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Abstract 
Successful visualization of neuronal connectivity in 

Diffusion Tensor MRI is a necessary tool for neuroscience 
research. Here, we describe a method that visualizes 
neuronal fibers by leveraging Bayes rule. Like many other 
DT-MRI visualization algorithms, significant computing 
resources are necessary for our software tool to be useful 
for routine medical research.  

Since most medical research institutions do not have 
in house large-scale parallel computers, it would be 
beneficial to leverage the computing resources available in 
the Grid. Using Logistical Computing and Internetworking 
(LoCI) tools, we built a prototype distributed visualization 
system that: (i) is easy to use, (ii) does not require 
scheduling, reservation or authorization and (iii) has 
sufficient performance to complete a job in a reasonable 
amount of time. With a fault-tolerant method of parallel job 
scheduling, we have consistently obtained close to 80% 
parallel utilization using up to 60 heterogeneous processors 
distributed across US and Canada. 
 
Keywords: DT-MRI, fiber tracking, conditional probability and 
Bayes rule, distributed computing, dynamic job scheduling. 

1. Introduction 
Understanding the structure and function of the 

human brain has long been a fundamental goal of 
neuroscience research.  Recent advances in medical 
imaging, in particular, diffusion tensor MRI (DT-MRI) [4] 
has emerged as potentially powerful tools for the 
exploration of brain structure by providing clues regarding 
neuronal connectivity between functionally related cortical 
regions. Although still on a coarse resolution, DT-MRI is 
considered revolutionary in that such neuronal orientation 
information cannot be detected in other imaging modalities. 

Discovery of neuronal patterns within the brain by 
fiber tracking in DT-MRI datasets has been widely studied 
in the field by many researchers. The resulting visualization 
would sometimes contain neuronal fibers amounting to tens 
of thousands to accurately describe the intricate brain 
structures. To address problems caused by signal noise and 
partial volume effects (PVE), sophisticated procedures 
beyond the conventional streamline reconstruction are 
necessary. In this paper, we describe a scheme of fiber 
reconstruction leveraging Bayes rule on conditional 
probability, for which continuous space probability 

distribution functions (pdf) must be discretized and 
evaluated at high angular resolutions. A number of 
pioneering DT-MRI visualization approaches rely on 
reducing a diffusion tensor field to a vector field of major 
eigenvectors. Doing so could cause significant error during 
fiber tracking in brain areas where the major eigenvector is 
not unique, that is in areas where the tensor is deprolated 
(i.e. the ellipsoid represented by the tensor matrix is not 
prolate, or “cigar-shaped”, but oblate, “disc-shaped” or 
spherical). PVE stems from imaging resolutions insufficient 
to capture regions where nerve fibers branch or cross. 
Traditional streamline tracking algorithms could be misled 
by such areas in a way that results in significant deviations 
in the constructed neuronal fibers. Our visualization 
algorithm addresses signal noise and PVE by treating local 
diffusion tensors as true probability distribution functions 
(pdf) and dynamically follow the underlying track guided 
by varying local conditional probability. As a result, like 
many other alternative DT-MRI visualization methods, 
much computational resource is required.  

However, most medical research institutions do not 
maintain high performance parallel computers in house. It 
carries much potential impact to provide large-scale 
visualization capabilities in a scalable manner that 
leverages the great amount of free resources that exist in the 
Grid. In addition, their research also demands a high level 
of interactivity in three respects: it needs to be (i) easy of 
use, (ii) available on demand without reservation or 
scheduling and (iii) it needs to deliver results quickly. 
These requirements motivate a need for a scalable 
distributed computing framework. While several large-scale 
computing alternatives exist, the infrastructure provided by 
Logistical Computing and Internetworking, enables our 
system to be easily deployed on the world’s academic 
research networks. Internet. With this deployment and 
using a dynamic and fault tolerant method of job 
scheduling, we have consistently obtained close to linear 
speedups using more than 60 heterogeneous processors on 
NFU-enabled nodes spread across the North American 
continent [19], without authorization, reservation or 
scheduling any of those processors. Medical researchers at 
Vanderbilt Medical School currently use our system for 
their daily research. 

The remainder of the paper describes our approach 
and the results we achieved. In section 2, we first describe 
the background of DT-MRI visualization by fiber tracking 
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and the Logistical Networking technology we use. In 
Sections 3, we present the details of our visualization 
algorithm and the NFU enabled distributed computing 
infrastructure, respectively. A description of our 
preliminary results and the relevant issues on scalability are 
in Sections 4 and 5 respectively. We then conclude in 
Section 6. 

2. Background 

2.1 DT-MRI Visualization 
Water molecules undergo random motion commonly 

referred to as diffusion, which can be described by a 
symmetric rank-2 tensor matrix of size 33× .  A common 
geometric representation of this matrix is an ellipsoid, 
where the surface of the ellipsoid marks the probability of 
diffusion in every direction for a given point in space. The 
size, shape and orientation of the ellipsoid give a complete 
description of the tensor.  The tensor ellipsoid may take on 
the shape of a sphere, a disc or spindle, depending on the 
relative magnitude of the tensor eigenvalues. DT-MRI 
measures the direction-dependency motion of water 
molecules [4], producing a set of coefficients which are 
then used to calculate a diffusion tensor. As the direction-
dependency of water diffusion is closely related to 
structural anisotropy of the media, DT-MRI can be used to 
probe structural features of living tissue.  Although still on 
a coarse spatial scale, DT-MRI is deemed to be 
revolutionary in that the structural information it provides is 
invisible to other imaging modalities. 

To track linear structural features (e.g. neuronal 
fibers) in a tensor field, many methods replace each tensor 
matrix with the major eigenvector. This reduction converts 
the tensor field to a vector field in which neuronal fibers are 
constructed as hyper-streamlines or simply streamlines [5, 
14, 21]. To address the unavoidable signal noises, these 
methods employ filtering or regularization [30], which may 
unfortunately smooth out local details during the process. 
Poupon et. al [21] regularized the diffusion field by 
estimating the true tensor matrix on each voxel. They 
accomplished this by evaluating the conditional probability 
in the local neighborhood. A heuristic rule-based streamline 
tracing is then used to trace fibers in the regularized dataset. 
To address the issue of PVE, tensorlines were developed 
based on advection-diffusion of particles [28]. In this 
method, each particle not only tracks local orientation but 
also considers orientations in its neighborhood and tracing 
history. While effective in handling isotropic areas by 
averaging of optional directions to follow, the tensorline 
approach requires proper weights to be supplied. An 
evident drawback is that tracking results could be heavily 
dependent on the values of the weighting parameters. It is 
not clear what weight values represent “real” fibers. 
Recently, also by reducing tensors to major eigenvectors, a 
method is proposed to first segment regions of the most 
consistent distribution of major eigenvectors with Hough 

Transform [29]. In the segmented regions, a fiber can be 
traced from a user-chosen seed and optimized with a cost 
function penalizing change of fiber directions. This method 
addresses some aspects of signal noise but not problems 
caused by PVE. 

As the tensor matrix really represents a probability 
distribution function (pdf), another class of methods 
incorporates this idea in tracking. For instance, in [13] 
tensor matrices are regarded as a pdf which is modulated by 
Bayes rule on conditional probability. Tracing a fiber from 
a given seed is equivalent to finding a path through the 3D 
volume that attains a maximal likelihood, which requires a 
3D integration process. Such integration is difficult to 
compute analytically. A Monte Carlo method is then 
developed for this purpose. As a more efficient alternative, 
Poupon et. al [21] approximate the global optimization 
process with a regularization stage that estimates the true 
tensor matrix free from noise on each voxel. Their 
regularization also draws upon conditional probability. 
After regularization, the conventional numerical integration 
is then used to trace fibers in the dataset. Besides these 
known techniques, there are other ways to leverage the idea 
of conditional probability for neuronal fiber visualization, 
such as our method in this paper. 

2.2 Logistical Computing and 
Internetworking (LoCI) 

The computational demands of the DT-MRI 
visualization by fiber tracking imposes a delay of up to 
eight hours in reconstructing 10,000 fibers from a 
64x64x18 DT-MRI scan when implemented sequentially on 
a single Pentium 4 processor of 2.4 GHz.  The need for 
faster response times in clinical settings, together with a 
desire to offload such computation intensive jobs from 
personal computing resources suggests the use of a local 
parallel computing platform, such as a departmental Linux 
cluster or shared memory processor, or the use of a remote 
computing center via Grid middleware.   

Parallel implementations of DT-MRI over MPI have 
been tried and very good performance results have been 
obtained.  However, the availability of locally owned 
solutions is limited by parallel processing resources, which 
may be in high demand, and so may be unavailable when 
needed.  In fact, many medical institutions do not maintain 
such computing facility on campus for both technical and 
policy reasons. At the same time, the usability of some Grid 
solutions has been found to be limited by the need to 
integrate the application and the user into a global Grid 
middleware framework, and to support that middleware 
framework on the client systems [17].  While such 
approaches are technically feasible, in our experience they 
have not provided either the flexibility of use or scalability 
of deployment that was desired for this application 
environment. Experience with such systems by author 
Ding, a radiologist, has shown that analysis and 
visualization algorithms have parameters that are tricky to 
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set correctly in general. In addition, there are often several 
alternative algorithms, such as smoothing, registration and 
segmentation that may apply well to a particular group of 
datasets. It would be ideal to be able to spontaneously 
refine, start or cancel test runs. Therefore, radiologists 
would desire a computing service that (i) is easy to use, (ii) 
does not require restrictive scheduling, reservation or 
authorization and (iii) have sufficient performance.  

We built a prototype massively parallel and 
distributed system to visualize neuronal fibers with these 
goals in mind. Our system leverages Logistical Computing 
and Internetworking (LoCI), which takes an approach to the 
sharing of storage and processing resources that is modeled 
on the Internet approach to the sharing of network 
resources.  The strategy enables the free sharing of such 
resources within a community of users, employing a service 
model that is well adapted to multiplexing resources among 
competing applications for the sake of scalability, and yet is 
highly generic, in order to support the greatest flexibility in 
its use.  Like the Internet, the resulting system is not 
tailored in advance to provide the very highest levels of 
performance for any single application, and it places on the 
endpoint the burden of managing and utilizing primitive, 
generic network services. But, for these same reasons, it is 
highly scalable and deployable, and these attributes are 
required in many data intensive medical and scientific 
applications, such as the kind of diagnostic visualization we 
are studying here.  
2.2.1 Logistical Networking 

To achieve the kind of global deployment scalability 
some high-end applications require for data management, 
Logistical Networking (LN) uses a highly generic, best 
effort storage service, called the Internet Backplane 
Protocol (IBP), the design of which is shaped by analogy 
with the design of IP in order to produce a common storage 
service with similar characteristics. Though it has been 
implemented as an overlay on TCP/IP (Figure 1), it 
represents the foundational layer of the ”network storage 
stack” [6, 20]. Just as IP datagram service is a more abstract 
service based on link-layer packet delivery, so IBP is a 
more abstract service based on blocks of data (on disk, 
memory, tape or other media) that are managed as “byte 
arrays.” By masking the details of the local disk storage — 
fixed block size, different failure modes, local addressing 
schemes — this byte array abstraction allows a uniform IBP 
model to be applied to storage resources generally. The use 
of IP networking to access IBP storage resources creates a 
globally accessible storage service. 

As the case of IP shows, however, in order to scale 
globally the service guarantees that IBP offers must be 
weakened, i.e. it must present a “best effort” storage 
service. First and foremost, this means that, by default, IBP 
storage allocations are time limited. When the lease on an 
IBP allocation expires, the storage resource can be reused 
and all data structures associated with it can be deleted.  

Additionally an IBP allocation can be refused by a storage 
resource in response to over-allocation, much as routers can 
drop packets; such “admission decisions” can be based on 
both size and duration.  Forcing time limits puts transience 
into storage allocation, giving it some of the fluidity of 
datagram delivery.  More importantly, it makes network 
storage far more sharable, and therefore easier to scale up.  

The semantics of IBP storage allocation also assume 
that an IBP storage resource can be transiently unavailable. 
Since the user of remote storage resources depends on so 
many uncontrolled, remote variables, it may be necessary to 
assume that storage can be permanently lost.  In all cases 
such weak semantics mean that the level of service must be 
characterized statistically.  

IBP storage resources are managed by “storage 
intermediate nodes”, or “depots,” which are servers on 
which clients perform remote storage operations.  IBP 
client calls fall into three different groups [20]: 
IBP_allocate and IBP_manage for storage 
management; IBP_store, IBP_load, IBP_copy, and 
IBP_mcopy for data transfer; and IBP_status, for 
depot management.  The IBP_allocate function is the 
most important operation. It is used to allocate a byte array 
at an IBP depot, specifying the size, duration and other 
attributes. A chief design feature is the use of capabilities 
(cryptographically secure passwords) [15]. A successful 
IBP_allocate call returns a set of three capabilities for 
the allocated byte array — one for reading, one for writing, 
and one for management — that may be passed from client 
to client, requiring no registration from or notification to the 
depot. 

Basic middleware tools for using this network storage 
infrastructure have already been developed and are freely 
available (http://loci.cs.utk.edu). The Logistical Runtime 
System (LoRS) consists of 
a set of tools and 
associated APIs that 
allows users to draw on a 
pool of depots in order to 
enable the implementation 
of files and other storage 
abstractions with a wide 
range of characteristics, 
such as large size 
(through fragmentation), 
fast access (through 
caching), and reliability 
(through replication).  
LoRS tools also implement some transport layer services 
such as checksums, encryption, compression, and erasure 
codes, all of which is implemented at the end-points. The 
Logistical Backbone (L-Bone) is the LN resource discovery 
service [7]; it maintains information about IBP depots such 
as hostname, port, storage availability, proximity between 
depots, etc. Users can also query the L-Bone to determine 

Figure 1. Overlay 
implementation of the network 
storage stack. 
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proximity between depots and the user to improve upload 
or download performance.  This middleware can be used in 
an open, wide area testbed of IBP depots (currently over 
33TB), which today encompasses more than 300 public 
nodes in 21 countries. This deployment of LN technology 
provides a rich platform for experimentation with the new 
approach to scalable network computation described here. 
2.2.2 The Network Functional Unit (NFU) 

To add processing power to the storage intermediate 
nodes in a logistical network while retaining deployment 
scalability, the LoCI approach must supply an abstraction 
of processing resources local to the depot (i.e. time-sliced 
operating system execution services) that satisfies the twin 
goals of providing a generic but sharable computing 
service, while at the same time leaving that service as 
exposed as possible to serve the broadest range of purposes 
of application developers [22].  Following the familiar 
pattern of other network stacks, all higher layer functions 
would then be built up on top of these primitive services. 
We call our new abstraction of the depot’s local processing 
resources the Network Functional Unit (NFU) [11], and 
implement it as an orthogonal extension to the functionality 
of IBP. 

In order to achieve its design goals, the abstraction 
embodied in the NFU must mask enough of the 
particularities of the local layer processing resources,  (e.g. 
fixed time slice, differing failure modes, local architecture 
and operating system) to enable lightweight allocations of 
those resources to be made by any participant in the 
network. As in the case of IBP storage [10], the strategy for 
implementing this requirement is to mirror the IP paradigm. 
Just as IP is a more abstract service based on link-layer 
datagram delivery, IBP’s Network Functional Unit is a 
more abstract service based on computational fragments 
(e.g. OS time slices) that are managed as "operations." The 
independence of NFU operations from the attributes of the 
particular local layer is established by working through the 
same features of resource aggregation, fault detection, and 
global addressing.  Table 1 displays the results for the NFU 
side by side with IBP. 

The name “Network Functional Unit” was chosen to 
fit the pattern established by other components of the LN 
infrastructure, which expresses an underlying vision of the 
network as a computing platform with exposed resources 
that are externally scheduled by endpoints.  The archetype 
here is a more conventional computing network: the system 
bus of a single computer (historically implemented as a 
backplane bus), which provides a uniform fabric for storing 
and moving data.  This was the analysis that was invoked in 
the naming of the fundamental protocol for data transfer 
and storage the “Internet Backplane Protocol.”  In 
extending that analogy to include computation, we looked 
for that component of a computer that has no part in data 
transfer or storage, serving only to transform data placed 
within its reach.  The Arithmetic Logic Unit (ALU) seemed 

a good model, with its input and output latches serving as 
its only interfaces to the larger system.  For this reason, we 
have named the component of an IBP depot that transforms 
data stored at that depot the Network Functional Unit. 

 IBP (Storage) NFU (Processing) 

Resource 
Aggregation 

Aggregation 
of access layer 
blocks masks the 
fixed block size 

Aggregation 
of execution layer 
time slices masks 
the fixed slice size 

Fault  
Detection 

Fault 
detection with a 
simple failure 
model (faulty byte 
arrays are 
discarded) masks 
the variety of 
different failure 
modes 

Fault 
detection with a 
simple failure 
model (faulty 
operations 
terminate with 
unknown state for 
write-accessible 
storage) masks the 
variety of different 
failure modes 

Global  
Addressing 

A uniform 
capability name 
space masks the 
difference between 
local layer storage 
addressing 
schemes. 

A uniform 
operation 
namespace, masks 
the difference 
between local layer 
processing 
resources 

Table 1. A comparison between IBP and NFU. 
 

However, since NFU service, like the IBP core 
storage service, is implemented as an overlay on top of 
TCP/IP, this gives rise to a serious problem. The chronic 
vulnerability of IP networks and LN to Denial of Service 
(DoS) attacks, on bandwidth and storage resources 
respectively, will apply equally to the NFU’s computational 
resources. Another problem is that the classic definition of a 
time slice processing service is based on execution on a 
local processor, so it includes strong semantics that are 
difficult to implement scalably in the wide area network. 

Following that line of analysis, and the model of IBP, 
we address both of these issues by weakening the semantics 
of compute resource allocation in the NFU. Most 
importantly, NFU allocations are time limited, and the time 
limits established by local depot policy makes the compute 
allocations that occur on them transient. But all the 
semantics of NFU operations are weaker in ways that 
model computation accessed over the network. In all cases 
the weak semantics mean that the level of service must be 
characterized statistically. 

As illustrated in Figure 2, we can identify a logical 
progression of functionality in intermediate nodes: the 
router forwards datagrams, exercising control over 
movement in the spatial dimension by choosing between 
output buffers.  The depot adds control over movement in 
the temporal dimension by enabling the storage of data in 
an IBP allocation as it passes through.  Finally, the NFU is 
implemented as a module, added to an IBP storage depot, 
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that transforms stored data.  If we consider spatial direction, 
time and value to be coordinates of a single space, then the 
state of any data item is a point in this vector space, and the 
progression is one of increasing simultaneous control over 
multiple dimensions. 

 
 

Figure 2: Intermediate nodes to manage bandwidth (IP router), 
storage (IBP Depot), and computation (NFU-enabled Depot) 

Since a depot may model either disk or RAM storage 
resources, some NFU operations may apply only to data 
stored in RAM, while others may also apply to data stored 
on disk. Restricting an operation to data held in RAM 
forces any necessary movement between disk and RAM to 
be explicitly directed by the end-point using IBP, just as in 
data movement between depots.  The NFU extends the IBP 
protocol and API by implementing a single additional 
operation, NFU_op: 

NFU_op(depot, port, operation, 
cap_0,... cap_8) 

The details of the current NFU API can be found in 
the reference manual [12]. The asynchronous nature of the 
pipelined API described in the technical report on our 
experimental results [18] adds considerably to the 
complexity of the actual API calls.  The NFU_op is used to 
invoke an operation at an IBP depot, specified by the IP 
address and port it binds to.  The operation is specified as 
an integer argument, whose meaning is set by a global 
registry of operation numbers.  The arguments to an 
operation consist of a list of capabilities (cryptographically 
secure names) [15] for storage allocations on the same 
depot where the operation is being performed.  Thus, there 
is no implicit network communication performed by a given 
depot in responding to an NFU_op call. The capabilities 
specified in this call can enable reading or writing, and the 
limitations of each are reflected in the allowed use of the 
underlying storage as input or output parameters.  The 
number and type of each capability are part of the signature 
of the operation, specified at the time the operation number 
is registered.  Any violation of this type information (for 
instance, passing a read capability for an output parameter) 
may cause a runtime error, but it is not checked by the 
implementation of NFU_op at the client side.  Aliasing 
between capabilities is also not detected, since in some 
operations it is desirable and an interface that declares when 
to allow it would add unnecessary complexity.  

3. Our System 

3.1 Fiber Segment Probabilities 
As alluded to in the previous discussion, fiber tracking 

methods need to address signal noise and partial volume 
effects (PVE).  Both may cause reconstructed fibers to 
deviate from the underlying physical neuronal fiber. We 
approach is based on obtaining an accurate estimate of the 
probability of a given fiber segment connecting two voxels.  
This probability is certainly a function of the local tensor, 
but how should it be computed? We could directly use the 
local tensor, which provides a pdf capable of answering the 
question, but PVE still cause errors in deprolated regions. 

In order to address this problem we developed a 
framework based on conditional probabilities. The idea 
behind conditional probabilities is that of updating an 
estimate of the current probability based on past 
information.  More specifically, conditional probability 
allows us to better calculate the probability of an event Di 
occurring given the fact that another event Dk has occurred.  
If we further consider the events Dk and Di as members of 
an event space U of size n containing many events D, then 
the conditional probability P(Di|Dk) for any Dk and Di in U 
can be computed using Bayes Rule: 

∑
=

= n

j
jkj

iki
ki

DDPDP

DDPDP
DDP

1
)()(

)()(
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The analogy to computing fiber segment probabilities 
can be found by letting the event space U be all possible 
directions of fiber propagation.  The event Di is the fiber 
following direction i, and thus the term P(Di| Dk) is the 
probability of a fiber taking the outgoing direction i given 
that it came from direction k. The term P(Di) is the 
unconditional probability of a fiber following direction i 
and can be taken directly from the pdf given by the local 
tensor. 

 

 

 

  
Figure 3. Two different tensors represented as ellipsoids (left) 
and pdfs (right). 

 
A convenient visualization of this probability profile 

can be obtained by plotting probability as a function of the 
two spherical angles θ and φ. This creates a surface 
representing the probability as a function of direction, as 
shown in Figure 3. 
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The term P(Dk| Di) is the probability of a fiber 
entering from direction k, given that it leaves in direction i.  
Intuitively this term is related to the concept of bending 
energy; that is, the energy needed to bend the fiber from k 
to i.  The selection of P(Dk|Di) can therefore be made based 
on fiber modeling.  If we assume fibers to be somewhat 
stiff, then P(Dk|Di) will have a maximum probability along 
the incoming direction (i.e. no bending) and decrease as the 
angle widens.  The profile of this fall-off will determine the 
stiffness of the fibers.  In practice we choose a smooth 
profile like a Gaussian or elevated cosine, which allows us 
to use a single parameter to vary the profile. The cosine-
shaped profile is favored due to the simplicity of its 
computation (a single dot product). 

 

 
Figure 4. Application of Bayes Rule to different types of tensors
using a cosine profile for P(Dk|Di).  The input direction is the z-
axis (red line in leftmost column). 

 
Once the selection of the profile of P(Dk|Di) has been 

made then the conditional probabilities P(Di|Dk) can be 
computed for each outgoing direction Di given an incoming 
direction Dk.  Figure 4 shows the resulting pdfs for the 
three types of tensors (prolate, oblate, and spherical) using a 
cosine profile for P(Dk|Di).  Notice the ambiguity in the 
case of oblate and spherical tensors is resolved.  

With probability analysis, neuronal fiber 
reconstruction is computed in the following steps. First, a 
set of starting seeds are chosen by human experts, for 
instance in the corpus callosum where consistently oriented 
neuronal fibers are known to exist and PVE effects are low. 
The initial direction to follow is the major eigenvector 
direction. Using a given step size, such as 0.1 in voxel size, 
the next sample point on each fiber is determined. Second, 
on the new sample point, the local tensor direction is 
interpolated. From our experiments, high quality 
interpolation kernels are necessary. We use a 3D Gaussian 
kernel of 2.0 radii, again measured in voxel sizes along the 
three coordinate axes. The resulting tensor is then 
discretized into a 2D absolution probability table (APT) 
indexed by the two spherical angles θ and φ. The resolution 
that we use is 40 by 40. Third, a second 40 by 40 
conditional probability table (CPT) is created to model 
bending energy using the profile of elevated cosine. In our 
implementation, we compute this conditional probability 
table by computing the dot product of the incoming 

direction of fiber and the direction that each entry in the 40 
by 40 table represents according to the corresponding 
combination of θ and φ. Forth, a element-by-element 
product of APT and CPT is computed, from which we 
search for the maximum resulting probability. The 
corresponding direction is the next direction to follow. This 
procedure is repeated until either (i) the fiber abruptly 
bends more than 90 degrees or (ii) the new sample point is 
outside white matter. We discover the boundary of white 
matter using an anisotropy index proposed by [26].  
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variance of the average diffusivity in all directions. , as in: 

( ) )2( DTA σσ = . ( )Tσ  is the standard deviation of the 
diffusion coefficients measured by the MRI and then 
encoded as the tensor matrix, T, which symmetric:  
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A 0.25 value of σA  was found to best describe the 
surface of the white matter (WM) via repeated experiments. 
We then construct the WM volume by simulating particles 
diffusing from corpus callosum within WM and stopping on 
boundaries marked by 0.25 σA . In result, a volumetric 
mask of WM can be obtained. In Figure 5, the left is a 
photo of a real WM from a human subject. We were able to 
obtain a volumetric WM volume with similar visual 
appearance (Fig. 5 right) as the real photo. 
 

 
Figure 5. Picture taken of actual WM in the brain (left). 
Reconstructed WM using Aσ (right). 

 

Figure 6. (left) 50,000 reconstructed nerve fibers and 200 bundles 
among these 50,000 fibers (shown with a different color per bundle) 
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Using our method of Bayesian fiber reconstruction, 
very smooth nerve fibers can be obtained from DT-MRI 
datasets. In Figure 6, we show one sample set of results. 
From a 64x64x18 DT-MRI dataset, we have tracked 50,000 
neuronal fibers (Figure 6 left) and also bundled them 
according to geometric similarity (Figure 6 right). 

To summarize our neuronal fiber visualization 
algorithm, we provide a rather detailed pseudo code in 
Figure 7. All operations we use are generic and can be 
implemented by using conventional numeric libraries. 

 
fiber_reconstruction (vector3 current_position,  
                      vector3 in_direction, 
                      float   stepsize) 
{ 
  matrix  APT, CPT; // 40 by 40 
  matrix  tensor;   //  3 by  3 
  matrix3 dtmri;    // 3D volume of DT-MRI 
  matrix3 WM;       // 3D volume of WM mask 
 
  //40 by 40 matrix with each element being a.  
  //vector. This stores the direction  
  //corresponding to each combination of  
  //spherical angles used in APT and CPT 
  matrix  directions; 
 
  vector3 new_direction; 
  vector3 new_position; 
  int     maximum_id; 
 
  tensor = interpolate(dtmri, current_position);  
 
  //check whether in white matter 
  if !lookup(WM, current_position) return; 
 
  APT = discretize(tensor); 
  CPT = batch_dotproduct(directions, 
                         input_direction); 
 
  APT = elementwise_ matrix_multiply(APT, CPT); 
  maximum_id = maximum(APT); 
  new_direction = convert(maximum_id); 
 
  //check whether making a sharp turn 
  if (dotproduct(in_direction,new_direction)<= 0) 

return; 
 
  //4th order runga cutta numeric integration 
  new_position = runga_cutta4(current_position, 
                 new_direction, stepsize); 
 
  store(new_position); 
  fiber_reconstruction(new_position, 

new_direction,  
stepsize); 

} 
 
Figure 7: The pseudo code of Bayesian fiber reconstruction. 

 
When the NFU library contains numeric libraries like 

LAPACK and LINPACK [2], we can implement fiber 
reconstruction in NFU with little efforts. All that is needed 
is to implement NFU operations, such as interpolate, 
discretize, anisotropy, dotproduct, batch_dotproduct, 
elementwise matrix multiply, etc., with the numeric 
libraries.  

Currently due to lack of time, we haven’t completed 
the full NFU operation library to implement fiber 
reconstruction at such low level granularity, although we 
expect to finish this work in a few weeks. Now, we created 
a coarse level NFU operation called ‘fiber_reconstruction’ 
directly from our production visualization code. We do not 
expect the obtained test results in performances to vary 
between the coarse and fine level NFU operations. 

3.2 Parallelization and Job Scheduling 
In our system, we put seeds in the DT-MRI volume in 

areas specified by users. In a typical run, a user could 
position seeds in an area corresponding to the center of 
corpus callosum, by moving a 3D bounding box in 3D 
within the white matter surface that we have constructed.  

Our system then automatically generates a user 
controllable number of seeds, each corresponds to a 
neuronal fiber.  The entire set of seeds is then partitioned 
into a linear list of job assignments containing equal 
number of seeds. After a one-time data deployment stage 
during which the DT-MRI dataset is replicated on 
distributed processors, we start to assign jobs to processors 
from the job list for parallel processing. 

In neuronal fiber reconstruction, little inter-fiber 
dependency exists. Therefore, parallelizing the algorithm 
would seemingly be straightforward. However, due to the 
arbitrary length of each individual fiber, the workload to 
compute neuronal fibers varies between partitions. It is 
difficult to predict the exact workload beforehand and 
dynamic load balancing is indispensable. In addition, our 
job-scheduling scheme must be fairly robust for a rather 
open environment of distributed computing. Since our 
targeted computation infrastructure is completely 
distributed and has no mechanisms for reservation or 
scheduling, we can make few assumptions in regard to 
reliability or quality of service. A processor may be down 
or busy. In addition, processors as well as the 
corresponding network connections from the client will be 
of differing speeds. Hence, in general we would like to 
dynamically discover fast processors and assign as many 
jobs to them as possible and at the same time avoid being 
stalled by slow or faulty processors.  

We devised three mechanisms for heterogeneous 
parallel processing: (i) a priority queue of measured speed 
of processors, (ii) a priority queue of unfinished jobs and 
(iii) a buffered job assignment scheme.  

The priority queue for processors is indexed by the 
number of jobs that each processor has completed. This 
measurement roughly reflects the performance of each 
processor. The more jobs a processor has finished, the 
higher priority this processor has. The second priority 
queue, which maintains unfinished jobs, is indexed by the 
number of processors currently working on each job. This 
priority helps to rank unfinished jobs in “likelihood to 
quickly finish”. The fewer processors are competing to 
finish an unfinished job, the higher the priority. Initially, all 
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processors are assigned equally the same priority, ‘0’. 
During parallel computing, after a job is completed and 
returned to the client, the corresponding processor’s priority 
is incremented. At first, the priority of each job is ‘0”, 
signifying that no processors are working on it.  

 

 
Figure 8. A typical case of job assignment on 20 processors using 
50 partitions. The domain name of each processor used is listed to 
the left. The horizontal axis depicts the duration of the run in 
seconds. Each number in the graph is an ID of a job partition. All 
numbers with “*” behind it represent jobs that has never been 
finished. 

When parallel computing first starts, the scheduler 
randomly assigns one job to each processor, incrementing 
the corresponding priorities in both priority queues. When a 
processor completes its job and returns the results, the 
completed job is removed from job queue. Then, there are 
three possible scenarios: (1) there are still unassigned jobs, 
(2) there are still unfinished jobs and (3) all jobs are 
finished. Case 3 signifies the completion of the entire 
process. In Case 1, one would directly assign any one of the 
unassigned jobs to the empty processor, since there are no 
differences among those jobs. However, Case 2 would 
require some special consideration. In theory, we would 
like to always use our fastest processor for the unfinished 
job that is least likely to finish quickly. If we always 
immediately assign a new job to each processor that has just 
become empty, it would be hard to implement this concept. 
We opt to use a buffered job assignment scheme. 
Specifically, after the initial round of job assignments, we 
process any further job assignments every three seconds. 
That is, we wait three seconds for processors to finish jobs. 
In each three-second span, a few processors may get done. 
Among them, we assign the highest priority unfinished job 
to the processor that has become empty during the past 
three seconds. We then assign the unfinished job with the 

second highest priority to the second highest priority empty 
processor. In this manner, we inherently address fault 
tolerance in the same framework. 

For the sake of resource control, we limit the 
maximum number of processors that can work on the same 
job simultaneously. In our test, this number is set to 4. 

We illustrate a typical result of job scheduling in 
Figure 8. Here we show the domain name of each machine 
in the Planet Lab [1, 19] that we used via LoCI tools.  The 
shaded areas in the graph shows the duration of each 
numbered job being computed on various processors. The 
time as measured in seconds is recorded on the horizontal 
axis. All job IDs’ with an “*” behind are jobs that were 
never finished on each respective processor during the run. 
In this test run on 20 processors with 50 partitions, we can 
very easily notice highly varying performances in the 
distributed wide area system. We chose this relatively small 
run for ease of illustration. 

4. Results 
In this section, we present the results of our prototype 

system for massively parallel and distributed visualization 
of DT-MRI datasets. All testing was performed using NFU-
enabled IBP depots in PlanetLab [1, 19]. Up to 80 
processors were used. The hardware configurations of these 
processors vary. The hardware configuration ranges from 
1.3GHz to 2.66 GHz Pentium 4 processors, with 300MB to 
2GB RAM. For details of PlanetLab hardware 
configuration, please refer to [1]. The DT-MRI testing 
dataset is of a clinical resolution of 64x64x18 of 2.6 MB in 
storage. The white matter data that is constructed requires 
roughly 2.4 MB storage. In total, each processor needs 
5MB of data to proceed. In all tests, we reconstruct a total 
of 9368 fibers from a typical area of interest specified by 
user in the center of corpus callosum. 
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Figure 9. The total running time for jobs using 50 to 100 partitions 
run on 20 to 80 processors. Each data point in this graph 
represents an average of 5 test runs. 

In Figure 9, we plot the wall clock time for test runs 
with combinations using 50 to 100 job partitions and using 
10 to 80 processors. With each particular combination, 5 
tests were run and only the average running time is shown. 
Due to the large dynamic range of measured time, the 
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difference among curves needs to be closely examined. The 
overall speedup effects are very obvious no matter how 
many partitions are used. In general, we need a sufficient 
number of partitions (usually as many as the number of 
processors being used) to obtain good load balancing, but 
increasing the number of partitions much beyond that 
would not further lead to significant improvements in 
performance. For instance, we would expect to use 200 
partitions, had there been more than 150 processors for us 
to use for good load balancing. 
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Figure 10.  The total running time (shown in logarithm scale) for a 
job to complete with 50 partitions using 2 to 80 processors, 
respectively. In the total running time, three operations are 
included: “run NFU”, “Deploy Data” and “Check Depot”. 

We further analyze the overheads in NFU calls in 
Figure 10, which illustrates the total running time (in 
logarithm scale to show differences in orders of 
magnitudes) for a job to complete with 50 partitions using 2 
to 80 processors, respectively. In the total running time, 
three operations are included: “run NFU”, “Deploy Data” 
and “Check Depot”. The latter two operations are both 
executed only at the beginning of the parallel run, while 
“run NFU” is the fiber reconstruction function that is 
repeatedly invoked. When more processors are used than 
the total number of partitions, in a way we use several 
processors to compute a common partition and compete for 
speed. From Figure 10 we can see that “Check Depot” runs 
in a small constant time and “Deploy Data” requires time 
that increases with the number of processors. Our current 
implementation of “Deploy Data” uses a straightforward 
unicast approach. The effects on our overall results are 
minimal, however, because the “run NFU” operations 
consume at least an order of magnitude more time than 
either of the other two services.  

To better analyze the full overhead caused by using 
load-balancing issues we show results in Figure 11 and 12. 
We measure a total processor time as the total running time 
of the parallel run times the number of processors used. 
Figure 11 shows a roughly linear increase in total processor 
time (P) versus the total number of processors (n). That is 
we can model P with the following formula: TnaP +×= , 

where T corresponds to the total work of the run 
independent of the number of processors used and a is a 
measure of parallel processor inefficiency. A linear 
regression analysis estimates T to be 16,817 seconds and a 
as 180.5 seconds. Most of such overhead is due to 
inefficiency caused by load imbalance. To this end, a 
system with perfect linear speedup and zero inefficiency 
would produce a horizontal line in Figure 11.  

However, this is not the most interesting way to 
examine the result in Figure 11. TnaP +×=  can be 
rewritten as n/Tan/PD +== , where D is simply the 
total running time or duration. After a certain point, such as 
60 processors, the speedup or parallel utilization one 
obtains in parallel becomes less significant as shown in 
Figure 12. 
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Figure 11. (Curve) The total processor time vs. the number of 
processors used, from 10 to 80. Here, 50 partitions are used. The 
vertical axis is the result of multiplying the total running time for 
the run and the number of processors used. (Straight line) The 
result of a linear regression analysis on the curve obtained. 
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Figure 12. Parallel Utilization measured up to 80 processors using 
50 partitions in this particular run. 

Parallel processor utilization is a common metric used 
to measure the efficiency of the parallel algorithm. To 
compute parallel utilization, the total running time using 
one processor is often used as the reference, R. The parallel 
utilization with x processors, whose total running time is P, 
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is computed as: x
P/R . However, when heterogeneous 

processors are used, a different reference is necessary. To 
choose any single processor as the benchmark would be 
misleading. In our experiments, we use an ensemble of 10 
processors as the benchmark and compute parallel 
utilization using 10/x

P/R . In this case R is the total 

running time using 10 processors. The resulting curve is 
shown in Figure 12. It is obvious that around 80% parallel 
utilization can be obtained with as many as 60 processors. 
Any additional processors beyond 60 may still help to 
obtain better absolute performance via competition; 
however, the scalability already starts to drop. In fact, this 
result should be expected since parallel processors won’t be 
kept busy unless there are sufficient job partitions to go 
around. 

5. Issues in Scalable Computing 
The NFU can be thought of as a primitive mechanism for 
invoking remote processing, and in that sense it is similar to 
distributed computing mechanisms such as Network 
Enabled Servers used in the Grid Computing environments 
[3, 16, 17, 25, 27], or EveryWare [23]. However, a primary 
design goal of the NFU is to define a common service that 
is as scalable as possible, so that the limits of scalability are 
determined by the particular functions defined, not by the 
service framework itself. To that end, the NFU requires an 
administrative interface to install procedure calls (referred 
to as an installation interface) different from the interface to 
invoke a procedure call (referred to as an invocation 
interface). This is due to the fact that installing code is a 
heavyweight operation requiring a level of trust between 
client and depot that imposes scalability constraints. 
Currently, adding an NFU operation to a depot through the 
installation interface is a manual administrative procedure 
that involves installing an operation executable image in a 
depot directory or re-linking of the depot process with an 
operation library. By separating the installation and 
invocation interfaces, we make the invocation interface 
lightweight and achieve maximum scalability. 

Besides separating interfaces, in order to achieve 
maximum scalability there are three additional aspects of 
scalability to address. First, an NFU operation must place 
limits on the size of the allocations that it operates on and 
the amount of processor resources that it can use. For 
instance, if an operation is defined to operate on allocations 
that are larger than 4GB in size, it may not be efficiently 
implemented on a depot running a 32-bit operating system.  
Second, an operation cannot run for a very long time. Each 
call represents a large allocation of processor resources, and 
so it makes it more difficult for a depot to fairly serve a 
large community of users, maintaining a minimum level of 
service to each. 
The third aspect of scalability stems from the notion that the 
functions implemented on a depot must be generic,  which 

is less intuitive outside of the networking community. The 
widespread deployment of an operation that supports a 
specific application requires a large community of depot 
owners to make an administrative decision to deploy that 
operation on their depot, which they may be loathe to do if 
it does not serve a sufficiently large segment of the user 
community that share the depot.  Each installation of an 
additional NFU operation takes some resources on the 
depot, whether the operation is invoked or not, potentially 
diminishes the locality of caches and memory management 
on the network node, and adds to the complexity of depot 
management if updates to the operation implementation are 
issued. After all, each operation added to the depot 
increases the number of trusted parties. Due to design or 
programming errors or malicious actions, there would be 
more chances for the depot to misbehave or be 
compromised. For these reasons, scalability is improved by 
constructing a minimally necessary set of NFU operations 
comprised of generic functions that are basic and thus more 
likely to be reliable.  This argues for the NFU operations to 
be very primitive at the level of ALU and FPU operations, 
and for the IBP protocol to be used for composing large 
numbers of such fine-grained operations.  The arguments 
against this approach are those of complexity at the 
endpoints and performance. 

The idea that maximal scalability is achieved by the 
minimization of trust between client and depot brings up 
the issue of whether an depot can be used in the 
implementation of processing as part of a reliable server by 
endpoints that do not trust it at all.  If such a service were 
highly scalable but could not be used to create a reliable 
service, then it might be useless.  In that case, we might 
need to accept some requirements of trust, and lower our 
expectations of scalability. 

5.1 Generality Mapping Fiber 
Reconstruction of NFU 

The NFU operation that we used in our experiments is 
called fiber_reconstruction, and it is quite specific 
to the DT-MRI application.  According to our analysis, this 
specificity will have a negative impact on the scalability of 
its deployment in a public network, so we are interested in 
expressing it in terms of more primitive, generic operations.   

If the NFU library contains numeric libraries like 
LAPACK [2] and LINPACK, we can implement fiber 
reconstruction by invoking the more generic operations in 
these libraries, and composing these operations using the 
IBP protocol, to correspond to the pseudo code given in 
Figure 7.  The operations required include interpolation, 
discretization, anisotropy, dotproduct, and matrix multiply. 

Due to lack of time, we haven’t completed the full 
NFU operation library required to implement fiber 
reconstruction at such low level granularity, although we 
expect to finish this work and present performance results 
in the full version of the paper.  Because of the fact that the 
code is straight line, there are no complex control 
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dependences that must be resolved by the client, as can be 
seen by inspection of the pseudo code given in Figure 7.  
The IBP protocol is also evolving to allow some control 
dependences to be resolved without requiring the 
intervention of the client [11]. 

5.2 Data Distribution 
One of the limitations of scalability that can be seen in 

our experimental results is due to the need to distribute the 
entire MRI dataset to every node participating in the fiber 
tracing computation.  While the size of the dataset, 6 MB, is 
not large enough to inhibit its implementation on any 
depots that currently comprise of the L-Bone, the need to 
move the data to every depot in order to process it strains 
the data movement capabilities of the network that connects 
them. 

Part of the problem is simply the implementation 
strategy.  The current implementation uses a simple iterated 
unicast strategy to distribute the data, which results in the 
saturation of the networking capacity of the client or its 
connection to the backbone, and requires time that increases 
linearly with the number of target depot.  A more scalable 
approach is to use some form of hierarchical distribution or 
overlay multicast [8], which can operate in time logarithmic 
in the number of target depots, or even faster if the 
multicast tree is built to conform to the topology of the 
network. 

We have implemented a hierarchical distribution 
scheme, although it does not conform to the topology of the 
network.  Early results, illustrated in figure Y, show greatly 
reduced data distribution times.  Due to a lack of time, we 
have not been able to rerun all of our experiments using this 
new data distribution mechanism, but will do so for the 
final version of the paper. 

As the number of processors used is scaled beyond 
100, it becomes necessary to use some nodes that are not 
well connected to the international research backbone 
networks, and for which a transfer of even 6 MB from the 
University of Tennessee might represent an impediment to 
contributing to a computation that may last for less than a 
minute.   For this reason, it may be valuable to express the 
computation as a composition of operations on a partition 
of an MRI, requiring an additional step for these partitions 
to be merged.  The result would be more scalable in its 
ability to be used to take advantage of depots that are 
constrained in bandwidth, processor and even storage 
resources. 

5.3 Security 
Distributed computing using untrusted depots is a 

harder problem that moving data across or storing data on 
untrusted depots because of the need to process the data 
while it resides on depots.  In the case of data movement 
and storage, end-to-end data encryption can be used to 
make data inaccessible to intruders who might tap wires or 
even to malicious depot operators [24].  In the case of 

processing, even data that is transferred to the depot in 
encrypted form is typically decrypted before processing 
takes place, making the computation vulnerable to being 
compromised at the depot. 

There are several approaches to this problem, which is 
particularly acute when dealing with medical data.  Part of 
the solution may lie in approaches to obscuring the data by 
dividing it and distributing it, so that a private dataset 
cannot be recovered from the public network without 
monitoring a large amount of traffic or many 
geographically distributed networks.  Another approach is 
to obscure the data without using strong encryption, for 
instance by intermixing it with dummy data, or by 
overlaying it with known, random patterns that have a 
known effect on the results that can be factored back out 
after the computation has been completed.  It may even be 
possible to compute on strongly encrypted data in some 
cases.  

5.4 Correctness 
In addition to problems of security, the use of 

untrusted depots presents a problem of verifying 
correctness of the processing performed at those depots [9].  
In the case of data movement and storage, redundancy in 
the form of end-to-end checksums is used to detect errors 
probabilistically.  In the case of computation, redundancy 
can be introduced in a number of ways, including 
performing computations multiple times on independent 
depots or at the client and comparing results.  In some 
cases, the client can verify a computation more efficiently 
by using the results than by recomputing from the inputs. It 
is possible to enhance the efficiency of verification in some 
cases by modifying NFU operations to return more of the 
details of their computations.  Working in a mode where the 
results of remote computations are untrusted and checked 
requires a thorough rethinking of the assumptions that 
pervade much of software engineering concerning the 
degree to which checks of correctness should be 
implemented at runtime, which may have application even 
in cases where calls are performed in local or trusted 
environments, but errors in logic may exist. 

6. Conclusions and Future Work 
In this paper we have presented an algorithm to 

visualize DT-MRI datasets by Bayesian fiber 
reconstruction. We address effects of signal noise and PVE 
by studying the conditional probabilities using Bayes rule 
and treating each tensor matrix as a true pdf. Possible 
directions of further research on DT-MRI visualization 
include acceleration algorithms, integrated visualization of 
even more imaging modalities and animal experiments to 
verify our results. 

We have built a practically useful system for routine 
radiological experimentation which can make use of 
available computational resources without authentication or 
reservation.  This system is built on a scalable infrastructure 
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which adopts a unique architectural approach that promises 
to scale beyond the boundaries of conventional 
computational facilities.  We have undertaken a research 
program that addresses many of the hard technical problems 
posed by this architecture, as described in Section 5, as well 
as other work not presented here which address the goals of 
efficiency and high performance in the operation of 
individual nodes [18]. 
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