implementation uses a simple iterated
unicast strategy to distribute the data, which results in the
saturation of the networking capacity of the client or its
connection to the backbone, and requires time that increases
linearly with the number of target depot. A more scalable
approach is to use some form of hierarchical distribution or
overlay multicast [8], which can operate in time logarithmic
in the number of target depots, or even faster if the
multicast tree is built to conform to the topology of the
network.

We have implemented a hierarchical distribution
scheme, although it does not conform to the topology of the
network. Early results, illustrated in figure Y, show greatly
reduced data distribution times. Due to a lack of time, we
have not been able to rerun all of our experiments using this
new data distribution mechanism, but will do so for the
final version of the paper.

As the number of processors used is scaled beyond
100, it becomes necessary to use some nodes that are not
well connected to the international research backbone
networks, and for which a transfer of even 6 MB from the
University of Tennessee might represent an impediment to
contributing to a computation that may last for less than a
minute. For this reason, it may be valuable to express the
computation as a composition of operations on a partition
of an MRI, requiring an additional step for these partitions
to be merged. The result would be more scalable in its
ability to be used to take advantage of depots that are
constrained in bandwidth, processor and even storage
resources.

5.3 Security
Distributed computing using untrusted depots is a

harder problem that moving data across or storing data on
untrusted depots because of the need to process the data
while it resides on depots. In the case of data movement
and storage, end-to-end data encryption can be used to
make data inaccessible to intruders who might tap wires or
even to malicious depot operators [24]. In the case of

processing, even data that is transferred to the depot in
encrypted form is typically decrypted before processing
takes place, making the computation vulnerable to being
compromised at the depot.

There are several approaches to this problem, which is
particularly acute when dealing with medical data. Part of
the solution may lie in approaches to obscuring the data by
dividing it and distributing it, so that a private dataset
cannot be recovered from the public network without
monitoring a large amount of traffic or many
geographically distributed networks. Another approach is
to obscure the data without using strong encryption, for
instance by intermixing it with dummy data, or by
overlaying it with known, random patterns that have a
known effect on the results that can be factored back out
after the computation has been completed. It may even be
possible to compute on strongly encrypted data in some
cases.

5.4 Correctness
In addition to problems of security, the use of

untrusted depots presents a problem of verifying
correctness of the processing performed at those depots [9].
In the case of data movement and storage, redundancy in
the form of end-to-end checksums is used to detect errors
probabilistically. In the case of computation, redundancy
can be introduced in a number of ways, including
performing computations multiple times on independent
depots or at the client and comparing results. In some
cases, the client can verify a computation more efficiently
by using the results than by recomputing from the inputs. It
is possible to enhance the efficiency of verification in some
cases by modifying NFU operations to return more of the
details of their computations. Working in a mode where the
results of remote computations are untrusted and checked
requires a thorough rethinking of the assumptions that
pervade much of software engineering concerning the
degree to which checks of correctness should be
implemented at runtime, which may have application even
in cases where calls are performed in local or trusted
environments, but errors in logic may exist.

6. Conclusions and Future Work
In this paper we have presented an algorithm to

visualize DT-MRI datasets by Bayesian fiber
reconstruction. We address effects of signal noise and PVE
by studying the conditional probabilities using Bayes rule
and treating each tensor matrix as a true pdf. Possible
directions of further research on DT-MRI visualization
include acceleration algorithms, integrated visualization of
even more imaging modalities and animal experiments to
verify our results.

We have built a practically useful system for routine
radiological experimentation which can make use of
available computational resources without authentication or
reservation. This system is built on a scalable infrastructure

 12

which adopts a unique architectural approach that promises
to scale beyond the boundaries of conventional
computational facilities. We have undertaken a research
program that addresses many of the hard technical problems
posed by this architecture, as described in Section 5, as well
as other work not presented here which address the goals of
efficiency and high performance in the operation of
individual nodes [18].

7. References
1. http://www.planet-lab.org/.
2. Anderson, E., et al., LAPACK Users' Guide. Third ed. 1999,

Philadelphia, PA: Society for Industrial and Applied
Mathematics (SIAM).

3. Arnold, D., H. Casanova, and J. Dongarra, Innovations of the
NetSolve Grid Computing System. Concurrency: Practice and
Experience, 2002. 14(13-15): p. 1457-1479.

4. Basser, P.J., J. Mattiello, and D. Le Bihan, MR diffusion tensor
spectroscopy and imaging. Biophysics Journal, 1994. 66: p.
259-267.

5. Basser, P.J., et al., In vivo fiber tractography using DT-MRI
Data. Magn Reson Med, 2000. 44(625-632).

6. Bassi, A., et al. The Internet Backplane Protocol: A Study in
Resource Sharing. in IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2002). 2002 (to
appear). Berlin, Germany: IEEE.

7. Bassi, A., et al., The Logistical Backbone: Scalable
Infrastructure for Global Data Grids, in Asian Computing
Science Conference 2002. 2002, Springer Verlag: Hanoi,
Vietnam.

8. Beck, M., et al. An Exposed Approach to Reliable Multicast in
Heterogeneous Logistical Networks. in Workshop on Grids
and Advanced Networks (GAN03). 2003. Tokyo, Japan.

9. Beck, M., et al. Scalable, Trustworthy Network Computing
Using Untrusted Intermediaries: A Position Paper. in
DOE/NSF Workshop on New Directions in Cyber-Security in
Large-Scale Networks: Deployment Obstacles. 2003.
Lansdowne, Virginia, March, 2003.

10. Beck, M., T. Moore, and J.S. Plank. An End-to-end Approach
to Globally Scalable Network Storage. in ACM Sigcomm
2002. 2002. Pittsburgh, PA: Association of Computing
Machinery.

11. Beck, M., T. Moore, and J.S. Plank. An End-to-End Approach
to Globally Scalable Programmable Networking. in Future
Directions in Network Architecture (FDNA-03), an ACM
SIGCOMM 2003 Workshop. 2003. Karlsruhe, DE: ACM.

12. Beck, M., et al., Internet Backplane Protocol API 1.4. 2004 (In
preparation), Department of Computer Science, University of
Tennessee: Knoxville, TN.

13. Bjornemo, M., et al., Regularized Stochastic White Matter
Tractography Using Diffusion Tensor MRI. 2002.

14. Delmarcelle, T. and L. Hesselink, Visualizing second-order
tensor fields with hyper streamlines. IEEE Computer
Graphicsand Applications, 1993: p. 25-33.

15. Dennis, J. and E.V. Horn, Programming semantics for
multiprogrammed computations. Communications of the
ACM, 1966. 9(3): p. 143-155.

16. Epema, D.H.J., et al., A worldwide flock of condors : Load
sharing among workstation clusters. Journal on Future
Generations of Computer Systems, 1996. 12.

17. Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a
New Computing Infrastructure. 1999, Morgan Kaufman
Publishers. 677.

18. Liu, H., Experiments in Pipelining the Internet Backplane
Protocol. 2004 (In preparation), Departhment of Computer
Science, University of Tennessee: Knoxville, TN.

19. Peterson, L., et al., A Blueprint for Introducing Disruptive
Technology into the Internet, in Proceedings of ACM HotNets-
I Workshop. 2002: Princeton, New Jersey, USA.

20. Plank, J.S., et al., Managing Data Storage in the Network.
IEEE Internet Computing, 2001. 5(5): p. 50-58.

21. Poupon, C., et al., Regularization of diffusion-based direction
maps for the tracking of brain white matter fascicles.
NeuroImage, 2000. 12: p. 184-195.

22. Reed, D.P., J.H. Saltzer, and D.D. Clark, Comment on Active
Networking and End-to-End Arguments. IEEE Network, 1998.
12(3): p. 69-71.

23. Rich Wolski, et al., Writing Programs that Run EveryWare on
the Computational Grid. IEEE Transactions on Parallel and
Distributed Systems, 2001. 12(10).

24. Sarmenta, L.F.G., Sabotage-tolerance mechanisms for
volunteer computing systems. Future Generation Computer
Systems, 2002. 18(4): p. 561-572.

25. Sekiguchi, S., et al. Ninf : Network based Information Library
for Globally High Performance Computing. in Proc. of
Parallel Object-Oriented Methods and Applications
(POOMA). 1996. Santa Fe, NM.

26. Shimony, J., et al., Quantitative Diffusion-Tensor Anisotropy
Brain MR Imaging: Normative Human Data and Anatomic
Analysis. Radiology, 1999. 212: p. 770-784.

27. Siegel, J., Corba 3 Fundamentals and Programming. 2nd ed.
2000: John Wiley & Sons. 928.

28. Weinstein, D., G. Kindlmann, and E. Lundberg. Tensorlines:
Advection-Diffusion based Propagation through Diffusion
Tensor Fields. in Proc. of IEEE Visualization Conference.
1999. San Francisco, CA.

29. Weng, J.-C., et al. A Global Approach for Non-invasive
Axonal Fiber Tracking on Diffusion Tensor Magnetic
Resonance Image. in Proc ISMRM Annual Meeting. 2002.
Hawaii.

30. Zhukov, L. and A. Barr. Oriented Tensor Reconstruction:
Tracing Neural Pathways from Diffusion Tensor MRI. in
Proceedings IEEE Visualization. 2002. Boston, MA.

