Instruction Execution

& Instruction Execution
Pipelining
cs160 9F Ward 1 csie0 W Ward 2
Instruction Execution Indirect Cycle

Simple fetch-decode-execute cycle: Instruction execution may require
Get address of next instruction from PC memory access to fetch operands
Fetch next instruction into IR Memory fetch may use indirect
Change PC addressing

Determine instruction type (add, shift, ...) Actual address to be fetched is in memory

. . . Requires more memory accesses
If instruction has operand in memory, fetch o _ _
it into a register Can be thought of as additional instruction

Execute instruction storing result subcycle

Gotostep 1

csie0 G Ward 3 csie0 GF Ward 4

Basic Instruction Cycle States

csi60 Ward 5

Data Flow (Instruction Fetch)

Depends on CPU design; below typical

Fetch (Step 2)
PC contains address of next instruction
Address moved to MAR
Address placed on address bus
Control unit requests memory read

Result placed on data bus, copied to MBR,
then to IR

Meanwhile PC incremented by 1 instruction
word

Typically byte addressable, so PC incremented
by 4 for 32-bit address ISA

csi60 9 Ward 6

Data Flow (Instruction Fetch)

3-Bus Architecture
CPU

PC > MAR > :>
TT <= E—Memory
Control :>
Unit
IR KI—— MBR K |
Address Data Control
Bus Bus Bus

MBR = Memory buffer register | |
MAR = Memory address register
IR = [nstruction register AL
R Combined in 1-Bus Architecture

cs160 G Ward 7

Data Flow (Data Fetch)

IR is examined
If indirect addressing, indirect cycle is
performed
Right most bits of MBR transferred to MAR
Control unit requests memory read
Result (address of operand) moved to MBR

csie0 9 Ward 8

Data Flow (Indirect Diagram)

Data Flow (Execute)

May take many forms

CPU Depends on instruction being executed
:> MAR > ::> May |nCIUde
<= |—Memory Memory read/write
Control Y = Input/Output
Ea Register transfers
ALU operations
MBR [
Address Data Control
Bus Bus Bus
csi60 1G9 ward 9 csi60 W Ward 10
Data Path [1] Data Path [2]
—_ A+B
Data path cycle: two operands going from - _
registers, through ALU and results stored (the s
faster the better). £
Data path cycle time: time to accomplish
above _—ALUinput register
__—ALUinput bus
Width of data path is a major determining
factor in performance
'B:|‘_____.-ALU output register
Ward 11 csi60 GF Ward 12

csi60 9F

RISC and CISC Based Processors

RISC (Reduced Instruction Set Computer)
S
CISC (Complex Instruction Set Computer)

“War” started in the late 1970’s

RISC:
Simple interpret step so each instruction faster
Issues instructions more quickly (faster)

Basic concept:

If RISC needs 5 instructions to do what 1 CISC
instruction does but 1 CISC instruction takes 10
times longer than 1 RISC, then RISC is faster

csi60 Ward 13

RISC vs. CISC Debate

CISC & RISC both improved during 1980’s
CISC driven primarily by technology
RISC driven by technology & architecture

RISC has basically won
Improved by over 50% / year
Took advantage of new technology
Incorporated new architectural features (e.qg.,
Instruction Level Parallelism (ISL), superscalar
concepts)
Compilers have become critical component
in performance

csi60 M Ward 14

More on RISC & CISC

RISC-CISC debate largely irrelevant now

Concepts are similar
Heavy reliance on compiler technology

Modern RISC has “complicated” ISA

CISC leader (Intel x86 family) now has large
RISC component

cs160 G Ward 15

Prefetching

csie0 9 Ward 16

Prefetch

Fetch accesses main memory

Execution usually does not access main
memory

Can fetch next instruction during
execution of current instruction

Called instruction prefetch

Improved Performance

But not doubled:

Fetch usually shorter than complete
execution of one instruction
Prefetch more than one instruction?

If fetch takes longer than execute, then
cache (will discuss later) saves the day!

Any jump or branch means that prefetched
instructions are not the required
instructions

cs160 9 Ward 17 csi60 W Ward 18
Prefetching, Waiting & Branching
Inztruction . Instruction . Result
Execute
Pipelining
Wait New address Wait
Instruction
Discard
csi60 9 Ward 19 csie0 B Ward 20

Pipelining

Add more stages to improve performance

For example, 6 stages:
Fetch instruction (FI) Memory access
Decode instruction (DlI)
Calculate operands (CO)
Fetch operands (FO)
Execute instruction (EI)
Write operand (result) (WO) ? Memory access ?

Overlap these stages Again, cache
saves the day!

? Memory access ?

csie0 9 Ward 21

Timing of Pipeline

Time

|l|2|3|4|5|6|7|8|9|10|11|12|l3|l4|

. 'R DL co' FO ' EL'WO! ' ' ' ' ' ' '
Instruction 1 H—Nd—b‘d—b‘dr—b:d—bg—ﬂ 1 1 1 1 1 1 1
1 1
F1.' DI ! co! !0' EI ;’\"S."l

1

1

1

Instruction 2

F1 DI El

CO! FO

Instruction 3

1 1 1 1 1
Inst ti 4 F1 DIV CO! FO ! EI 1 WO!
nstruction ! HE—

1 1 1 1 1 1 1
. 1 1FL1 DL COTFO 1 ELTWOI
Instruction 5

1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 FI 1 DI 1 co 1 0 1 El 1 VO 1
Instruction 6 1 i i i i Iﬂ—bﬂ—bﬂ—bﬁr—bﬁ—hé—hl ’ : : :]
1 1 1 1 1 1 1 1 1 1 1 1

1
1
1 1 1 1 1 1 IF]IDIICUIOIEII’\'I
A 1 1 1 1 1 1 1 1 1 1 1 1 WO,
Instruction 7, I I I I I H—M—*—DL*—DA—OM
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1

1 1 1 1 1 1 1

. FI DI, CO, FO , EI ; WO
Instruction 8 | o

1 1 1 1 1 1 1
. Fl DI, CO , FO | EI , WO
Instruction 9 | L

csi60 M Ward 22

Important points

An instruction pipeline passes instructions through
a series of stages with each performing some part
of the instruction.

If the speed of two processors, one with a
pipeline and one without, are the same, the
pipeline architecture will not improve the overall
time required to execute one instruction.

If the speed of two processors, one with a
pipeline and one without, are the same, the
pipelined architecture has a higher throughput
(number of instructions processed per second).

cs160 GF Ward 23

Execution Time

Assume that a pipelined instruction processor
has 4 stages, and the maximum time
required in the stages are 10, 11, 10 and 12
nanoseconds, respectively.

How long will the processor take to perform
each stage? 12 nanoseconds

How long does it take for one instruction to
complete execution? 48 nanoseconds

How long will it take for ten instruction to

complete execution? (48 + 9*12) nanoseconds
156 nanoseconds
15.6 nanoseconds/instru

csie0 GF Ward 24

4-Stage Pipeline

Another example (with interstage buffers):

Fetch instruction (F) Memory access
Decode instruction and fetch operands (D)
Execute instruction (E) ? Memory access ?

Write operand (result) (W)

Interstage bffers

D : Decode
F: Fetch instruction E: Execute W e
instruction and fetch operation ™ results
ORErancE
B1 B2 B3

csi60 Ward 25

Some Potential Causes of Pipeline “Stalls”

What might cause the pipeline to “stall”?

One stage takes too long (examples)
Different execution times (data hazard)
Cache miss (control hazard)

Memory unit busy (structural hazard)

Branch to a new location (control hazard)
Call a subroutine (control hazard)

csi60 M Ward 26

Long Stages — Execution [1]

For a variety of reasons, some instructions
take longer to execute than others (e.qg.,
add vs divide) = stall

Clockycle 1 2 3 4 5 6 7 8 9

Instruction

I Fy Dy E Wi

stalls 2
I F, | Dy E W, cycles
I3 F3 Dy W3
data
ls Ry Dy | B | W, hazard
example

cs160 G Ward 27

Long Stages — Execution [2]

Solution:

Sub-divide the long execute stage into
multiple stages

Provide multiple execution hardware so
that multiple instructions can be in the
execute stage at the same time

Produces one instruction completion every
cycle after the pipeline is full

csie0 9 Ward 28

Long Stages — Cache Miss

Delay in getting next instruction due to
a cache miss (will discuss later)

— = Time

Clock oyele 1 2 3 4 5 5 7] g
In=truction
h Fy by Ey ey COI’]tI’O|
. ” -NIEIE hazard
example
I3 F3 L3 E; w3

Decode, Execute & Write stages become idle — stall.

csi60 Ward 29

Long Stages — Memory Access Conflict

Two different instructions require
access to memory at the same time

Load X(R1),R2 - place contents of memory location X+R1 into R2

—a Time

el e 12 is writing to R2
R I T = v when 13 wants to
write to a register
I3 (Load) Fa Dy = My W
I3 F3 a7} Ej Wy
\
o —— stall
4 Fs Dy 9]
Is R o structural
hazard
cs180 H Ward 30

Conditional Branch in a Pipeline

Instruction 3 is a conditional branch to Instruction 15

Time Branch Penalty

|l|2|3|4|5|6|7|8|9|10|11|12|13|l4|

0 ' FI! DI ! CO!FO ! EL!WO! ' '
Instruction 1 'C—M—M—D'CF—M—NJ—N 1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1 1
. F1 DI, CO, FO , EI | WO

Instruction 16 e e e e
A

Instruction 2 i Fl i DI :co: [0: El :r\-‘g: i i i i i i i Important
ions |1 lalenielpoleinel f 11 1§ Architectural
poror o ey Pointt When
Instruction 4 i i i W i i i i i i i iS the PC
msrucions |13 WS 10301 11 changed?
Instruction 6 : : : : : m : : : : : : :
Instruction? | | 0 b b b WEL o0 ononon o
N N O control
Instruction 15 i i i i i i :ﬂﬂ*ﬂ*m—*ﬂ)*ﬂ*‘ﬁ“ i hazard

csi60 97 Ward 31

Six Stage
Instruction
Pipeline
- nditional
Logic h
CS160 E’ Ward 32

-

@@E

Alternative
Pipeline
Depiction | e :

¥}
[¥}

IS

¢ [w]s]uz]an] ¢ []sfu]e]efn]
annnmnon 7 [o]e]sfufu]n)

Time

s [w]rw]e]u]e |
s [o]n]v]u]s]w
w [o]w[m]6]s 0

5
e

- =
=] =
-
EH
-
HE
- -
=] =

Data Dependencies in a Pipeline

Time

ril=r2+r3 Instruction 1

r4 =rl-r3 Instruction 2
Instruction 3

Instruction 4

Pipeline stalls until r1 has been written. (RAW hazard)

[1]2]3]4]s|e]7]8]o|w]u]iz]3]ia]

'E ool co! Fo ! gL wo! ! ! 1 ! ! ! '

1 =r2 + r3 Instruction | —be—pd—d—dla—p—p | | !

! ! ' ! ' T T
| FL! DL CO ! FOIEL I WOt
4—pld—pld—p e
L}

r4 =r1-r3 Instruction 2

1 1 1 0
1 L} 1 1 1 1 1}
| FL 1 COTFOEL WO

[
] ' '
1] [[
' '

1 1 1 I I
1 1] 1 [
1 1] [[
1 1] ' '
! 1 1 1 1 1
1 '] ' '
1 1] ' [
| | 1 I I
1 t 1 I I
'

1 13 mﬁ Instruction 3 : Iﬂ—b'w—hl h . ¢ .]
14 E 14 m [Ilh’tl‘llt‘ﬁ()ll-‘ : : E‘ﬂ.| :I‘—N—.OLN—N—."I l‘(‘(]: -0: L ll\\'l)!
CSlGO u’ {(a) No branches {b) With conditional branch Ward 33 CSl6O u’ Ward 34
Example of Avoiding Stalls RAW Hazard: Forwarding
Hardware optimization to avoid stall
Allows ALU to reference result in next
instruction
C — add AB C«—add AB
e Ve B L Example:
J « subtract | F D < subtract E C .
M < add K L J o subtract | F Instruction K: C—addAB
P « subtract M N P < subtract M N .
@ (k) Instruction K+1: D « subtract E C
Stalls eliminated by rearranging (a) to (b)
:>|:|:> Eéfl_xuc)m :>|:|:> (Rg:is‘;ue"rt;m)
I_ Fonnarding path
csi60 15 Ward 35 csi60 1GF Ward 36

Unconditional Branches: Instruction
Instruction fetch unit Queue & Prefetching

Instruction queue

F : Fetch
instruction

—

D : Dispatch/
E : Execute W Winite
Due;(t)de I~ instruction T+ results

i

csi60 Ward 37

Conditional Branches: Delayed Branch

——= Time

LOGP Shift_left R1 Chokosle: A4 R = & w0 W 4
Decrement R2 Instrudion
Branch=0 LOOP Decremert H

NEXT Add R1R3

(a) Original program loop

Decremert (Branch tek) -F -E
LOOP Decrement R2 Branch -

Branch=0 [Relel
Shift_left R1 F E
MNEXT Add R1.R3

Add (Branch not tabm)

(b) Reordered instructions

With more stages, need to reorder more instructions.

csi60 M Ward 38

Conditional Branches: Dynamic Prediction

Branch taken (BT)

BMNT /_3 BT
-~

BT
Branch not taken (BNT)
BMT LNT
(a) A 2-state algorithm
BMNT
BNT BT
BT
@ D o
BHNT
(b} A 4-state algorithm
csie0 9F Ward 39

Pipelining Speedup Factors [1]

Speedup factor

e
k = 12 stages
10+
8 -
k =9 stages
L R s e ieieieieieby

k = 6 stages

1 2 4 8 16 32 64 128

Number of instructions without branch
Never get speedup better than the number of stages in a pipeline

csi60 GF Ward 40

Pipelining Speedup Factors [2]

Speedup factor
14
n =30 instructions

12

10—
n =20 instructions

Gy n = I instructions

0 T T T 1
0 5 10 15 20

Number of stages

Never get speedup better than the number of
instructions without a branch.

csi60 Ward 41

Classic 5-Stage RISC Pipeline

Instruction Fetch (IF) Memory access
Instruction Decode & Register Fetch (ID)
Execute / Effective Address (load-store) (EX)
Memory Access (MEM) ? Memory access ?

Write-back (to register) (WB)

csi60 M Ward 42

Another 5-Stage Pipeline

Instruction Fetch (IF) Memory access
Instruction Decode (ID)
Operand Fetch (OF) ? Memory access ?

Execute Instruction (EX)

Write-back (WB) ? Memory access ?

cs160 G Ward 43

Achieving Maximum Speed

Program must be written to
accommodate instruction pipeline
To minimize stalls, for example:
Avoid introducing unnecessary branches
Delay references to result register(s)

csie0 9 Ward 44

More About Pipelines

Although hardware that uses an instruction
pipeline will not run at full speed unless
programs are written to accommodate the
pipeline, a programmer can choose to ignore
pipelining and assume the hardware will
automatically increase speed whenever
possible.

Modern compilers are typically able to move
instructions around to optimize pipeline
execution for RISC architectures.

csi60 9F Ward 45

Advanced Pipeline Topics

Structural hazards (e.g., resource conflicts)
Data hazards (e.g., RAW, WAR, WAW)

Control hazards (e.g., branch prediction,
cache miss)

Dynamic scheduling
Out-of-order issue
Out-of-order execution
Speculative execution
Register renaming

csie0 Ward 46

Parallelizations

csi60 97 Ward 47

Superscalar Architecture [1]

Superscalar architecture (parallelism inside single
processor — Instruction-Level Parallelism)
example

2 pipelines with 2 ALU’s

2 instructions must not conflict over resource (e.g.,

register, memory access unit) and must not depend
on other result

S1 S2 S3 S4 S5
Instruction Operand Instruction Write
decode fetch execution back
Instruction unit unit unit unit
fetch
unit Instruction Operand Instruction Write
decode fetch execution back
unit unit unit unit
csi60 G Ward 48

Superscalar Architecture [2]

Superscalar architecture (parallelism inside
single processor — Instruction-Level
Parallelism) example

Multiple functional units (i.e., ALU’S)

S4

ALU

ALU

S1 s2 S3 / \ S5
Instruction Instruction Operand Write
fetch decode fetch LOAD back
unit unit unit / unit
STORE
Floating
point
cs160 I Ward 49

Processor-Level Parallelism

Array processor: single control unit, large array
of identical processors that perform same
instructions on different data

Vector processor: heavily pipelined ALU efficient
at executing instructions on data pairs (like
matrices) and vector register (set of registers
that can be loaded simultaneously)

Multiprocessors: more than one independent
CPU sharing same memory

Multicomputers: large number of interconnected
computers that don’t share memory but pass
data on buses to share it

csi60 M Ward 50

