
Brief	notes	on	memory	operatins	in	fork(),	exec()	and	vfork()	by	Dr.	Beck	
	
Background:	The	address	space	of	a	process	is	made	up	of	a	number	of	segments,	each	of	
which	is	a	contiguous	area	of	memory	used	for	a	particular	purpose.	In	this	discussion,	we	
consider	processed	with	these	segments:	code,	static	data,	heap	and	stack.	
	
Fork():	The	fork()call	creates	a	new	process	(the	child)	by	allocating	an	unused	task	
control	block	(TCB)	and	copying	many	of	the	fields	from	the	calling	process’		(the	parent’s)	
TCB.		Thus,	while	the	child	is	not	identical	to	the	parent	in	all	respects,	they	share	many	
attributes	in	common.	For	example,	they	have	the	same	user	ID	(uid)	but	different	process	
IDs	(pid).	
	
Fork()	is	able	to	share	read-only		segments	between	the	parent	and	child,	allowing	the	
child’s	address	space	to	be	created	using	the	same	memory	as	the	parent.		In	our	example,	
the	only	ready-only	segment	is	the	code	segment.	Since	neither	parent	nor	child	can	modify	
this	segment,	they	can	use	it	simultaneously	with	no	possibility	of	interfering.	
	
The	other	segments	in	our	example	(static	data,	heap	and	stack)	are	all	writable,	and	so	
sharing	them	between	a	parent	and	child	executing	simultaneously	could	result	in	
interference	between	those	two	processes	(race	conditions).	Thus,	the	fork	system	call	
allocates	new	memory	for	those	segments	in	the	child	(the	same	size	as	the	segments	in	the	
parent)	and	copies	the	contents	of	each	segment	from	the	parent	to	the	corresponding	
segment	in	the	child.	The	parent	and	child	then	each	have	a	private	copy	of	the	contents	of	
each	of	these	segments	stored	in	its	own	private	memory,	and	so	parent	and	child	can	both	
execute	simultaneously	without	the	possibility	of	interference.	
	
Exec(): Exec()	is	a	system	call	that	replaces	the	address	space	of	a	running	process	
with	the	contents	of	an	executable	file.	The	code	and	static	data	segments	are	read	from	the	
file	into	newly	allocated	memory,	the	stack	and	heap	are	initialized	to	be	empty.		
	
It	is	very	common	for	a	command	line	interpreter	(shell)	or	GUI	to	invoke	an	executable	file	
(command	or	user	program)	by	call	fork()	to	create	a	new	child	process,	and	the	child	
process	then	almost	immediately	calling	exec()	to	start	the	program	stored	in	the	file.	In	
this	scenario	all	the	work	that	does	into	copying	the	address	space	of	the	child	(creating	the	
static	data,	heap	and	stack	segments)	is	almost	immediately	undone	by	the	call	to	exec().	
	
Vfork(): Vfork()	is	a	means	for	a	parent	to	avoid	the	overhead	of	copying	the	parent’s	
address	space	when	a	call	to	exec()	will	be	made	almost	immediately	after	process	
creation.		The	call	to	vfork()is	similar	to	fork()	but	it	does	not	allocate	new	memory	for	
the	writable	segments,	instead	allowing	the	child	to	execute	using	the	memory	segments	of	
the	parent.	In	order	to	avoid	interference	between	parent	and	child,	the	parent	is	not	
allowed	to	execute	after	the	call	to	vfork()	until	the	child	makes	a	call	to	exec().	
	
Vfork()	avoids	the	need	to	allocate	and	copy	memory	for	the	child’s	address	space,	but	
because	the	child	does	share	the	parent’s	address	space	it	must	be	very	careful	about	what	
variables	it	modifies	before	calling	exec().	If	it	changes	anything	that	will	cause	problems	
in	the	parent	once	it	starts	running	again,	the	parent	might	experience	errors.	Thus	we	can	
say	that	vfork()	is	not	completely	safe	(because	it	can	cause	problems	if	the	child	makes	
error-causing	modifications)	but	it	can	be	much	more	efficient	than	fork().	


