7.8

Practice Exercises 339
Summary

A deadlocked state occurs when two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

e Use some protocol to prevent or avoid deadlocks, ensuring that the system
will never enter a deadlocked state.

¢ Allow the system to enter a deadlocked state, detect it, and then recover.

e Ignore the problem altogether and pretend that deadlocks never occur in
the system.

The third solution is the one used by most operating systems, including Linux
and Windows.

A deadlock can occur only if four necessary conditions hold simultaneously
in the system: mutual exclusion, hold and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks, rather than preventing them, requires
that the operating system have a priori information about how each process
will utilize system resources. The banker’s algorithm, for example, requires
a priori information about the maximum number of each resource class that
each process may request. Using this information, we can define a deadlock-
avoidance algorithm.

If a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme may be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Researchers have argued that none of the basic approaches alone is appro-
priate for the entire spectrum of resource-allocation problems in operating
systems. The basic approaches can be combined, however, allowing us to select
an optimal approach for each class of resources in a system.

Practice Exercises

7.1 List three examples of deadlocks that are not related to a computer-
system environment.

7.2 Suppose that a system is in an unsafe state. Show that it is possible for
the processes to complete their execution without entering a deadlocked
state.

340

Chapter 7 Deadlocks

7.3

7.4

7.5

7.6

Consider the following snapshot of a system:

Allocation Max Available

ABCD ABCD ABCD
Py 0012 0012 1520
P 1000 1750
Py 1354 2356
P; 0632 0652
Py 0014 0656

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?
b. Is the system in a safe state?

c. If a request from process P; arrives for (0,4,2,0), can the request be
granted immediately?

A possible method for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization
objects A- -+ E, deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, and the like.) We can
prevent the deadlock by adding a sixth object F. Whenever a thread
wants to acquire the synchronization lock for any object A- - - E, it must
first acquire the lock for object F. This solution is known as containment:
the locks for objects A--- E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 7.4.4.

Prove that the safety algorithm presented in Section 7.5.3 requires an
order of m x n® operations.

Consider a computer system that runs 5,000 jobs per month and has no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun
about ten jobs per deadlock. Each job is worth about two dollars (in CPU
time), and the jobs terminated tend to be about half done when they are
aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker’s algorithm) could be installed in the system
with an increase of about 10 percent in the average execution time per
job. Since the machine currently has 30 percent idle time, all 5,000 jobs
per month could still be run, although turnaround time would increase

~ by about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

7.7

7.8

7.9

7.10

Exercises

7.11

7.12

713

Exercises 341

Can a system detect that some of its processes are starving? If you answer
“yes,” explain how it can. If you answer “no,” explain how the system
can deal with the starvation problem.

Consider the following resource-allocation policy. Requests for and
releases of resources are allowed at any time. If a request for resources
cannot be satisfied because the resources are not available, then we check
any processes that are blocked waiting for resources. If a blocked process
has the desired resources, then these resources are taken away from it
and are given to the requesting process. The vector of resources for which
the blocked process is waiting is increased to include the resources that
were taken away.

For example, a system has three resource types, and the vector
Awvailable is initialized to (4,2,2). If process Py asks for (2,2,1), it gets
them. If Py asks for (1,0,1), it gets them. Then, if P, asks for (0,0,1), it
is blocked (resource not available). If P, now asks for (2,0,0), it gets the
available one (1,0,0), as well as one that was allocated to Py (since Py is
blocked). Py’s Allocation vector goesdown to (1,2,1), and its Need vector
goes up to (1,0,1).

a. Can deadlock occur? If you answer “yes,” give an example. If you
answer “no,” specify which necessary condition cannot occur.

b. Can indefinite blocking occur? Explain your answer.

Suppose that you have coded the deadlock-avoidance safety algorithm
and now have been asked to implement the deadlock-detection algo-
rithm. Can you do so by simply using the safety algorithm code and
redefining Max; = Waiting; + Allocation;, where Waiting; is a vector
specifying the resources for which process i is waiting and Allocation;
is as defined in Section 7.5? Explain your answer.

Is it possible to have a deadlock involving only one single-threaded
process? Explain your answer.

Consider the traffic deadlock depicted in Figure 7.10.

a. Show that the four necessary conditions for deadlock hold in this
example.

b. State a simple rule for avoiding deadlocks in this system.

Assume a multithreaded application uses only reader—writer locks for
synchronization. Applying the four necessary conditions for deadlock,
is deadlock still possible if multiple reader—writer locks are used?

The program example shown in Figure 7.4 doesn’t always lead to
deadlock. Describe what role the CPU scheduler plays and how it can
contribute to deadlock in this program.

342

Chapter 7 Deadlocks

7.14

7.15

7.16

BRUEE,) (@)

Figure 7.10 Traffic deadlock for Exercise 7.11.

In Section 7.4.4, we describe a situation in which we prevent deadlock
by ensuring that all locks are acquired in a certain order. However,
we also point out that deadlock is possible in this situation if two
threads simultaneously invoke the transaction() function. Fix the
transaction() function to prevent deadlocks.

Compare the circular-wait scheme with the various deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

a. Runtime overheads

b. System throughput

In a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and go,
and new resources are bought and added to the system. If deadlock is
controlled by the banker’s algorithm, which of the following changes
can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

Increase Available (new resources added).
b. Decrease Available (resource permanently removed from system).

c. Increase Max for one process (the process needs or wants more
resources than allowed).

d. Decrease Max for one process (the process decides it does not need
that many resources).

717

7.18

7.19

7.20

7.21

7.22

Exercises 343

e. Increase the number of processes.
f. Decrease the number of processes.

Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock free.

Consider a system consisting of m resources of the same type being
shared by n processes. A process can request or release only one resource
at a time. Show that the system is deadlock free if the following two
conditions hold:

a. The maximum need of each process is between one resource and
1 resources.

b. The sum of all maximum needs is less than m + n.

Consider the version of the dining-philosophers problem in which the
chopsticks are placed at the center of the table and any two of them
can be used by a philosopher. Assume that requests for chopsticks are
made one at a time. Describe a simple rule for determining whether a
particular request can be satisfied without causing deadlock given the
current allocation of chopsticks to philosophers.

Consider again the setting in the preceding question. Assume now that
each philosopher requires three chopsticks to eat. Resource requests are
still issued one at a time. Describe some simple rules for determining
whether a particular request can be satisfied without causing deadlock
given the current allocation of chopsticks to philosophers.

We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that we cannot
implement the multiple-resource-type banker’s scheme by applying the
single-resource-type scheme to each resource type individually.

Consider the following snapshot of a system:

Allocation qu_

ABCD ABCD
Py 3014 5117
P, 2210 3211
P, 3121 3321
Py 0510 4612
Py . 4212 6325

Using the banker’s algorithm, determine whether or not each of the
following states is unsafe. If the state is safe, illustrate the order in which
the processes may complete. Otherwise, illustrate why the state is unsafe.

a. Awvailable = (0,3,0,1)
b. Awailable = (1,0,0,2)

344 Chapter 7 Deadlocks

7.23

7.24

7.25

7.26

Consider the following snapshot of a system:

Allocation Max Available

ABCD ABCD ABCD
Py 2001 4212 3321
P 3121 5252
P, 2103 2316
P; 1312 1424
by 1432 3665

Answer the following questions using the banker’s algorithm:

a. Illustrate that the system is in a safe state by demonstrating an
order in which the processes may complete.

b. If a request from process P; arrives for (1, 1,0, 0), can the request
be granted immediately?

c. If a request from process P4 arrives for (0, 0, 2, 0), can the request
be granted immediately?

What is the optimistic assumption made in the deadlock-detection
algorithm? How can this assumption be violated?

A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge
can become deadlocked if a northbound and a southbound farmer get
on the bridge at the same time. (Vermont farmers are stubborn and are
unable to back up.) Using semaphores and/or mutex locks, design an
algorithm in pseudocode that prevents deadlock. Initially, do not be
concerned about starvation (the situation in which northbound farmers
prevent southbound farmers from using the bridge, or vice versa).

Modify your solution to Exercise 7.25 so that it is starvation-free.

Programming Problems

7.27

Implement your solution to Exercise 7.25 using POSIX synchronization.
In particular, represent northbound and southbound farmers as separate

- threads. Once a farmer is on the bridge, the associated thread will sleep

for a random period of time, representing traveling across the bridge.
Design your program so that you can create several threads representing
the northbound and southbound farmers.

