Computational Analysis of Neutron Scattering Data

PhD Dissertation Defense
Benjamin Martin
July 14 2015
About Me

- B.S. Computer Engineering 2009
- M.S. Computer Engineering 2012
- Intern at ORNL for 5 years
 - Worked on satellite image processing using machine learning for most of ORNL internship
- Some of my more recent research has involved data processing for neutron scattering experiments
 - Shared many similarities with my satellite imagery work
 - Focus on crystal defect detection
 - Joint effort between some of the computational groups at ORNL and groups at SNS
Quick Recap from Proposal
Crystal Structures

- Crystals are repeating structures of “unit cells” of atoms
 - Atoms are the same for all cells
 - Repeating structure is called “long-range order”
- A defect occurs when the periodic structure is disrupted
 - These defects affect material strength, thermal conductivity, pharmaceutical properties, and more.
Neutron Scattering Background

- Looking at diffuse neutron scattering
 - Used for analysis of crystal lattice structures
 - Neutrons pass through sample and create diffraction patterns
 - Diffraction patterns create reciprocal space image
 - Discrete Fourier transform for cell structure factors

![Diagram of neutron scattering process]
Neutron Scattering Background

- Two parts of reciprocal space images:
 - Bragg peaks
 - High-intensity diffraction patterns
 - Describe average crystal structure
 - Diffuse scattering
 - Low-intensity diffraction patterns
 - Describe deviations from average crystal structure
- **Goal:** Analyze textures in the reciprocal space imagery to identify defects in simulated crystal structures
 - Single crystal neutron scattering
 - Diffuse scattering patterns will be the primary focus as they describe deviations from the average crystal structure
Neutron Scattering Background

- Different defects create different diffraction patterns
- Can be viewed as a “fingerprint” for the defect
Goal: Automatically detect defects in simple simulated crystal structures for single crystal scattering experiments

General Approach:
- Extract texture features from reciprocal space images
- Look at problem as a generic data classification problem
- Minimal knowledge of underlying crystal structure needed
- No need for system changes if crystal structure changes
Preliminary Work from Proposal

• Experimental results:
 • 2-class defect classification accuracy: 98.05%
 • 3-class defect classification accuracy: 76.12%
 • Lower accuracy due to similarities between substitution classes

• Extra proof of concept work since proposal
 • Increasing class separation margin for substitutions had little to no effect on classification accuracy in 3-class problem
 • System was able to also detect substitution location
 • 64-class substitution location accuracy: 95.67%

• Random forests were found to perform better than SVMs
 • Both in accuracy and computational complexity

• Details for this preliminary work are available in dissertation
Large Structure Analysis
Overview

- Preliminary work was a proof of concept
 - Tested if defect detection methodology works at all
 - Dataset was for a toy problem
 - Crystal structure was not realistic
 - Defects were very, very simplistic
- Next step: Scale up to a larger structure
 - Defects can be more complex
 - Larger reciprocal space image size
 - Intensity range is much larger than small structure data range
Large Structure Data Properties

- Data is for close-packed crystal structures
- Simulated using the DISCUS simulator
 - Developed by Los Alamos National Laboratory
 - Uses similar methodology to (Butler and Welberry, 1992)
 - Adds extra variables to make simulation more realistic
- Crystal structure is a 100 cell by 100 cell silicon lattice
- Image size is 501 pixels by 501 pixels
 - Single-band intensity maps
- Comparison to preliminary data:
 - Lattice was 8 cells by 8 cells
 - Image size was 129 pixels by 129 pixels
Close-Packed Crystal Structures

- Close-packed crystal structures are created by stacking layers of atoms to form a crystal lattice
 - Layers denoted as letters (A, B, C, etc.)
 - Stacks are represented by strings (ABC)
- Two stacking configurations:
 - **Cubic close packed (CCP)**
 - 3-layer configuration
 - **Hexagonal close packed (HCP)**
 - 2-layer configuration
Close-Packed Structure Defects

- Two types of defects considered
 - Stacking faults
 - Switching from cubic to hexagonal structure (or vice-versa)
 - Short-range order (SRO)
 - Small areas of disorder within the crystal
Close-Packed Structure Defects

- Defects can be similar in appearance
Close-Packed Structure Defects

- Defects can be similar in appearance
Image Feature Extraction

- Keypoint features
 - Automatically detect keypoints (regions of interest) within the image and generate a descriptor for each keypoint location
 - Descriptor is feature vector describing the texture of the image at the keypoint location

\[
f = [84, 41, 21, 36, 44, 21, \ldots]\]
Image Keypoint Extractors

- 3 keypoint extraction algorithms evaluated:
 - SIFT
 - 128-dimensional feature vectors
 - Advertised benefits: “Gold standard” for keypoint features
 - SURF
 - Similar to SIFT, slightly different features (approximations)
 - 64-dimensional feature vectors
 - Advertised benefits: Faster than SIFT
 - ORB
 - Open-source alternative to SIFT and SURF
 - 256-dimensional binary feature vectors
 - Advertised benefits: Real-time performance, high noise robustness
Defect Detection Methodology

- Two challenges were posed by the new data:
 - Large image intensity range
 - Increased volume of detected keypoints due to larger image size
- In order to accommodate for the large range, a preprocessing step was added that scales the data before keypoint extraction
 - Improved keypoint detection for diffuse textures
- The increased number of detected keypoints was addressed by training on only 10% of the keypoints for each image
 - Reduced time required to train classifier without significantly affecting accuracy
Defect Detection Methodology

• Two challenges were posed by the new data:
 • Large image intensity range
 • Increased volume of detected keypoints due to larger image size

• In order to accommodate for the large range, a preprocessing step was added that scales the data before keypoint extraction
 • Improved keypoint detection for diffuse textures

• The increased number of detected keypoints was addressed by training on only 10% of the keypoints for each image
 • Reduced time required to train classifier without significantly affecting accuracy
Image Preprocessing

- Large structure data intensity range is huge
 - Typically in the ballpark of [0, 10^6]
 - Range for preliminary data was approximately [0, 650]
- **Problem**: Causes problems during keypoint extraction
 - Makes keypoint detection difficult
 - Scaling is needed as a preprocessing step
- Common practice seems to be thresholding intensities at 10%–15% of the maximum intensity value
 - Percentage seems to be “eyeballed”
 - Still not good enough for keypoint extraction
Image Preprocessing

- The large data range was due to the Bragg peaks
- **Goal:** Reduce Bragg peak intensity without affecting diffuse scattering patterns
- GUI developed to assist with scaling scheme for Bragg peaks
- **Result:** Scaling methodology developed that thresholds the intensity \(I(p) \) at pixel \(p \) in the image such that:

\[
I_{\text{new}}(p) = \min(I(p), t)
\]

where threshold \(t \) is the mean intensity for the image
Image Preprocessing

• GUI Screenshot (Intensity Mode)
Image Preprocessing

- GUI Screenshot (Keypoint Mode)
Image Preprocessing

- Fixed Percentage Scaling (1% max)
Image Preprocessing

- Mean Scaling
Large Structure Experiment

- **Goal:** Classify image as belonging to 1 of 3 defect classes:
 - “No Defect”, “Stacking Fault”, “SRO”
 - Classes suggested by neutron scientists as hard to distinguish visually
- 600 images simulated via DISCUS
 - 200 No Defect (100 CCP/100 HCP)
 - 200 Stacking Fault (100 CCP/100 HCP)
 - 200 SRO (100 CCP/100 HCP)
- **Note:** No distinction was made between CCP and HCP samples during training
 - Learning to ignore stacking configuration and just focus on the defects was left to the learning algorithm
Large Structure Experiment

- **Preprocessing:**
 - Images scaled via mean scaling method
 - Linear scaling to $[0, 255]$ then performed as required by keypoint extractors
- **3 keypoint extractors tested:** SIFT, SURF, and ORB
- **Training:**
 - Random forest classifier
 - Used 10% of the images in the dataset
 - Random 10% of the keypoints in each image used for training
- **Keypoint voting used to classify test images**
- **Results averaged over 100 independent experiments**
Large Structure Experiment

- **Results:**

<table>
<thead>
<tr>
<th>Keypoint Extractor</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT</td>
<td>96.36%</td>
</tr>
<tr>
<td>SURF</td>
<td>93.04%</td>
</tr>
<tr>
<td>ORB</td>
<td>92.59%</td>
</tr>
</tbody>
</table>

- **Conclusions:**
 - This “difficult” defect detection problem was rather easy to solve using the computational defect detection methodology.
 - SIFT had highest accuracy of the keypoint extractors.
 - More on keypoint extractor evaluation in a moment…
Prediction Evaluation Criteria

- **Question:** How to evaluate the quality of a prediction?
 - What happens if there is a voting tie or general uncertainty?
- **Goal:** To reduce need for human evaluation
 - Cannot expect classifier to be perfect
 - A heuristic may be misleading
- **Solution:** Assign confidence measure to each prediction
 - Defined as the percentage of keypoints that belong to the class that “won” the vote
 - Samples with confidence falling below a predefined threshold can be flagged for human evaluation
Prediction Evaluation Criteria

- Mean confidence for experiment

<table>
<thead>
<tr>
<th>Keypoint Extractor</th>
<th>Mean Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT</td>
<td>75.98%</td>
</tr>
<tr>
<td>SURF</td>
<td>81.61%</td>
</tr>
<tr>
<td>ORB</td>
<td>79.39%</td>
</tr>
</tbody>
</table>

- **Word of Caution:** A high mean confidence does not imply high accuracy
 - Primary goal is to maximize accuracy
 - Only then can confidence be maximized
The keypoint extractors were evaluated using two criteria:

- Classification accuracy
- Computational complexity with respect to image size

Classification accuracy
- SIFT had higher accuracy than SURF or ORB

Computational complexity
- All three extractors have complexity $O(mn)$ for an image of dimensions m pixels by n pixels
 - Detailed ORB analysis is available in dissertation appendix
- However, there is more to consider…
Keypoint Extractor Evaluation

- Benchmark graph for keypoint extractors:
Keypoint Extractor Evaluation

- Computational complexity observations:
 - Computational complexities are the same, but the running times are very different
 - Times required to process a single image vary by algorithm
 - Longer feature vectors cause subsequent processing steps to require more time to complete

- Summary:
 - SIFT has higher accuracy at the cost of longer running times
 - ORB runs faster than SIFT at the cost of lower accuracy
 - A researcher will need to consider the tradeoff between higher accuracy and shorter completion time
Conclusion
Conclusion

- Crystal defects can be detected using image processing and machine learning methods
 - Detection methodology presented and verified using a series of increasingly difficult problems
 - Scaling methodology developed to handle large intensity ranges
 - Method to handle larger image sizes also evaluated
- Random forests most effective in detecting defects
- SIFT and ORB were the top performing keypoint extractors
- Confidence measure can be used to address uncertainty
Future Work

- Real data analysis
 - What modifications will need to be made when using real data?
- Experimentation with multiple defects
 - Is it possible to detect two different defect types in an image?
- Defect texture analysis
 - What textures are unique to a specific type of defect?
 - Could help with classifying subtle differences
- Sensitivity quantification
 - How subtle must defects be before they cannot be detected?
 - First step: Determine which types of defects are hardest to detect
 - Does sensitivity change across periodic table?
- Future publication expected through ORNL/SNS
Summary of Contributions

- Evaluation of data processing methodologies for scattering data
- Analysis of reciprocal space imagery characteristics
- Development of scaling methodology for scattering data
- Creation of GUI to aid in reciprocal space analysis
- Formalization of defect detection methodology evaluated using following test cases
 - Classification of simple defect types in small structures
 - Prediction of defect properties in small structures
 - Detection of more complex faults in larger structures
- Comparison of keypoint extractor and machine learner performance in the context of reciprocal space imagery
 - Including detailed complexity analysis for ORB keypoint extractor
Goals from Proposal

- All goals from proposal completed
 - Small structures: Analysis of substitution class separation
 - Small structures: Detection of substitution location
 - Large structures: Analysis of data properties
 - Development of scaling methodology
 - Defect detection for large crystal structures
 - Evaluation of feature extractors and machine learning methods
 - Including computational complexity analysis
 - Detailed analysis for ORB
 - Study of tie-breaking and confidence for defect predictions
Thank You

Questions?
Extra Slides
Current Detection Methodology

- State-of-the-art crystal defect detection:
Current Detection Methodology

- State-of-the-art crystal defect detection:

Sample 1000

Sample 0

SPOT THE DIFFERENCE
Current Detection Methodology

- State-of-the-art crystal defect detection:

SPOT THE DIFFERENCE
(HINT: HERE’S A DIFF)
Sample Reciprocal Space Image
Reciprocal Space Definition

- Total complex scattered amplitude:
 - $A(k) = \sum_{m=1}^{N} F_m \exp(i k \cdot R_m)$ where:
 - $N = \text{number of cells in the lattice}$
 - $F_m = \text{structure factor for } m^{th} \text{ cell (listed below)}$
 - $k = \text{diffraction wave vector}$
 - $R_m = \text{position vector of } m^{th} \text{ cell}$

- Structure factor:
 - $F_m = \sum_{n=1}^{N_m} f_n \exp(i k \cdot r_n)$ where:
 - $f_n = \text{scattering factor for atom } n$
 - $r_n = \text{location of atom } n \text{ within the cell}$

- Reciprocal space intensity at k:
 - $I(k) = A(k)A^*(k)$
 - Reciprocal space images are basically the DFT magnitude for the structure
 - Phase problem: Phase data lost = Unable to do inverse transform
Feature Extraction Example

Sample 2

Sample 2 - 46 keypoints
Data Information

- Toy dataset
 - 8 cell by 8 cell crystal lattice
 - 129 pixel by 129 pixel intensity maps
 - Cells contain two atoms with different scattering factors
 - Crystal is for proof of concept
 - Not intended to represent a realistic crystal

- Reciprocal space images: Single band pixel intensity maps

- Simulated dataset
 - Generated with the help of ORNL staff using methodology presented in (Butler and Welberry, 1992)
 - Simulations are apparently very accurate and seem to be a common step before performing neutron scattering experiment
Feature Classification

- Any classifier can be used at this point
- Three types of classifiers were evaluated in the experiments:
 - Support vector machine (Linear kernel)
 - Support vector machine (RBF kernel)
 - Random forest
- Input data points:
 - Keypoint descriptors
 - Corresponding label for the image they were extracted from
- Classification of a new image involves:
 - Collecting predictions for all of the keypoints in the image
 - Assigning a final label via a majority vote of the keypoints
Support Vector Machines

- SVMs seek to create a decision boundary that maximizes the margin between two classes
- They are a standard baseline method
- A kernel functions can be used to aid in separation
 - Linear and radial basis function (RBF) evaluated
Random Forests

- Random forests are ensembles of decision trees
 - Each tree uses a different subset of the data
 - Each tree node uses a subset of features to make decision
 - Final classification is via vote or average of tree classifications
Comparison of Learning Algorithms

- Learning algorithms evaluated using two criteria:
 - Classification accuracy
 - Computational complexity with respect to training sample volume

- Classification accuracy
 - Random forests had consistently higher classification accuracy

- Computational complexity for N training samples
 - SVM training: $O(N^2) – O(N^3)$
 - Random forest training: $O(N \times \log(N))$

- **Conclusion:** Random forest is the better choice
 - It had higher accuracy in the experiments
 - It has lower computational complexity for training
Experiment: 2-class Problem

- **Goal:** Classify a crystal containing one of two defect types:
 - Substitution (small and large)
 - Small - scattering factor on [0,1]
 - Large - scattering factor on (1,2)
 - Shear

- Simple problem to evaluate the effectiveness of the proposed defect detection methodology
Experiment: 2-class Problem

- 600 images
 - 400 substitution (200 large, 200 small)
 - 200 shear
- SIFT descriptors extracted from each image
 - Extractor requires images to be scaled to range $[0,255]$
- Training procedure:
 - 3 learners tested: SVM (linear), SVM (RBF), and random forest
 - Learner trained using keypoint descriptors
 - Trained on 10% of images
 - Image label is assigned to each keypoint
- Class of test image determined via majority vote of its keypoints
- Results averaged over 20 independent experiments
Experiment: 2-class Problem

• **Results:**

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (linear)</td>
<td>97.31%</td>
</tr>
<tr>
<td>SVM (RBF)</td>
<td>95.92%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>98.05%</td>
</tr>
</tbody>
</table>

• **Conclusion:**
 • Methodology does good job of detecting defects
 • All classifiers performed very well in this experiment

• **Next step:** Test using a more difficult problem
Experiment: 3-class Problem

- **Goal:** Present harder problem to classifier to test the sensitivity of the defect detection methodology
- Split substitution class into “large substitution” and “small substitution” subsets
 - Harder to distinguish between these classes
- 600 images
 - 200 large substitution
 - 200 small substitution
 - 200 shear
- Training and classification procedure was the same as the previous 2-class experiment
Experiment: 3-class Problem

• **Results:**

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (linear)</td>
<td>70.87%</td>
</tr>
<tr>
<td>SVM (RBF)</td>
<td>70.56%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>76.12%</td>
</tr>
</tbody>
</table>

• **Conclusions:**
 • Methodology is precise enough to predict subtle defect differences
 • Random forest performed much better than the SVMs
 • Lower overall accuracy was due to confusion between large and small substitution classes
 • Increasing class separation did not significantly affect results
Experiment: Substitution Location

- **Goal:** Evaluate whether classification methodology can be used to detect other specific properties of a defect
 - Can location of substitution be predicted?
- 1000 large substitution images
 - Substitution can be in 1 of 64 possible cell locations
- Feature extraction and machine learning set-up was the same as the other defect classification experiments
 - Classification label is the integer index [0,63] for the cell containing the substitution defect
Experiment: Substitution Location

- **Results:**

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (linear)</td>
<td>94.80%</td>
</tr>
<tr>
<td>SVM (RBF)</td>
<td>73.76%</td>
</tr>
<tr>
<td>Random Forest</td>
<td>95.67%</td>
</tr>
</tbody>
</table>

- **Conclusions:**
 - It is possible to predict specific defect properties
 - Random forest and linear SVM performed very well
 - SVM with RBF kernel did not perform as well