
CS160 1Ward

Instruction Execution
&

Pipelining

CS160 2Ward

Instruction Execution

CS160 3Ward

Instruction Execution

• Simple fetch-decode-execute cycle:

1. Get address of next instruction from PC

2. Fetch next instruction into IR

3. Change PC

4. Determine instruction type (add, shift, …)

4. If instruction has operand in memory, fetch
it into a register

5. Execute instruction storing result

6. Go to step 1

CS160 4Ward

Indirect Cycle

• Instruction execution may require
memory access to fetch operands

• Memory fetch may use indirect
addressing
– Actual address to be fetched is in memory
– Requires more memory accesses
– Can be thought of as additional instruction

subcycle

CS160 5Ward

Basic Instruction Cycle States

CS160 6Ward

Data Flow (Instruction Fetch)
• Depends on CPU design; below typical
• Fetch (Step 2)

– PC contains address of next instruction
– Address moved to MAR
– Address placed on address bus
– Control unit requests memory read
– Result placed on data bus, copied to MBR,

then to IR
– Meanwhile PC incremented by 1 instruction

word
• Typically byte addressable, so PC incremented

by 4 for 32-bit address ISA

CS160 7Ward

Data Flow (Instruction Fetch)

Combined in 1-Bus Architecture

3-Bus Architecture

CS160 8Ward

Data Flow (Data Fetch)

• IR is examined
• If indirect addressing, indirect cycle is

performed
– Right most bits of MBR transferred to MAR
– Control unit requests memory read
– Result (address of operand) moved to MBR

CS160 9Ward

Data Flow (Indirect Diagram)

CS160 10Ward

Data Flow (Execute)

• May take many forms
• Depends on instruction being executed
• May include

– Memory read/write
– Input/Output
– Register transfers
– ALU operations

CS160 11Ward

Data Path [1]

• Data path cycle: two operands going from
registers, through ALU and results stored (the
faster the better).

• Data path cycle time: time to accomplish
above

• Width of data path is a major determining
factor in performance

CS160 12Ward

Data Path [2]

CS160 13Ward

RISC and CISC Based Processors

• RISC (Reduced Instruction Set Computer)
vs

CISC (Complex Instruction Set Computer)
– “War” started in the late 1970’s

– RISC:

• Simple interpret step so each instruction faster

• Issues instructions more quickly (faster)

– Basic concept:

If RISC needs 5 instructions to do what 1 CISC
instruction does but 1 CISC instruction takes 10
times longer than 1 RISC, then RISC is faster

CS160 14Ward

RISC vs. CISC Debate

• CISC & RISC both improved during 1980’s
– CISC driven primarily by technology
– RISC driven by technology & architecture

• RISC has basically won
– Improved by over 50% / year
– Took advantage of new technology
– Incorporated new architectural features (e.g.,

Instruction Level Parallelism (ISL), superscalar
concepts)

• Compilers have become critical component
in performance

CS160 15Ward

More on RISC & CISC

• RISC-CISC debate largely irrelevant now
– Concepts are similar

• Heavy reliance on compiler technology

– Modern RISC has “complicated” ISA
– CISC leader (Intel x86 family) now has large

RISC component

CS160 16Ward

Prefetching

CS160 17Ward

Prefetch

• Fetch accesses main memory
• Execution usually does not access main

memory
• Can fetch next instruction during

execution of current instruction
• Called instruction prefetch

CS160 18Ward

Improved Performance

• But not doubled:
– Fetch usually shorter than complete

execution of one instruction
• Prefetch more than one instruction?

– If fetch takes longer than execute, then
cache (will discuss later) saves the day!

– Any jump or branch means that prefetched
instructions are not the required
instructions

CS160 19Ward

Prefetching, Waiting & Branching

CS160 20Ward

Pipelining

CS160 21Ward

Pipelining

• Add more stages to improve performance
• For example, 6 stages:

– Fetch instruction (FI)
– Decode instruction (DI)
– Calculate operands (CO)
– Fetch operands (FO)
– Execute instruction (EI)
– Write operand (result) (WO)

Overlap these stages

Memory access

? Memory access ?

? Memory access ?

Again, cache
saves the day!

CS160 22Ward

Timing of Pipeline

CS160 23Ward

Important points

• An instruction pipeline passes instructions through
a series of stages with each performing some part
of the instruction.

• If the speed of two processors, one with a
pipeline and one without, are the same, the
pipeline architecture will not improve the overall
time required to execute one instruction.

• If the speed of two processors, one with a
pipeline and one without, are the same, the
pipelined architecture has a higher throughput
(number of instructions processed per second).

CS160 24Ward

Execution Time

• Assume that a pipelined instruction processor
has 4 stages, and the maximum time
required in the stages are 10, 11, 10 and 12
nanoseconds, respectively.

• How long will the processor take to perform
each stage?

• How long does it take for one instruction to
complete execution?

• How long will it take for ten instruction to
complete execution?

12 nanoseconds

48 nanoseconds

(48 + 9*12) nanoseconds
156 nanoseconds
15.6 nanoseconds/instru

CS160 25Ward

4-Stage Pipeline

• Another example (with interstage buffers):

– Fetch instruction (F)
– Decode instruction and fetch operands (D)
– Execute instruction (E)
– Write operand (result) (W)

Memory access

? Memory access ?

CS160 26Ward

Some Potential Causes of Pipeline “Stalls”

• What might cause the pipeline to “stall”?
– One stage takes too long (examples)

• Different execution times (data hazard)
• Cache miss (control hazard)
• Memory unit busy (structural hazard)

– Branch to a new location (control hazard)
– Call a subroutine (control hazard)

CS160 27Ward

Long Stages – Execution [1]

• For a variety of reasons, some instructions
take longer to execute than others (e.g.,
add vs divide) stall⇒

F1

F2

F3

I1

I2

I3

E1

E2

E3

D1

D2

D3

W1

W2

W3

Instruction

F4 D4I4

Clock cycle 1 2 3 4 5 6 7 8 9

E4

F5I5 D5

Time

E5

W4

stalls 2
cycles

data
hazard
example

CS160 28Ward

Long Stages – Execution [2]

• Solution:
– Sub-divide the long execute stage into

multiple stages
– Provide multiple execution hardware so

that multiple instructions can be in the
execute stage at the same time

– Produces one instruction completion every
cycle after the pipeline is full

CS160 29Ward

Long Stages – Cache Miss

• Delay in getting next instruction due to
a cache miss (will discuss later)

Decode, Execute & Write stages become idle – stall.

control
hazard
example

CS160 30Ward

Long Stages – Memory Access Conflict

• Two different instructions require
access to memory at the same time

Load X(R1),R2 - place contents of memory location X+R1 into R2

I2 is writing to R2
when I3 wants to
write to a register

structural
hazard

stall

CS160 31Ward

Conditional Branch in a Pipeline
Instruction 3 is a conditional branch to Instruction 15

Important
Architectural
Point: When
is the PC
changed?

control
hazard

CS160 32Ward

Six Stage
Instruction
Pipeline
Logic

?

Note
Unconditional
branch

CS160 33Ward

Alternative
Pipeline
Depiction

CS160 34Ward

Data Dependencies in a Pipeline

r1 = r2 + r3

r4 = r1 - r3

r1 = r2 + r3

r4 = r1 - r3

Pipeline stalls until r1 has been written. (RAW hazard)

CS160 35Ward

Example of Avoiding Stalls

• Stalls eliminated by rearranging (a) to (b)

CS160 36Ward

RAW Hazard: Forwarding

• Hardware optimization to avoid stall
• Allows ALU to reference result in next

instruction
• Example:

Instruction K: C ← add A B
Instruction K+1: D ← subtract E C

CS160 37Ward

Unconditional Branches: Instruction
Queue & Prefetching

CS160 38Ward

Conditional Branches: Delayed Branch

With more stages, need to reorder more instructions.

CS160 39Ward

Conditional Branches: Dynamic Prediction

CS160 40Ward

Pipelining Speedup Factors [1]

without branch

Never get speedup better than the number of stages in a pipeline

CS160 41Ward

Pipelining Speedup Factors [2]

Never get speedup better than the number of
instructions without a branch.

CS160 42Ward

Classic 5-Stage RISC Pipeline

• Instruction Fetch (IF)

• Instruction Decode & Register Fetch (ID)

• Execute / Effective Address (load-store) (EX)

• Memory Access (MEM)

• Write-back (to register) (WB)

Memory access

? Memory access ?

CS160 43Ward

Another 5-Stage Pipeline

• Instruction Fetch (IF)

• Instruction Decode (ID)

• Operand Fetch (OF)

• Execute Instruction (EX)

• Write-back (WB)

Memory access

? Memory access ?

? Memory access ?

CS160 44Ward

Achieving Maximum Speed

• Program must be written to
accommodate instruction pipeline

• To minimize stalls, for example:
– Avoid introducing unnecessary branches
– Delay references to result register(s)

CS160 45Ward

More About Pipelines

• Although hardware that uses an instruction
pipeline will not run at full speed unless
programs are written to accommodate the
pipeline, a programmer can choose to ignore
pipelining and assume the hardware will
automatically increase speed whenever
possible.

• Modern compilers are typically able to move
instructions around to optimize pipeline
execution for RISC architectures.

CS160 46Ward

Advanced Pipeline Topics

• Structural hazards (e.g., resource conflicts)
• Data hazards (e.g., RAW, WAR, WAW)
• Control hazards (e.g., branch prediction,

cache miss)
• Dynamic scheduling
• Out-of-order issue
• Out-of-order execution
• Speculative execution
• Register renaming
•

CS160 47Ward

Parallelizations

CS160 48Ward

Superscalar Architecture [1]

• Superscalar architecture (parallelism inside single
processor – Instruction-Level Parallelism)
example
– 2 pipelines with 2 ALU’s
– 2 instructions must not conflict over resource (e.g.,

register, memory access unit) and must not depend
on other result

CS160 49Ward

Superscalar Architecture [2]

• Superscalar architecture (parallelism inside
single processor – Instruction-Level
Parallelism) example
– Multiple functional units (i.e., ALU’s)

CS160 50Ward

Processor-Level Parallelism

• Array processor: single control unit, large array
of identical processors that perform same
instructions on different data

• Vector processor: heavily pipelined ALU efficient
at executing instructions on data pairs (like
matrices) and vector register (set of registers
that can be loaded simultaneously)

• Multiprocessors: more than one independent
CPU sharing same memory

• Multicomputers: large number of interconnected
computers that don’t share memory but pass
data on buses to share it

