
CS160 1Ward

Instruction Execution
&

Pipelining

CS160 2Ward

Instruction Execution
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Instruction Execution

• Simple fetch-decode-execute cycle:

1. Get address of next instruction from PC

2. Fetch next instruction into IR

3. Change PC

4. Determine instruction type (add, shift, … )

4. If instruction has operand in memory, fetch 
it into a register  

5. Execute instruction storing result

6. Go to step 1
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Indirect Cycle

• Instruction execution may require 
memory access to fetch operands

• Memory fetch may use indirect 
addressing 
– Actual address to be fetched is in memory
– Requires more memory accesses
– Can be thought of as additional instruction 

subcycle
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Basic Instruction Cycle States
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Data Flow (Instruction Fetch)
• Depends on CPU design; below typical
• Fetch  (Step 2)

– PC contains address of next instruction
– Address moved to MAR
– Address placed on address bus
– Control unit requests memory read
– Result placed on data bus, copied to MBR, 

then to IR
– Meanwhile PC incremented by 1 instruction 

word
• Typically byte addressable, so PC incremented 

by 4 for 32-bit address ISA
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Data Flow (Instruction Fetch)

Combined in 1-Bus Architecture

3-Bus Architecture

CS160 8Ward

Data Flow (Data Fetch)

• IR is examined
• If indirect addressing, indirect cycle is 

performed
– Right most bits of MBR transferred to MAR
– Control unit requests memory read
– Result (address of operand) moved to MBR
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Data Flow (Indirect Diagram)
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Data Flow (Execute)

• May take many forms
• Depends on instruction being executed
• May include

– Memory read/write
– Input/Output
– Register transfers
– ALU operations
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Data Path  [1]

• Data path cycle: two operands going from 
registers, through ALU and results stored (the 
faster the better). 

• Data path cycle time:  time to accomplish 
above

• Width of data path is a major determining 
factor in performance
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Data Path  [2]
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RISC and CISC Based Processors

• RISC (Reduced Instruction Set Computer)
vs

CISC (Complex Instruction Set Computer) 
– “War” started in the late 1970’s

– RISC:

• Simple interpret step so each instruction faster

• Issues instructions more quickly (faster)

– Basic concept:

If RISC needs 5 instructions to do what 1 CISC 
instruction does but 1 CISC instruction takes 10 
times longer than 1 RISC, then RISC is faster

CS160 14Ward

RISC vs. CISC Debate

• CISC & RISC both improved during 1980’s
– CISC driven primarily by technology
– RISC driven by technology & architecture

• RISC has basically won
– Improved by over 50% / year 
– Took advantage of new technology
– Incorporated new architectural features (e.g., 

Instruction Level Parallelism (ISL), superscalar 
concepts)

• Compilers have become critical component 
in performance
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More on RISC & CISC

• RISC-CISC debate largely irrelevant now
– Concepts are similar

• Heavy reliance on compiler technology

– Modern RISC has “complicated” ISA
– CISC leader (Intel x86 family) now has large 

RISC component
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Prefetching
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Prefetch

• Fetch accesses main memory
• Execution usually does not access main 

memory
• Can fetch next instruction during 

execution of current instruction
• Called instruction prefetch

CS160 18Ward

Improved Performance

• But not doubled:
– Fetch usually shorter than complete 

execution of one instruction
• Prefetch more than one instruction?

– If fetch takes longer than execute, then 
cache (will discuss later) saves the day!

– Any jump or branch means that prefetched
instructions are not the required 
instructions
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Prefetching, Waiting & Branching
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Pipelining
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Pipelining

• Add more stages to improve performance 
• For example, 6 stages:

– Fetch instruction (FI)
– Decode instruction  (DI)
– Calculate operands   (CO)
– Fetch operands  (FO)
– Execute instruction  (EI)
– Write operand (result)  (WO)

Overlap these stages

Memory access

? Memory access ?

? Memory access ?

Again, cache 
saves the day!
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Timing of Pipeline
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Important points

• An instruction pipeline passes instructions through 
a series of stages with each performing some part 
of the instruction.  

• If the speed of two processors, one with a 
pipeline and one without, are the same, the 
pipeline architecture will not improve the overall 
time required to execute one instruction.

• If the speed of two processors, one with a 
pipeline and one without, are the same, the 
pipelined architecture has a higher throughput
(number of instructions processed per second).
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Execution Time

• Assume that a pipelined instruction processor 
has 4 stages, and the maximum time 
required in the stages are 10, 11, 10 and 12 
nanoseconds, respectively.

• How long will the processor take to perform 
each stage?

• How long does it take for one instruction to 
complete execution?

• How long will it take for ten instruction to 
complete execution?

12 nanoseconds

48 nanoseconds

(48 + 9*12) nanoseconds
156 nanoseconds
15.6 nanoseconds/instru
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4-Stage Pipeline

• Another example (with interstage buffers):

– Fetch instruction (F)
– Decode instruction and fetch operands  (D)
– Execute instruction  (E)
– Write operand (result)  (W)

Memory access

? Memory access ?
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Some Potential Causes of Pipeline “Stalls”

• What might cause the pipeline to “stall”?
– One stage takes too long  (examples)

• Different execution times (data hazard)
• Cache miss  (control hazard)
• Memory unit busy (structural hazard)

– Branch to a new location  (control hazard)
– Call a subroutine  (control hazard)
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Long Stages – Execution [1]

• For a variety of reasons, some instructions 
take longer to execute than others (e.g., 
add vs divide)         stall⇒
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Instruction
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Time

E5
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stalls 2 
cycles

data 
hazard 
example
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Long Stages – Execution [2]

• Solution:
– Sub-divide the long execute stage into 

multiple stages
– Provide multiple execution hardware so 

that multiple instructions can be in the 
execute stage at the same time

– Produces one instruction completion every 
cycle after the pipeline is full
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Long Stages – Cache Miss

• Delay in getting next instruction due to 
a cache miss (will discuss later)

Decode, Execute & Write stages become idle – stall.

control 
hazard 
example
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Long Stages – Memory Access Conflict

• Two different instructions require 
access to memory at the same time

Load X(R1),R2  - place contents of memory location X+R1 into R2 

I2 is writing to R2 
when I3 wants to 
write to a register

structural 
hazard

stall
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Conditional Branch in a Pipeline
Instruction 3 is a conditional branch to Instruction 15

Important 
Architectural 
Point:  When 
is the PC 
changed?

control 
hazard
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Six Stage 
Instruction 
Pipeline 
Logic

?

Note 
Unconditional 
branch
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Alternative 
Pipeline 
Depiction
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Data Dependencies in a Pipeline

r1 = r2 + r3

r4 = r1 - r3

r1 = r2 + r3

r4 = r1 - r3

Pipeline stalls until r1 has been written.  (RAW hazard)
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Example of Avoiding Stalls

• Stalls eliminated by rearranging (a) to (b)
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RAW Hazard: Forwarding 

• Hardware optimization to avoid stall
• Allows ALU to reference result in next 

instruction
• Example:

Instruction K:      C ← add A B
Instruction K+1:  D ← subtract E C
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Unconditional Branches:  Instruction 
Queue & Prefetching
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Conditional Branches: Delayed Branch

With more stages, need to reorder more instructions.
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Conditional Branches:  Dynamic Prediction
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Pipelining Speedup Factors  [1]

without branch

Never get speedup better than the number of stages in a pipeline
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Pipelining Speedup Factors  [2]

Never get speedup better than the number of 
instructions without a branch.
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Classic 5-Stage RISC Pipeline

• Instruction Fetch  (IF)

• Instruction Decode & Register Fetch  (ID)

• Execute / Effective Address (load-store) (EX)

• Memory Access  (MEM)

• Write-back (to register) (WB)

Memory access

? Memory access ?
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Another 5-Stage Pipeline

• Instruction Fetch  (IF)

• Instruction Decode  (ID)

• Operand Fetch  (OF)

• Execute Instruction  (EX)

• Write-back  (WB)

Memory access

? Memory access ?

? Memory access ?
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Achieving Maximum Speed

• Program must be written to 
accommodate instruction pipeline

• To minimize stalls, for example:
– Avoid introducing unnecessary branches
– Delay references to result register(s)
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More About Pipelines

• Although hardware that uses an instruction 
pipeline will not run at full speed unless 
programs are written to accommodate the 
pipeline, a programmer can choose to ignore 
pipelining and assume the hardware will 
automatically increase speed whenever 
possible.

• Modern compilers are typically able to move 
instructions around to optimize pipeline 
execution for RISC architectures.
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Advanced Pipeline Topics

• Structural hazards  (e.g., resource conflicts) 
• Data hazards (e.g., RAW, WAR, WAW)
• Control hazards (e.g., branch prediction, 

cache miss)
• Dynamic scheduling
• Out-of-order issue
• Out-of-order execution
• Speculative execution
• Register renaming
• .  .  .  .
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Parallelizations
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Superscalar Architecture  [1]

• Superscalar architecture (parallelism inside single 
processor – Instruction-Level Parallelism) 
example
– 2 pipelines with 2 ALU’s
– 2 instructions must not conflict over resource (e.g., 

register, memory access unit) and must not depend 
on other result
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Superscalar Architecture  [2]

• Superscalar architecture (parallelism inside 
single processor – Instruction-Level 
Parallelism) example
– Multiple functional units (i.e., ALU’s)
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Processor-Level Parallelism

• Array processor: single control unit, large array 
of identical processors that perform same 
instructions on different data

• Vector processor: heavily pipelined ALU efficient 
at executing instructions on data pairs (like 
matrices) and vector register (set of registers 
that can be loaded simultaneously)

• Multiprocessors: more than one independent 
CPU sharing same memory

• Multicomputers: large number of interconnected 
computers that don’t share memory but pass 
data on buses to share it 


