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Abstract

Understanding functional gene relationships is a challenging problem for biological ap-

plications. High-throughput technologies such as DNA microarrays have inundated biolo-

gists with a wealth of information, however, processing that information remains problem-

atic. To help with this problem, researchers have begun applying text mining techniques

to the biological literature. This work extends previous work based on Latent Semantic

Indexing (LSI) by examining Nonnegative Matrix Factorization (NMF). Whereas LSI in-

corporates the singular value decomposition (SVD) to approximate data in a dense, mixed-

sign space, NMF produces a parts-based factorization that is directly interpretable. This

space can, in theory, be used to augment existing ontologiesand annotations by identifying

themes within the literature. Of course, performing NMF does not come without a price—

namely, the large number of parameters. This work attempts to analyze the effects of some

of the NMF parameters on both convergence and labeling accuracy. Since there is a dearth

of automated label evaluation techniques as well as “gold standard” hierarchies, a method

to produce “correct” trees is proposed as well as a techniqueto label trees and to evaluate

those labels.
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Chapter 1

Introduction

The emergence of high-throughput techniques in genomics, proteomics, and related bi-

ological fields have generated large amounts of data that enable researchers to examine

biological systems from a global viewpoint. Unfortunately, however, the sheer mass of in-

formation available is overwhelming, and data such as gene expression profiles from DNA

microarray analysis can be difficult to understand fully even for domain experts. Addition-

ally, performing these experiments in the lab can be expensive with respect to both time

and money.

With access to online repositories of biomedical literature becoming widely available in

recent years, text mining techniques have been applied to these databases and are becoming

increasingly accepted as a method to validate lab results and to direct future research by

uncovering latent relationships. [JLKH01] was among the first to utilize online text to

expose gene relationships by exploiting term co-occurrence patterns within the literature.

1



In many cases, the information gleaned from online databases is related to gene function.1

In the biological context, uncovering gene function (phenotype) is one of the primary goals

of research and is also one of the most difficult to verify. In general, protein structure,

not the primary sequence (genotype), indicates function. Unfortunately, structure analysis

is expensive, time-consuming, and difficult—current techniques may not even reveal true

structure as proteins must be first crystallized to be examined. Protein function, however,

can be examined biochemically, although many of the available methods remain remain

time-consuming and expensive.

Since direct examination of proteins is difficult, literature has become an accepted data

source to examine phenotype. Unfortunately, many of the literature sources are themselves

imperfect; many of the medical literature databases onlineare manually indexed. While

manual annotation adds a degree of confidence to an association, the subjectivity involved

can be scrutinized. For example, [FR83] has shown that different manual indexers of MED-

LINE produce consistent associations only 40–50% of the time. Given the time required

to read and classify an article, automated methods may help increase the annotation rate as

well as improve existing annotations.

One such tool that may help improve annotation as well as identify functional groups of

genes is the Semantic Gene Organizer (SGO). SGO is a softwareenvironment based upon

latent semantic indexing (LSI) that enables researchers toview groups of genes in a global

context as a hierarchical tree or dendrogram [Hei04]. The low-rank approximation pro-

1More specifically, genes code for proteins which in turn carry out a specific function.
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vided by LSI (for the original term-to-document associations) exposes latent relationships

between genes, and the resulting hierarchical tree is a visualization of those relationships

that is reproducible and easily interpreted by biologists;[HHWB05] has shown that the

SGO can identify groups of related genes more accurately than term co-occurrence meth-

ods. LSI is based upon the singular value decomposition (SVD) [GL96], and the properties

of the SVD are well-known. Unfortunately, since the input data is a nonnegative matrix of

weighted term frequencies, the negative values prevalent in the basis vectors of the SVD

are not easily interpreted.

The decomposition produced by the recently popular nonnegative matrix factorization

(NMF), however, can be readily interpreted. [PT94] is amongthe first in recent years to

investigate this factorization, and [LS99] later popularized it. Generally speaking, NMF

is an iterative algorithm that preserves the nonnegativityof the original data. The fac-

torization produces a low-rank, parts-based representation of the original data. In effect,

common themes present in the data can be identified simply by inspecting the factor ma-

trices. Depending on the interpretation, the factorization can induce both clustering and

classification. If NMF can accurately model the input data, then it can be used to classify

that data. Within the context of SGO, this means that the groups of genes presented in

the hierarchical trees can be assigned labels that identifytheir common attributes such as

protein function.

The interpretability of NMF, however, comes at a price. Namely, convergence and sta-

bility are not guaranteed. Also, many variations of the NMF proposed by [LS99] exist,
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each with different parameters. The goals of this study are twofold: to provide a qualita-

tive assessment of the NMF and its various parameters, particularly as they apply to the

biomedical context, and to provide an automated way to classify biomedical data as well

as provide a method for evaluating that labeled data assuming a static input tree.2 As a

byproduct, a method for generating “gold standard” trees isproposed.

To appreciate how NMF is applied in this context, a general understanding of SGO is

required. First, a background chapter describing the vector space model and gene document

construction process employed by SGO is presented in Chapter 2. Chapter 3 discusses

the two factorization schemes in detail—both the SVD and NMF. Tree construction and

labeling algorithms are examined in Chapter 4. Finally, Chapter 5 evalutes the performance

of NMF, and Chapter 6 discusses future research.

2The input tree is assumed to be static to avoid biological implications of changing known associations.
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Chapter 2

The Vector Space Model

Traditionally, the field of information retrieval (IR) is divided into Boolean, probabilistic,

and vector space models [BYRN99]. Within the context of SGO,knowledge of the general

vector space model and the impact of term weighting is necessary. Before the documents

can be constructed, however, an understanding of the document creation process is useful;

unlike most IR applications, document construction is a non-trivial process within the SGO

environment.

2.1 Data Representation

An underlying assumption of the vector space model is that meaning can be extracted

from a document solely based on the words that comprise it. After removing articles and

other commonly used terms (stopwords) from the text and ignoring capitalization and most

punctuation, the remaining non-alphanumeric terms (atomic units calledtokens) comprise
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a parsed document; all tokens within a corpus form a dictionary.

Further preprocessing steps can be performed on the dictionary to limit the vocabulary

to the most significant terms. For example, many terms can be excluded from the dictionary

if they do not meet a certain frequency threshold either globally (within the corpus) or

locally (within the document), or similarly if they exceed athreshold.

Another common preprocessing procedure is applying astemmingalgorithm such as the

Porter Stemmer [vRRP80, Por80]. This algorithm attempts tostem all forms of a word into

its common base, essentially stripping all prefixes and suffixes from a word in an attempt

to eliminate all morphological variation. For example, “weighting” and “weights” stem

back to the base word “weight.” Determining the base “word” to stem to is, unfortunately,

a difficult and imperfect process that may introduce additional errors. Overall, however,

stemming is understood to have a marginal impact on retrieval results [Hul96].

While stemming is a way to reduce the vocabulary size,windowingis a way to change

vocabulary size, usually by increasing it [Dam95]. By usinga sliding window of size

n across the text, each token becomes ann-gram of characters. Granted much overlap

is produced for each word, the dictionary is guaranteed to beat most sizeΣn, whereΣ

is the number of characters in the language (usually plus theblankspace). Although the

effectiveness of this approach can be argued [HBC+95], the idea of a sliding window has

merit in some application areas. For example, by extending the sliding window’s atomic

unit to words instead of characters, phrases can be indexed (e.g. “New York City” can be

indexed as one token rather than three separate ones). In thefield of bioinformatics, [SB03]
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has applied the sliding window concept to proteins to develop peptide motifsthat comprise

the dictionary. Regardless of the preprocessing step used,for the vector space model to

be successful, the dictionary must contain most if not all ofthe tokens (after stemming,

windowing, or another procedure is applied) that will be used to query.

Once the dictionary is built, a corpus is represented by anm × n term-by-document

matrix A = [wij], wherewij is the weight associated with tokeni in documentj, m is

the number of tokens in the dictionary, andn is the number of documents in the corpus.

Furthermore, the columns ofA correspond to document vectors of lengthm, while the

rows of A are term vectors of lengthn. In this particular context, the document vectors

or columns ofA also correspond to particular genes. A sample corpus and corresponding

term-document matrix is given in Tables 2.1 and 2.2; the log-entropy weighting scheme

discussed in Section 2.2 was used to generate the term weights.

2.2 Term Weighting

Defining the appropriate weighting scheme for each corpus isapplication-dependent. Typ-

ically, each weightwij is based on some function of the frequency of a token within a

document or the entire corpus. In general,

wij = lijgidj,
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Table 2.1: Sample collection with dictionary terms displayed inbold.

Document Text
d1 Work-relatedstresscan be considered a factor contributing toanxiety.

d2 Liver cancer is most commonly associated withalcoholism andcirrhosis. It is well-known
thatalcoholismcan causecirrhosis and increase the risk ofkidney failure .

d3 Bone marrow transplants are often needed for patients withleukemia and other types ofcan-
cer thatdamage bone marrow. Exposure to toxic chemicals is a risk factor forleukemia.

d4 Different types ofblood cells exist in bone marrow. Bone marrow procedures can detect
tuberculosis.

d5 Abnormalstressor pressurecan cause ananxiety attack. Continuedstresscan elevateblood
pressure.

d6 Alcoholism can cause highblood pressure(hypertension) and increase the risk ofbirth de-
fectsandkidney failure .

d7 The presence ofspeech defectsin children is a sign ofautism. As of yet, there is no consensus
on what causesautism.

d8 Alcoholism, often triggered at an early age by factors such as environment and genetic predis-
position, can lead tocirrhosis. Cirrhosis is thescarring of the liver .

d9 Autism affects approximately 0.5% ofchildren in the US. The link betweenalcoholism and
birth defects is well-known; researchers are currently studying the linkbetweenalcoholism
andautism.

Table 2.2: Term-document matrix for the sample collection in Table 2.1.

d1 d2 d3 d4 d5 d6 d7 d8 d9
alcoholism 0.4338 0.2737 0.2737 0.4338

anxiety 0.4745 0.4745
attack 0.6931
autism 0.7520 0.7520
birth 0.4745 0.4745
blood 0.3466 0.3466 0.3466
bone 0.7520 0.7520

cancer 0.4745 0.4745
cells 0.6931

children 0.4745 0.4745
cirrhosis 0.7520 0.7520
damage 0.6931
defects 0.3466 0.3466 0.3466
failure 0.4745 0.4745

hypertension 0.6931
kidney 0.4745 0.4745

leukemia 1.0986
liver 0.4745 0.4745

marrow 0.7520 0.7520
pressure 0.7804 0.4923
scarring 0.6931
speech 0.6931
stress 0.4923 0.7804

tuberculosis 0.6931
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wherelij denotes the local weight of termi in documentj, gi corresponds to the global

weight of termi, anddj is a document normalization factor for the columns ofA. Since

most weighting schemes are based on word frequency, using a normalization factor helps

eliminate the effect of document length discrepancies and spamming.

By default, SGO utilizes thelog-entropyweighting scheme, given by

lij = log (1 + fij),

gi = 1 +







∑

j
(pij log pij)

log n





 ,

wherefij is the frequency of tokeni in documentj andpij = fij/
∑

j
fij is the probability

of tokeni occurring in documentj. By design, tokens that appear less frequently across

the collection but more frequently within a document will begiven higher weight. That

is, distinguishing tokens will tend to have higher weights assigned to them, while more

common tokens will have weights closer to zero.

2.3 Similarity

Measuring similiarity between any two vectors in the document space is accomplished by

computing the cosine of the angle between them and is represented by

sim (di, dj) = cos Θij =

m
∑

k=1
wkiwkj

√

m
∑

k=1
w2

ki

√

m
∑

k=1
w2

kj

,
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whereΘij is the angle between any two documentsi andj. In the vector space model,

nonzero similarities exist only if two documents share common terms; this caveat is evi-

denced by the sample collection similarity matrix presented in Table 2.3.

On the other hand, a measure of distance can be calculated by

dist (di, dj) = 1− cos Θij . (2.1)

The numerical similarity and distance values by themselvescarry little meaning; however,

such measures are useful when constructing similarity and distance matrices that show

pairwise similarities and distances between every combination of two documents in the

collection. In fact, this measure is not a metric; that is, Equation (2.1) does not satisfy the

triangle inequality (oraddivity) required by many tree construction algorithms to guarantee

the production of a “correct” tree. However, the “best fit” tree can be found by minimizing

Equation (4.1).

2.4 Gene Document Construction

An abundance of medical and biological literature exists indatabases worldwide. The

United States National Library of MedicineR© (NLM) maintains one such bibliographic

database, called MEDLINER© (Medical Literature, Analysis, and Retrieval System On-

line). MEDLINE covers topics that concern biomedical practitioners such as biomedical

research, chemical sciences, clinical sciences, and life sciences. Currently, MEDLINE con-
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Table 2.3: Document-to-document similarity matrix for thesample collection.

d1 d2 d3 d4 d5 d6 d7 d8 d9
d1 1 0 0 0 0.6234 0 0 0 0
d2 0 1 0.1003 0 0 0.3380 0 0.6094 0.1271
d3 0 0.1003 1 0.4359 0 0 0 0 0
d4 0 0 0.4359 1 0.0565 0.0617 0 0 0
d5 0.6234 0 0 0.0565 1 0.2695 0 0 0
d6 0 0.3380 0 0.0617 0.2695 1 0.0778 0.0493 0.3081
d7 0 0 0 0 0 0.0778 1 0 0.6711
d8 0 0.6094 0 0 0 0.0493 0 1 0.0889
d9 0 0.1271 0 0 0 0.3081 0.6711 0.0889 1

tains over 15 million citations to biologically-related articles spanning over 5,000 journals,

with approximately 2,000–4,000 citations added daily [NLM]. Each citation is manually

tagged with Medical Subject HeadingR© (MeSH) terms; MeSH is a controlled vocabulary

provided by NLM organized in a hierarchical fashion.

NLM provides PubMed and NLM Gateway as tools to search MEDLINE. Since MED-

LINE covers a broad range of topics and genes themselves havealiases, simply querying

PubMed for a particular gene is not guaranteed to return citations relevant to the gene in

question; PubMed searches are subject to the problems of synonymy and polysemy. For

a more gene-centric search, LocusLink can be used. LocusLink is provided by the Na-

tional Center for Biotechnology Information (NCBI), a division of NLM that specializes in

molecular biology. LocusLink, which has been upgraded to EntrezGene [MOPT05], is a

human-curated database that contains a myriad of information pertaining to each gene.

In particular, many genes are linked to key relevant MEDLINEcitations via PubMed.

Unfortunately, since EntrezGene is human-curated, its coverage of MEDLINE and other

databases is sparse, but its lack of quantity of citations iscompensated by the quality of its
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citations.

Unlike traditional IR fields, creating a document collection is an iterative, non-trivial

process requiring expert knowledge. To create agene document(text document to represent

a gene), an ad hoc method is applied [Hei04]. Titles and abstracts of all MEDLINE citations

generated via PubMed cross-referenced in the Mouse, Rat, and Human EntrezGene (or

LocusLink) entries are concatenated into a document for each gene. Since the coverage of

MEDLINE provided by EntrezGene and PubMed is both incomplete and imperfect, many

errors can be introduced. For example, many of the genes havealiases since their names

have changed over time or depending on which field is referencing them. As such, trying

to find all references to a particular gene can be difficult. Filtering techniques iteratively

applied to the gene document collection can produce more accurate gene representations

and are discussed in [HHWB05]. After the process is complete, each gene document may

not have complete coverage of all related MEDLINE material,but each of its constituent

abstracts will have been validated at some level by manual curation, hopefully resulting in

a good representative document.

2.5 MeSH Meta-Collection

In addition to the constructing gene documents, constructing MeSH documents can help

with the evaluation process. Since each abstract associated with a gene is tagged with

possibly multiple MeSH headings by a human indexer, a MeSH gene document can be

created by concatenating those headings. In effect, this approach takes advantage of known
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associations indicated by the human indexer to create a meta-collection of MeSH terms

that can help summarize the information contained in the original gene corpus. Although

MeSH is a hierarchy, that hierarchy is ignored when headingsare assigned to an abstract.

Also, the MeSH headings can themselves be weighted with log-entropy weights to help

find more distinguishing headings. These weighted MeSH headings can be assigned to a

hierarchical tree via the method outlined in Algorithm 4.1,where each node is represented

by its dominant MeSH heading. The resulting labeling can be considered a “gold standard”

against which to compare.1 For the purposes of this dissertation, the MeSH meta-collection

constructed for a collection is indicated by appending “MeSH” to the collection name

(e.g., if the50TG collection is being examined, then50TGMeSH indicates the MeSH

meta-collection associated with50TG).

1This procedure is explained in more detail is Section 4.2.
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Chapter 3

Dimension Reduction Techniques

The vector space model presented in Chapter 2 suffers from thecurse of dimensionality. In

other words, as the problem sizes increase and become more complex, the processing time

required to construct a vector space and query throughout the document space increases as

well. In addition, the vector space model exclusively measures term co-occurence—that is,

the inner product between two documents is nonzero if and only if there exist at least one

shared term between them. No attempt to discern the underlying structure of the data is

made, and problems such assynonymy1 andpolysemy2 will reduce the effectiveness of the

model.

To combat the problem of dimensionality, dimension reduction techniques are typically

employed. A multitude of techniques exist, each with its ownstrengths and weaknesses. To

combat the synonymy problem, Latent Semantic Indexing (LSI) is discussed. Nonnegative

1If two different words have the same meaning, then they are synonyms.
2Polysemy refers to words having multiple definitions.
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Matrix Factorization (NMF) is examined to analyze further the underlying structure of the

data set in question.

3.1 Latent Semantic Indexing

LSI is based on the singular value decomposition (SVD). Given a matrix,A, the SVD is

given by

A = UΣV T ,

whereU is them × r matrix of eigenvectors ofAAT , Σ is ther × r diagonal matrix ofr

singular values ofA, V T is ther×n matrix of eigenvectors ofAT A, andr is the rank ofA.

Furthermore, bothU andV have orthonormal columns, and the diagonal matrixΣ has, by

convention, only positive elements ordered by decreasing magnitude [GL96]. If an SVD is

performed on the sample term-document matrix, the left singular matrix is given by

U =





































































0.0563 −0.3569 −0.1740 0.0172 −0.0333 0.0203 0.0878 −0.3844 0.0897
0.0189 −0.1156 0.3191 0.0723 0.1516 −0.1855 −0.0951 −0.1927 −0.5269
0.0234 −0.1356 0.3521 0.0778 0.1355 −0.1565 −0.0040 0.0441 0.5135
0.0200 −0.2783 −0.1083 −0.5975 0.1165 −0.2264 −0.0296 −0.1097 0.0917
0.0306 −0.2523 0.0096 −0.1781 −0.0957 0.2573 0.3105 −0.3327 −0.0403
0.1270 −0.1586 0.2396 0.0209 −0.2300 0.0327 0.0593 0.1308 0.1034
0.5231 0.1042 0.0206 −0.0412 −0.1411 −0.0705 0.0180 −0.0075 −0.0201
0.2261 −0.0938 −0.1417 0.1206 0.2138 0.0757 −0.3714 −0.1106 0.1234
0.1980 0.0352 0.0566 −0.0311 −0.4297 −0.1915 −0.0695 −0.0409 −0.0051
0.0126 −0.1758 −0.0684 −0.3774 0.0736 −0.1430 −0.0186 −0.0692 0.0579
0.0692 −0.3585 −0.3502 0.3751 0.0360 −0.3172 −0.0176 0.0666 0.0337
0.2841 0.0609 −0.0375 −0.0068 0.2996 0.1265 0.0862 0.0340 −0.0133
0.0254 −0.2367 −0.0149 −0.2781 −0.0289 0.1025 0.0825 0.0786 −0.1088
0.0535 −0.2838 −0.0680 0.1220 −0.1047 0.2724 −0.2987 0.0429 −0.0742
0.0323 −0.2162 0.0699 −0.0048 −0.1651 0.4135 0.1922 0.2581 −0.3018
0.0535 −0.2838 −0.0680 0.1220 −0.1047 0.2724 −0.2987 0.0429 −0.0742
0.4506 0.0965 −0.0595 −0.0108 0.4752 0.2006 0.1367 0.0539 −0.0211
0.0437 −0.2264 −0.2212 0.2369 0.0228 −0.2003 −0.0111 0.0421 0.0213
0.5231 0.1042 0.0206 −0.0412 −0.1411 −0.0705 0.0180 −0.0075 −0.0201
0.0492 −0.3062 0.4459 0.0841 0.0352 0.1173 0.1318 0.2329 0.3636
0.0181 −0.1324 −0.1535 0.1628 0.0209 −0.2762 0.6119 0.2569 −0.1622
0.0061 −0.1045 −0.0439 −0.2956 0.0820 −0.1705 −0.2880 0.6424 −0.1583
0.0293 −0.1762 0.4768 0.1072 0.2133 −0.2572 −0.1002 −0.1813 −0.3323
0.1980 0.0352 0.0566 −0.0311 −0.4297 −0.1915 −0.0695 −0.0409 −0.0051





































































,
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the right singular matrix by

V =





















0.0119 −0.0822 0.2514 0.0590 0.1479 −0.1880 −0.1354 −0.2914 −0.8750
0.1299 −0.4916 −0.3751 0.3896 0.0212 −0.0264 −0.6321 −0.1750 0.1320
0.8064 0.1512 −0.0832 −0.0146 0.5174 0.2084 0.0867 0.0305 −0.0090
0.5619 0.0873 0.1253 −0.0664 −0.7420 −0.3155 −0.0699 −0.0366 −0.0035
0.0663 −0.3371 0.7802 0.1657 0.2340 −0.2579 −0.0041 0.0395 0.3504
0.0916 −0.5373 0.1548 −0.0103 −0.2851 0.6812 0.1934 0.2311 −0.2059
0.0173 −0.2599 −0.0974 −0.6299 0.1415 −0.2810 −0.2899 0.5753 −0.1080
0.0512 −0.3292 −0.3402 0.3468 0.0361 −0.4551 0.6158 0.2300 −0.1107
0.0350 −0.3774 −0.1238 −0.5434 0.0439 −0.0627 0.2625 −0.6657 0.1658





















,

and the singular values on the diagonal ofΣ by

diag(Σ) = (1.967, 1.7217, 1.5358, 1.4765, 1.1965, 1.1417, 0.6974, 0.6205, 0.4729) .

To generate a rank-s approximationAs of A wheres < r, each matrix factor is trun-

cated to its firsts columns. That is,As is computed as

As = UsΣsV
T
s .

Not only isAs a lower rank approximation ofA, it is the best rank-s approximation ofA

with respect to the Frobenius norm; [EY36] has shown that

‖A− As‖F ≤ ‖A− B‖F

for any matrixB of ranks. In this lower rank space, document-to-document similarity is

computed as the inner product of the two documents in question. In matrix form,

AT
s As = (VsΣs) (VsΣs)

T
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will denote the similarity of each document in the corpus to every other. This calculation

measures the dot product between the columns ofAs.

Similarly, term-to-term similarity can be computed as the inner product of the two terms

in question. In matrix form,

AsA
T
s = (UsΣs) (UsΣs)

T

yields a square, symmetric matrix that contains the dot product between any two rows in

the scaled termspace.

One of the main drawbacks of the standard vector space model is that there is no

straightforward way to compare terms to documents should the need arise. SinceA is

m × n wherem differs fromn most of the time, a dot product cannot be taken between

document and term vectors. In the rare case wherem equalsn, the difference in the defi-

nition of axis components would make such a comparison meaningless. With a low-rank,

square matrix approximationAs, however, comparing a document with a term is possible.

Rather than performing a dot product of rows or columns ofAs, inspection of the defi-

nition of As yields a similarity value between each term/document pair.That is, given term

i and documentj, and by observing that

As = UsΣsV
T
s , (3.1)

the dot product between theith row ofUsΣ
1/2 and thejth column ofVsΣ

1/2 represents the
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similarity between termi and documentj. In other words, the factored term and document

axes must be stretched or shrunk by a factor ofΣ1/2 [DDL+90].

If document-to-document similarity is computed in the rank-4 space provided by the

SVD for the sample collection, inspection of the matrix in Table 3.1 shows that intuitive

document similarities are present. Although documents d1 and d6 share no common terms,

sim(d1, d6) = 0.55, probably sincepressureis related tostressvia document d5. This

comparison is made because the lower-rank space provided bythe SVD forces documents

to be represented by fewer components. Hence, hints of the power of LSI as well as some

of the possible shortcomings of the bag of words model are present (sincepressurecan be

considered to be used in two different contexts in documentsd5 and d6).

3.2 Nonnegative Matrix Factorization

In its simplest form, given anm×n nonnegative matrixA, nonnegative matrix factorization

(NMF) is a technique that attempts to find two nonnegative factor matrices,W andH, such

that

A ≈WH, (3.2)

whereW andH arem× k andk × n matrices, respectively. In the context of this disser-

tation,A = [aij ] is anm × n matrix that represents the gene document collection. Each

entryaij represents the term weight3 of tokeni in gene documentj. Hence, the rows of

3Section 2.2 discusses term weighting in more detail.
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Table 3.1: Document-to-document similarity matrix for thesample collection. Similarities
were calculated by computing the cosine between each normalized document pair in the
rank-4 space generated by the SVD.

d1 d2 d3 d4 d5 d6 d7 d8 d9
d1 1 -0.0918 -0.0752 0.1469 0.9941 0.5515 -0.1698 -0.1901 -0.1121
d2 -0.0918 1 0.1270 -0.0090 -0.0153 0.5848 -0.0488 0.9841 0.1706
d3 -0.0752 0.1270 1 0.9659 -0.0469 0.0095 -0.0138 0.0453 -0.0108
d4 0.1469 -0.0090 0.9659 1 0.1705 0.0971 0.0277 -0.1179 0.0171
d5 0.9941 -0.0153 -0.0469 0.1705 1 0.6366 -0.1006 -0.1254 -0.0266
d6 0.5515 0.5848 0.0095 0.0971 0.6366 1 0.3931 0.4535 0.5677
d7 -0.1698 -0.0488 -0.0138 0.0277 -0.1006 0.3931 1 -0.1450 0.9727
d8 -0.1901 0.9841 0.0453 -0.1179 -0.1254 0.4535 -0.1450 1 0.0652
d9 -0.1121 0.1706 -0.0108 0.0171 -0.0266 0.5677 0.9727 0.0652 1

A represent term vectors that show how terms are distributed across the entire collection,

while the columns ofA show which terms are present within a gene document. The opti-

mal choice ofk is application-dependent and is often empirically chosen.Typically, k is

chosen so thatk ≪ min (m, n) [WCD03].

The goal of NMF is to approximate the original term by gene document space as accu-

rately as possible with the factor matricesW andH. As noted earlier in Section 3.1, the

SVD will produce the optimal low-rank approximation for anygiven ranks with respect to

the Frobenius norm. Unfortunately, that optimality frequently comes at the cost of negative

elements. The factor matrices of the NMF, however, are strictly nonnegative which may

facilitate direct interpretability of the factorization.Thus, although an NMF approximation

may not be optimal from a mathematical standpoint, it may be sufficient and yield better

insight into the dataset than the SVD for certain applications.

Upon completion of NMF, the factor matricesW andH will, in theory, accurately ap-

proximate the original matrixA and yet contain some valuable information about the data
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set in question. For example, Equation (3.2) can be rewritten asa ≈ Wh. That is, columns

a of A are approximated by linear combinations of the columns ofW weighted by the

columnsh of H. Thus,W can be thought of as a basis of the data inA. Since onlyk

columns are used to represent the original data andk is usually much smaller thann, W is

a more accurate basis ofA the closer that the columns ofW are to true representations of

the latent structure inherent in the data represented byA. That is, error in the overall ap-

proximation is minimized the closer thatW becomes to representing the dominant features

in the original data. As a result,W is commonly referred to as thefeature matrixcontaining

feature vectorsthat describe the themes inherent within the data, whileH can be called a

coefficient matrixsince its columns describe how each document spans each feature and to

what degree.

If NMF is applied to the sample term-document matrix in Table2.2, one possible fac-

torization is given in Tables 3.2 and 3.3; the approximationto the term-document matrix

generated by mutliplyingW × H is given in Table 3.4. The top-weighted terms for each

feature are presented in Table 3.5. By inspection, the sample collection has features that

representleukemia, alcoholism, anxiety, andautism. If each document and term is assigned

to its most dominant feature, then the original term-document matrix can be reorganized

around those features. The restructured matrix typically resembles a block diagonal matrix

and is given in Table 3.6.
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Table 3.2: Feature matrixW for the sample collection.

f1 f2 f3 f4
alcoholism 0.0006 0.3503

anxiety 0.4454
attack 0.4913
autism 0.0030 0.8563
birth 0.1111 0.0651 0.2730
blood 0.0917 0.0538 0.3143
bone 0.5220 0.0064

cancer 0.1974 0.1906
cells 0.1962 0.0188

children 0.0019 0.5409
cirrhosis 0.0015 0.5328
damage 0.2846
defects 0.0662 0.4161
failure 0.0013 0.2988

hypertension 0.1454 0.1106
kidney 0.0013 0.2988

leukemia 0.4513
liver 0.0009 0.3366

marrow 0.5220 0.0064
pressure 0.066 0.6376
scarring 0.208
speech 0.4238
stress 0.6655

tuberculosis 0.1962 0.0188

Table 3.3: Coefficient matrixH for the sample collection.

d1 d2 d3 d4 d5 d6 d7 d8 d9
f1 0.0409 1.6477 1.1382 0.0001 0.0007
f2 1.3183 0.0049 0.6955 0.0003 0.9728 0.2219
f3 0.3836 0.0681 1.1933 0.3327
f4 0.1532 0.9214 0.799
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Table 3.4: Approximation to sample term-document matrix given in Table 2.2.

d1 d2 d3 d4 d5 d6 d7 d8 d9
alcoholism 0.4618 0.0010 0.0007 0.0017 0.2436 0.0001 0.3408 0.0777

anxiety 0.1708 0.0303 0.5315 0.1482
attack 0.1884 0.0334 0.5863 0.1635
autism 0.0040 0.1333 0.7890 0.0029 0.6848
birth 0.0250 0.1464 0.0044 0.0783 0.1407 0.2516 0.1080 0.2428
blood 0.1206 0.0746 0.1511 0.1258 0.3754 0.1420 0.0523 0.0119
bone 0.0025 0.0214 0.8602 0.5946 0.0077 0.0025

cancer 0.2593 0.3252 0.2247 0.001 0.1327 0.0001 0.1854 0.0423
cells 0.0072 0.0080 0.3233 0.2246 0.0224 0.0064

children 0.0025 0.0842 0.4984 0.0019 0.4326
cirrhosis 0.7025 0.0024 0.0017 0.0026 0.3705 0.0002 0.5183 0.1183
damage 0.0116 0.4689 0.3239 0.0002
defects 0.0873 0.0003 0.1098 0.3834 0.0644 0.3472
failure 0.3939 0.0022 0.0015 0.0015 0.2078 0.0001 0.2906 0.0663

hypertension 0.0424 0.1916 0.0075 0.1327 0.1379 0.1414 0.0323
kidney 0.3939 0.0022 0.0015 0.0015 0.2078 0.0001 0.2906 0.0663

leukemia 0.0185 0.7437 0.5137 0.0003
liver 0.4437 0.0015 0.0011 0.0017 0.2341 0.0001 0.3274 0.0747

marrow 0.0025 0.0214 0.8602 0.5946 0.0077 0.0025
pressure 0.2445 0.0870 0.0434 0.7612 0.2580 0.0642 0.0147
scarring 0.2742 0.0010 0.1446 0.0001 0.2023 0.0462
speech 0.0649 0.3905 0.3386
stress 0.2553 0.0453 0.7942 0.2214

tuberculosis 0.0072 0.0080 0.3233 0.2246 0.0224 0.0064

Table 3.5: Top 5 words for each feature from the sample collection.

f1 f2 f3 f4
bone cirrhosis stress autism

marrow alcoholism pressure children
leukemia liver attack speech
damage kidney anxiety defects
cancer failure blood birth
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Table 3.6: Rearranged term-document matrix for the sample collection.

d3 d4 d2 d6 d8 d1 d5 d7 d9
bone 0.7520 0.7520

cancer 0.4745 0.4745
cells 0.6931

damage 0.6931
leukemia 1.0986
marrow 0.7520 0.7520

tuberculosis 0.6931
alcoholism 0.4338 0.2737 0.2737 0.4338
cirrhosis 0.7520 0.7520
failure 0.4745 0.4745

hypertension 0.6931
kidney 0.4745 0.4745
liver 0.4745 0.4745

scarring 0.6931
anxiety 0.4745 0.4745
attack 0.6931
blood 0.3466 0.3466 0.3466

pressure 0.4923 0.7804
stress 0.4923 0.7804
autism 0.7520 0.7520
birth 0.4745 0.4745

children 0.4745 0.4745
defects 0.3466 0.3466 0.3466
speech 0.6931

3.2.1 Cost Function

Each iteration of NMF should improve its approximation of the original data matrixA with

respect to some cost function. Equation (3.2) can be rewritten as

A = WH + C (A, WH) ,

whereC (A, WH) is a cost or error function. Typically,C is defined as either squared

Euclidean distance or divergence. Squared Euclidean distance, or equivalently, the squared
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Frobenius norm, is given by

‖A−WH‖2F =
∑

ij

(

Aij − (WH)ij

)2
.

This distance measure is zero if and only ifA = WH and is the primary measure used for

derivations in this dissertation.

The divergence measure, given by

D (A‖WH) =
∑

ij

(

Aij log
Aij

(WH)ij

− Aij + (WH)ij

)

,

is also zero if and only ifA = WH but is not symmetric inA andWH. If
∑

ij A =

∑

ij WH = 1, then the divergence measure is the Kullback-Leibler divergence or relative

entropy [LS01].

NMF attempts to minimize the cost functionC with respect toW andH subject to

the constraints that bothW andH must remain nonnegative. Both of the cost functions

discussed are convex in eitherW or H, but not both variables together. As such, find-

ing global minima to the problem is unrealistic—however, finding several local minima is

within reason. Also, for each solution, the matricesW andH are not unique. This property

is evident when examiningWDD−1H for any nonnegative invertible matrixD [BBL+06].
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3.2.2 Initialization

As previously noted, NMF may converge to a number of local solutions. Exactly to which

solution NMF converges depends not only on the update rule employed, but on the starting

point. The initial estimates forW andH affect both the final solution obtained as well as

how fast NMF converges to that solution. Although many initialization strategies exist in

the literature, in practice, most applications initializeboth W andH to random positive

entries.

Structured initialization is a way to speed convergence, however, the cost of performing

the structured initialization must be weighed against the speedup in convergence as well as

the solution quality. Since NMF attempts to uncover latent structure of the original data

in a lower dimensional space, any method that can quickly approximate that structure will

likely improve convergence over random initialization.

Other Methods

Centroid clusteringbased on Spherical K-Means was proposed in [WCD04] as a method

to improve upon random initialization. Givenk, Spherical K-Means can produce a cen-

troid matrixM which can be arrived upon either by convergence or by completing a fixed

number of iterations. WithM , compute the nonnegative coefficient matrixN which mini-

mizes‖A−MN‖F using the nonnegative least squares algorithm [LH74].W andH are

initialized toM andN , respectively. This method, however, suffers from a similar draw-

back to NMF—the initial partitioning ofA is frequently assigned in some random fashion
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[DFG01]. Like NMF, K-Means can be sensitive to the initial partitioning [Hei06], meaning

that multiple runs to local optima will have to replace finding a global optima.4

Similar to the centroid clustering, [LMA06] proposesSVD-centroid initializationalong

with the next three schemes. While clustering on the original data matrixA can be relatively

expensive, clustering on the SVD factor matrixV can be a faster alternative assuming the

SVD is readily available. Once a clustering ofV is achieved, for each centroidci of V ,

a new cluster centroid̂ci is computed with the corresponding columns of the original data

matrixA and entered into the initial columnwi of W (0). As a result, some of the structure

inherent in the best-fit, low-rank space provided by the SVD and the nonnegativity ofA

can be exploited while the cost of directly clusteringA is avoided. This method, however,

still suffers from the same drawbacks as any K-Means-based algorithm.

Random Acol initializationalso exploits the nonnegativity ofA. Rather than forming

a denseW (0) with positive entries, random Acol forms columnwi of W (0) by averaging

p columns ofA. As a result, much of the original sparsity in the data is preserved. Simi-

larly, random C initialization(so named after its inspiration from the CUR decomposition

[DKM06]) is another strategy that is basically random Acol applied to the longest columns

of A rather than all ofA. As a result, the most dense columns ofA tend to be chosen as

initial estimates for columns ofW (0) since they will tend to have the largest 2-norm and

will more likely be centroid centers.

Inspired by the term co-occurrence matrix presented in [San05], co-occurrence initial-

4Finding the optimal partitioning for any data set with respect to cluster coherence is known to be NP-
complete [KPR98, GJW82].
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izationforms the columns ofW (0) as the “Topical Space” output from Algorithm 2 of that

paper. Since the co-occurrence matrixAAT is typically very large, initializingW with this

method is impractical.

NNDSVD

[BG05] proposes the Non-negative Double Singular Value Decomposition (NNDSVD)

scheme. NNDSVD aims to exploit the SVD as the optimal rank-k approximation ofA.

The heuristic overcomes the negative elements of the SVD by enforcing nonnegativity

whenever encountered and is given in Algorithm 3.1.

[BG05] shows that the best nonnegative approximation to an arbitrary matrixM is the

matrixM+, which is formed by zeroing all the negative elements. Intuitively, for each SVD

dimensionG(j) = ujv
T
j , whereG(j) denotes the rank-1 outer product of thejth left and

right singular vectors, NNDSVD formsG(j)
+ , the best nonnegative approximation to that

dimension. The most dominant singular triplet of that approximation is then calculated via

the SVD and the corresponding singular vectors are insertedas a column or row inW (0) or

H(0), respectively. The dominant singular triplet can be chosento be nonnegative since the

original matrix,G+, is nonnegative.

The SVD can produce the optimal rank-k approximation ofA as

Ak = UkÂ
T
k =

k
∑

j=1

σjG
(j)

whereG(j) = uja
T
j andUk = [u1, . . . , uk] , Âk = [σ1a1, . . . , σkak]. Simply seeding the

28



Algorithm 3.1 NNDSVD Initialization

Input: Term-by-Document MatrixA, Integerk < min(m, n)
Output: Initial Factor MatricesW (0), H(0)

Perform truncated SVD ofA of k dimensions
Initialize first column ofW with the first column ofU
Initialize first row ofH with the first row ofV T scaled by the first singular value
for j = 2 : k do

Form matrixG(j) by multiplying columnj of U with row j of V T

Form matrixG(j)
+ by setting negative elements ofG(j) to 0

Compute the maximum singular triplet(u, s, v) of G
(j)
+

Set columnj of W to u
Set rowj of H to vT scaled by thejth singular value ands

end for

NMF by using the nonnegative elements of the singular vectors can be done, however,

such a step can overconstrain the initialization as the product of the zeroed elements may

itself be nonnegative (and hence store meaningful information). As a result, by computing

the matrixG(j) corresponding to thejth singular vector pair and in turn forming rank-1

approximations to its nonnegative elements, more of the original data can be preserved. In

any case, the big advantage of NNDSVD is that it exploits someof the structure inherent in

the data and provides NMF with a static initialization—if NMF converges, it will converge

to the same minima.

3.2.3 Update Rules

Once bothW andH have been initialized, those initial estimates are iteratively improved

upon, usually in either a multiplicative or an additive fashion.
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Multiplicative Rules

The standard multiplicative update rule originally proposed by Lee and Seung and com-

monly referred to as the Multiplicative Method (MM) is givenby

Hcj ← Hcj

(

W T A
)

cj

(W T WH)cj

, (3.3)

Wic ← Wic

(

AHT
)

ic

(WHHT )ic

. (3.4)

Since all the components ofA, W , andH are guaranteed to be nonnegative, the updated

matrices are guaranteed to be nonnegative. Lee and Seung also proved that the Euclidean

distance cost function is nonincreasing when MM is applied and is invariant if and only

if W and H are at a stationary point. The update factor becomes unity ifand only if

A = WH, which is as expected.

There are two practical extensions to MM that are commonly employed. To ensure

numerical stability, a small positive numberǫ is added to the denominator of both Equations

(3.3) and (3.4). Also, bothH andW are updated “simultaneously” or by using the most

up-to-date iterate rather than by updating each factor matrix independently of the other. As

a result, faster convergence is usually observed.
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Additive Rules

In addition to multiplicative rules, additive rules are also commonly used to update esti-

mates of both factor matrices. Lee and Seung have shown that

Hcj ← Hcj + ηcj

[

(

W TA
)

cj
−
(

W T WH
)

cj

]

is one such rule that can reduce the squared distance for somesmall values ofηcj (similar

update forW ). In fact, certain choices ofηcj can be shown to be equivalent to the multi-

plicative update. Many implementations of additive rules,however, ensure that nonnega-

tivity is maintained by explicitly resetting negative values that result from the subtraction

due to roundoff or other errors.

3.2.4 Stopping Criteria

Any of a number of methods can be employed to determine when tostop iterations. Com-

monly, NMF is run for a fixed number of predetermined iterations. Not surprisingly,

this approach will usually cause NMF to over- or under-iterate. Another approach is to

halt when the difference5 between successive iterates is below a tolerance; that is, when

‖Wold −Wnew‖ < τ and/or‖Hold −Hnew‖ < τ . Obviously, the choice of toleranceτ

determines the number of iterations completed. Similarly,some methods will calculate the

objective function or the difference of objective functionvalues between iterations. Al-

5Assume Frobenius matrix norm unless otherwise specified.
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though with any method that requires threshold checking of differences between iterates,

those iterates in question must be stored, and frequently extra computation must take place.

3.2.5 Additional Constraints

NMF with the MM update proposed by Lee and Seung is guaranteedto converge to a local

solution, however, additional constraints can be placed onthe cost function to help ensure

any of a variety of behaviors such as faster convergence or certain structural properties

of the factor matrices. Unfortunately, once additional constraints are placed on the cost

function, most update rules are no longer guaranteed to converge. In general, additional

constraints redefine the overall minimization problem to a variant of

min
W,H
‖A−WH‖2F + αJ1 (W ) + βJ2 (H) , (3.5)

whereα andβ are parameters andJ1(W ) andJ2(H) are functions that describe the addi-

tional constraints placed onW andH.

The framework presented in Equation (3.5) is not all-inclusive—there can be other con-

straints that may not fit this form. For example, many algorithms require that columns of

eitherW or H be normalized, either after each iteration or after convergence has been

reached. Normalization will, in theory, force unique solutions at each minima. Unfortu-

nately, however, this normalization usually comes at the cost of convergence speed, i.e.

number of iterations performed.

Two additional constraints that do follow the framework presented in Equation (3.5)
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are the notions ofsmoothingandsparsity. In each case, the constraints are intended to

guarantee structural properties in the factor matrices, however, for many parameter settings

a problem can quickly become overconstrained and may not converge. If the solution does

converge, however, the resulting factor matrices can oftenlead to more intuitive interpreta-

tions of the data.

Smoothing

Smoothing a solution is meant as a filter to reducenoise. In the case of NMF, smoothing

a factor matrix reduces the number and relative magnitude ofhigh amplitude components.

In effect, the solution is more likely to have all of its components with similar magnitude.

To accomplish this inW , set

J1(W ) = ‖W‖2F .

This can also be done toH, depending on the results desired within the problem context.

[PPPG04] showed that if smoothing is enforced on bothW andH, the update rule becomes

Hcj ← Hcj

(

W TA
)

cj
− βHcj

(W TWH)cj + ǫ
,

Wic ← Wic

(

AHT
)

ic
− αWic

(WHHT )ic + ǫ
,

whereα, β ∈ ℜ are parameters that denote the degree to which smoothness will be en-

forced.
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Sparsity

Whereas smoothing brings the relative magnitudes of a solution closer together, enforcing

sparsityconstraints aims to accomplish nearly the opposite effect.Based on nonnegative

sparse coding, sparsity constraints within NMF was originally proposed in [Hoy02]. Unfor-

tunately, sparseness was controlled implicitly, and parameter settings had to be determined

empirically to achieve the desired level of sparseness. Later in [Hoy04], Hoyer improved

upon his original idea by explicitly adjusting sparseness,defined by

sparseness(x) =

√
n− (

∑ |xi|) /
√

∑

x2
i√

n− 1
, (3.6)

wheren is the length of vectorx. This measure, which is based on theL1 andL2 norms,

evaluates to one if and only if exactly one nonzero componentexists inx. On the other

hand, a value of zero can only be attained if all components have identical magnitude.

Hoyer’s NMF algorithm with sparseness constraints is a projected gradient descent al-

gorithm that utilizes both multiplicative and additive update rules in conjunction with a

projection operator to produce an approximation. [PPA07] uses the sparseness defined in

Equation (3.6) to form a different approach using only multiplicative updates via the fol-

lowing derivation. Assuming that̄H denotes the vector formed by stacking the columns of

H, the general objective function in Equation (3.5) can be rewritten to incorporate sparse-

ness as

F (W, H) =
1

2
‖A−WH‖2F +

β

2

(

ωH

∥

∥

∥H̄
∥

∥

∥

2
−
∥

∥

∥H̄
∥

∥

∥

1

)2
,
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whereωH is derived from Equation (3.6) and is computed as

ωH =
√

kn−
(√

kn− 1
)

sparseness(H) .

The partial derivatives with respect toHij are

∂

∂Hij

(

‖A−WH‖2F
)

= −
(

W T A
)

ij
+
(

W TWH
)

ij

∂

∂Hij

(

(

ωH

∥

∥

∥H̄
∥

∥

∥

2
−
∥

∥

∥H̄
∥

∥

∥

1

)2
)

= 2ω2
HHij − 2ωH





∥

∥

∥H̄
∥

∥

∥

1

2
∥

∥

∥H̄
∥

∥

∥

2

Hij +
∥

∥

∥H̄
∥

∥

∥

2



+ 2
∥

∥

∥H̄
∥

∥

∥

1

and can be simplified to

∂

∂Hij

(F (W, H)) = −
(

W T A
)

ij
+
(

W T WH
)

ij
+ β (c1Hij + c2) ,

where

c1 = ω2
H − ωH

∥

∥

∥H̄
∥

∥

∥

1

2
∥

∥

∥H̄
∥

∥

∥

2

(3.7)

c2 =
∥

∥

∥H̄
∥

∥

∥

1
− ωH

∥

∥

∥H̄
∥

∥

∥

2
. (3.8)

Equivalently, this is expressed in matrix form as

∇F (W, H) = −W T A + W TWH + β (c1H + c2E) ,
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whereE denotes ak × n matrix of ones. Following [LS01], consider

Hij = Hij − φij
∂

∂Hij
(F (W, H))

as the formula for updatingH, where

φij =
Hij

(W TWH)ij

.

By substitution, the update rule then becomes

Hij = Hij







(

W T A
)

ij
− β (c1Hij + c2Eij)

(W TWH)ij





 ,

wherec1 andc2 are defined in Equations (3.7) and (3.8), respectively. Following a similar

procedure, sparsenesss constraints can be placed uponW . The update rule derived then

becomes

Wij = Wij







(

AHT
)

ij
− α (c1Wij + c2Eij)

(WHHT )ij





 ,

where

ωW =
√

mk −
(√

mk − 1
)

sparseness(W )

replacesωH andW replacesH in the definition ofc1 andc2.
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3.3 Comparison Between LSI and NMF

Both LSI and NMF are dimension reduction techniques that aimto compress the original

space to gain insight or reveal some underlying structure inthe data. The SVD in LSI pro-

duces the mathematically optimal low-rank approximation for anyk; that approximation is

unique, and the basis produced is orthogonal. Given the orthogonal bases produced, data

can be projected into the low-rank space, and queries can be processed. That orthogonal-

ity, however, comes at the price of negativity and density. The basis vectors will be dense

(hence not accurately reflecting the original data) and willhave negative components mean-

ing that the axes of the basis vectors cannot be easily identifiable in terms of the original

data.

Since the NMF factor matrices usually maintain a good deal ofsparsity to reflect the

original data and are guaranteed to remain nonnegative, NMF, on the other hand, produces

“basis” vectors that are easily identifiable in the originalspace. This sparsity can lead to a

reduction in storage requirements [LMA06]. Unfortunately, NMF has convergence prob-

lems when additional constraints are enforced. Also, it is sensitive to its initialization—for

example, if the initialization sets an element to zero, then, given the mulitiplicative update

rule, that element will remain zero throughout all the subsequent iterations. This property

may have a negative effect on the overall solution quality. Speaking of solution quality,

NMF is not guaranteed to find a global minima. For any given minima, an infinite number

of solutions exist, and NMF will not necessarily produce thesame solution on any two

given runs. As an additional burden, NMF and its variants have a large number of param-
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eters that must be set, and those parameters may not have an easily explainable result or

may not correlate to similar parameter settings. For example, unlike the SVD, there is no

straightforward way to relate feature vectork with k + 1.

While both techniques have their shortcomings, their strengths can complement each

other nicely. While there is no straightforward way to transform one factorization into

another, when used in tandom they can uncover different properties of the data. The density

of the SVD lends itself to global support—vectors in that space will produce similarities

to others that would not have been obvious in the original data. As a result, LSI seems

to be the optimal choice when viewing the entire data set as a whole or when trying to

uncover latent structure. NMF, on the other hand, excels at clustering and classification

and showing why a relationship between two entities exist. NMF is known for itsparts-

basedfactorization, meaning that it shows local rather than global properties of the data.

Rather than uncovering an optimal space that makes no sense in terms of the original data,

NMF can identify where data groups exist and suggest labels for that group.

38



Chapter 4

Performance Evaluation

Both IR (Chapter 2) and dimension reduction techniques (Chapter 3) have been introduced—

this chapter will show how those techniques can be interpreted and automatically evaluated

in biological applications. LSI, discussed in Section 3.1,can be used to create a global

picture of the data automatically. In this particular context, thatglobal picture is most

meaningful when viewed as a hierarchical tree. Once a tree isbuilt, a labeling algorithm

can be applied to identify branches of the tree. Finally, a “gold standard” tree and a standard

performance measure that evaluates the quality of tree labels must be defined and applied.

4.1 Hierarchical Tree Construction

One popular tool for visualizing the evolution of taxa over time is anevolutionary tree,

also known as a phylogeny, phylogenetic tree, or hierarchical tree. Formally, a tree is a

cycle-free graphG = (V, E) whereV is the set of vertices (or nodes) andE is the set of
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edges. That is, any two nodes in the graph have exactly one unique path between them. A

simple phylogeny is depicted in Figure 4.1.

If two vertices are connected by an edge, then each of the vertices is said to have that

edgeincident uponit; thedegreeof any vertex is the number of edges incident upon it. Each

node of degree 1 (which are denoted by lettered nodes in Figure 4.1) are calledleaf nodes;

every other node in a phylogeny is commonly referred to as an interior or ancestral node.

Since information is only known about the taxa a priori, the phylogeny must beinferred. If

a phylogeny truly depicts ancestral relationships, then the top node becomes theroot node

of a rooted tree, and the tree usually takes on the form of a directed acyclic graph (DAG)

with a direction pointing away from the root.

Generally speaking, taxa can refer to any of a variety of entities such as organisms,

genes, proteins, and languages, while the edges can represent parent–child relationships

along with additional information. Exactly what information edges represent is usually

determined by the input data and the type of tree building method employed. Regardless

Figure 4.1: A sample phylogeny.
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of the type of method employed, most phylogeny inference schemes adhere to the prin-

ciple of minimum evolution [KSZ71]. Namely, they follow Occam’s razor and prefer the

simplest solution over more complicated ones. Although many different tree building al-

gorithms exist, most can usually be classified as sequence- or distance-based methods, and

a representative few are discussed in this chapter.

4.1.1 Sequence-Based Methods

As the name suggests, sequence-based methods assume that the input taxa are a set of

sequences, commonly of DNA or amino acids. Most sequence-based methods operate

under the assumptions that any two characters are mutually independent within a given

sequence, and that evolution occurs independently after two sequences diverge in a tree

[Sha01]. Under these assumptions, a tree can be built where the leaves are the sequences

and the edges describe some evolutionary phenomenon such asgene duplication, mutation,

or speciation. For example, the binary input given in Table 4.1 can be represented by the

tree in Figure 4.2 [Fel82], where each labeled edge denotes the character state at which

there is a change. Using the same convention, this example can easily be extended to DNA,

protein, and other sequence data.

One easy evaluation for a phylogenetic tree is to compute thenumber of character

changes depicted by the tree, also known as theHammingor edit distance. In Figure 4.2,

the tree has 10 such changes (computed by adding the number ofchanges denoted along

the edges). Methods that attempt to minimize this score are calledparsimonyor minimum-
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Table 4.1: Sample data set of binary strings.

Character
Taxon 1 2 3 4 5 6

A 1 1 0 0 0 0
B 0 0 1 0 1 1
C 1 1 0 0 1 1
D 0 0 1 1 0 0
E 0 1 0 0 1 1

Figure 4.2: A parsimony tree based on the data in Table 4.1.

42



evolution methods.

The problem of finding a most parsimonious labeling of a tree given a topology is

known as theSmall Parsimony Problem. Fitch presented an algorithm in [Fit71] to solve

the problem, while Sankoff presented a similar solution to the weighted problem using a

dynamic programming approach [San75] that can solve the problem inO(mnk), wherem

is the sequence length,n is the number of taxa, andk is the number of values any character

state can assume.

The Large Parsimony Problem, on the other hand, isNP-complete. That is, given

a set ofn sequences of lengthm, the problem of finding both the tree and the labeling

that produces the most parsimonious score possible has an exponentially large solution

space. One common search heuristic employed to find local solutions is callednearest

neighbor interchange(NNI) [Rob71]. One NNI can be employed by selecting an edge

and hypothetically removing the two nodes it connects. The resulting subtrees (four will

occur if the an internal edge is removed and the tree is binary) are then swapped in the

original tree and the corresponding parsimony computed. The interchange with the lowest

parsimony score is enacted, and the process repeated for alledges in the tree. A sample of

three possible neighbors is given in Figure 4.3, where the dashed edge represents the edge

defining the subtrees of the NNI [JP04].

Not far removed from parsimony is the notion ofcompatibility. Rather than including

all taxa and trying to minimize the parsimony score, compatibility methods attempt to

maximize the number of characters that can be used to create aperfect phylogeny. A
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Figure 4.3: Three neighbor trees induced by a NNI about the dashed edge. The labeled
nodes can represent full subtrees.

perfect phylogenyexists if and only if an edge representing a particular statechange forms

a subtree; the tree given in Figure 4.2 is not a perfect phylogeny because multiple edges

exist that denote changes in states 5 and 6, and any one of those edges does not induce a

subtree. TheLarge Compatibility Problem, which is similar to its parsimony counterpart,

attempts to find the maximum number of characters that will induce a perfect phylogeny

as well as the phylogeny it induces. This problem, predictably, is also known to beNP-

complete in the when a variable number of states is allowed [BFW92].

4.1.2 Distance-Based Methods

With sequence-based methods, the input data is assumed to bea set of character strings, and

the edges of the inferred tree models the divergences in those strings. On the other hand,

distance-based methods assume that the input is a matrix of pairwise distances between
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n taxa, and the edges of the phylogeny produced represent distances between nodes. As

with sequence-based methods, the independent evolution after speciation is assumed. An

example tree built upon distance data given in Table 4.2 is given in Figure 4.4.

Typically in the biological context, the distance data generated is the edit distance be-

tween two sequences or some function thereof. Similar to theparsimony problem, the small

version of the distance problem (determining branch lengths given a tree) can be solved rel-

atively easily, but the more practical large version (determining the optimal tree along with

branch lengths) isNP-complete. As can be expected, a variety of heuristics exist, with

many of them being least squares approaches. That is, the objective function

LSQ(T ) =
n
∑

i=1

∑

j 6=i

wij (Dij − dij)
2 (4.1)

is to be minimized, whereDij is the observed distance,dij is the predicted distance in

treeT , andwij is some weight, usually set to 1. Fitch in [FM67] proposed a bottom-up

method that finds a local optimum to this function in polynomial time, however, since that

algorithm operates inO(n4), clustering more than a handful of taxa becomes an impractical

Table 4.2: Sample pairwise distance data for the tree given in Figure 4.4 [Sha01].

A B C
A 0 0.08 0.45
B 0.08 0 0.43
C 0.45 0.43 0
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Figure 4.4: A tree where the branch lengths correspond to thedistances given in Table 4.2
[Sha01].

exercise.

Saitou and Nei proposed the popular neighbor-joining (NJ) method in [SN87] as a

heuristic that infers phylogenies from a pairwise distancematrix inO(n3) time. NJ begins

by assigning each taxon to its own cluster (commonly referred to as a “star” configura-

tion). The two closest taxa are joined into one cluster with branch lengths computed by

the method described in [FM67], and the new(n− 1)× (n− 1) distance matrix is recom-

puted with the new cluster substituted for the two joined clusters. This process is repeated

until all taxa are in one cluster. NJ has since been refined with algorithms such as BIONJ

in [Gas97] and WEIGHBOR in [BSH00], but the time complexity of all of NJ’s variants

remainsO(n3).

By applying a greedy approach to generate an initial tree inO(n2) time and applying

NNIs, Desper and Gascuel in [DG02] were able to generate accurate phylogenies inO(n2)

time. The Greedy Minimum Evolution (GME) algorithm is used to initialize the tree,
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whereby a tree of size 3 is initialized and each node is added by replacing the edge that

gives the resulting tree the minimum length. This computation can be accomplished in

O(n2) time, which is the input size. The FastNNI algorithm then improves upon the initial

tree by traversing through all the internal edges and performing an NNI if it results in a

better tree. FastNNI runs inO(n2 + pn), wherep is the number of swaps needed. Sincep

is usually much smaller thann, this can be done inO(n2) time.

BME and BNNI, balanced versions of GME and FastNNI that give sibling subtrees

rather than taxa equal weight, were also implemented and were found to have running times

of O(n2×diam(T )) andO(n2 +np diam(T )), respectively, where diam(T ) is the diameter

(number of edges) of the treeT . In the worst case, diam(T ) can evaluate ton, however,

in practice it typically is equivalent tolog(n) or
√

n. Either GME or BME coupled with

FastNNI or BNNI were found to have trees that were close to or better than the topological

accuracy provided by NJ, and in all cases were produced faster.

4.2 Labeling Algorithm

Once a hierarchy is produced, labeling the internal nodes can help describe the nature of

the relationships represented by the hierarchy structure;placing labels on the internal nodes

can be accomplished by any number of methods, although relatively few well-established

automated methods exist. In the field of machine learning, the problem where each taxa

can belong to any number of classes is known as multi-label hierarchical classification.

One such labeling algorithm from this field uses a Bayesian framework based upon support
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vector machine classifiers to make functional predictions [BST06]. In the particular case

of SGO, since the SVD is readily available, a concatenation of all the documents that are

members of each subtree that each node induces can be formed and the near terms in the

LSI-based vector space found via Equation (3.1). The resulting labeling may not initially

satisfy many of the consistency properties desired in the machine learning field, but it

provides a basis against which to compare NMF labels.

To apply labels from the NMF, a bottom-up approach is used. For any given document,

the highest weighted row index ofH is chosen, which corresponds to the most dominant

feature vector inW for that document. The terms in that feature vector are assigned to

that document and weighted by the corresponding coefficientin H. As a result, each doc-

ument has a ranked list ofm terms with weights associated with it. In practice, this list is

thresholded to a fixed number of terms.

Once each document has its associated terms, they can be assigned to the hierarchy by

simply inheriting them upward. That is, when two siblingsA andB have parentC, each

term from bothA andB are added to the list associated withC. As a result, terms common

to bothA andB will be more likely to be highly weighted withinC. This process is itera-

tively applied to the entire tree. At higher levels within the tree, this method tends to give

more weight to the denser subtrees and to the more commonly used words. Consequently,

broader terms tend to be dominant closer to the root, which isintuitive. The full algorithm

is presented in Algorithm 4.1.

This bottom-up approach can be modified to incorporate more than just the dominant
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Algorithm 4.1 Bottom–up labeling algorithm.

Input: Factor MatricesWm×k andHk×n

Hierarchical TreeT
p, threshold on number of terms to inherit

Output: Labeled TreeT ′

nodes = leaf nodes ofT
for i = 1 : n do

Determinej = argmax
j<k

Hji

Assign topp terms fromjth column ofW to nodei
i.e., for term indexq, assign weightWqi ∗Hji

end for
while |nodes| > 1 do

Remove two sibling nodesA andB (with parentC) from nodes
Merge term lists fromA andB (add weights for common terms)
Assign terms toC
PushC ontonodes

end while

feature vector—as many ask feature vectors can be used to associate terms with each

document. Doing so would make the terms a closer approximation to the original term-

document matrix and would have the end effect of assigning more topics to each document.

Making this modification can produce more accurate labels depending upon the exclusiv-

ity of the assignments within the dataset. Also, averaging rather than simply adding term

weights places equal importance to the terms associated with each subtree. Another vari-

ation may also scale the inherited terms by the corresponding branch lengths of the tree.

The end result would give higher preference to terms that areassociated with genes that are

closer to each other, although some heurisitic would have tobe applied to accommodate

negative branch lengths.

This algorithm, which is in many respects analogous to NJ, can be slightly modified
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and applied to any tree where a ranked list can be assigned to each taxon. For example, by

querying the SVD-generated vector space for each document,a ranked list of terms can be

created for each document and the tree labeled accordingly.The “correct” MeSH labeling

is generated in a similar manner. Using the subtree in Figure4.5 and the log-entropy

weights from the50TG MeSHmeta-collection to generate a ranked list, MeSH headings

are inherited up the tree by averaging the weights of each sibling node to give each subtree

an equal contribution to its parent.1 The top 5 MeSH headings at each stage are depicted in

Figure 4.6.2 By using Algorithm 4.1 or a derivative of it and assuming the initial ranking

procedure is accurate, any ontology annotation can be enhanced with terms from the text it

represents.

4.3 Recall Measure

Once labelings are produced for a given hierarchical tree, ameasure of “goodness” must

be calculated to determine which labeling is the “best.” When dealing with simple return

lists of documents that can classified as either relevant or not relevant to a user’s needs,

IR methods typically default to using precision and recall to describe the performance of a

given retrieval system.Precisionis defined as

P =
|R|
|L| ,

1The50TGMeSHcollection contained 9,126 MeSH headings.
2For evaluation purposes, only the top-ranked MeSH heading is used to label the “correct” tree.
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Figure 4.5:Relnsubtree extracted from the50TGtree.

whereR denotes the set of relevant documents within the return listandL is the set of

returned documents.Recall, on the other hand, is denoted by

R =
|R|
|T | ,

whereT denotes the set of all relevant documents [BB99]. In other words, precision mea-

sures how accurately a system returns relevant documents, while recall quantifies the sys-

tem’s coverage of all relevant documents. The goal of all information retrieval systems is

to have high levels of precision at high levels of recall. Unfortunately, however, as the level

of recall rises, precision tends to fall.

To depict a system’s performance, precision-recall graphsare constructed whereby pre-

cision is plotted against the standard decile ranges (i.e. 10%, 20%, etc) of recall. To con-

dense this into a single number, the concept of then-point interpolatedaverage precision

is introduced as
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Figure 4.6: Top 5 MeSH labels associated with each node of thetree in Figure 4.5. The number in parentheses indicate the weight
associated with each MeSH heading; the weights assigned to each leaf node are the log-entropy weights from the50TG MeSH
collection.

A
receptors, ldl/*genetics (0.80)

cell adhesion molecules, neuronal/*metabolism (0.57)
ldl-receptor related protein 1 (0.56)
lipoproteins, vldl/metabolism (0.55)

rabbits/genetics (0.55)

B vldlr
cell adhesion molecules, neuronal/*metabolism (0.66) receptors, ldl/*genetics (1.61)

cell adhesion molecules, neuronal/*genetics (0.65) rabbits/genetics (1.10)
extracellular matrix proteins/*genetics (0.65) lipoproteins, vldl/metabolism (1.10)

extracellular matrix proteins/*metabolism (0.60) myocardium/chemistry (1.10)
receptors, lipoprotein/*metabolism (0.52) lipoproteins, vldl/*metabolism (0.92)

C lrp8
cell adhesion molecules, neuronal/*genetics (1.30) receptors, lipoprotein/*genetics (0.92)

extracellular matrix proteins/*genetics (1.30) cell adhesion molecules, neuronal/*metabolism (0.76)
extracellular matrix proteins/genetics/*physiology (0.75) ldl-receptor related protein 1 (0.75)

cerebral cortex/*abnormalities/pathology (0.75) *alternative splicing (0.71)
nerve tissue proteins/genetics/*physiology (0.75) extracellular matrix proteins/*metabolism (0.70)

reln dab1
cell adhesion molecules, neuronal/*genetics (1.67) peptide fragments (1.10)

extracellular matrix proteins/*genetics (1.67) extracellular matrix proteins/*genetics (0.94)
brain/embryology/enzymology (1.39) cell adhesion molecules, neuronal/*genetics (0.94)

extracellular matrix proteins/biosynthesis/*genetics (1.39) *chromosomes, human, pair 1 (0.85)
extracellular matrix proteins/genetics/*metabolism (1.39) brain/cytology/*physiology (0.81)
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AP =
1

n

n−1
∑

i=0

P̃
(

i

n− 1

)

,

where P̃ (x) is called the pseudo-precision and is the maximum precisionup to theith

document, andn is typically chosen to be eleven.

Another measure of a system’s performance can be given by harmonic mean of preci-

sion and recall and is known as the F-measure. This measure, given by

F =
2(P ×R)

(P + R)
,

is a nonnegative fraction that achieves unity if and only if both precision and recall are one

[BYRN99]. A weighted version ofF can also be applied to stress either component over

the other.

Unfortunately in this context, however, the set being measured is not as a simple as a

return list. In the case of SGO, one labelled hierarchy must be compared to another. Sur-

prisingly, relatively little work has been done that addresses this problem. Graph similarity

algorithms exist, but most all of those algorithms compare differing topologies—the labels

on the nodes of the graphs are artifacts that are usually ignored. When comparing labels

that occur in a hierarchical fashion, a single number evaluation is wanted to allow compari-

son of large amounts of data, but the ability to measure different properties of the labeling at

some point would also be useful. In this context, identifying how well a labeling performed

53



at different levels within the hierarchy could help evaluate the system more accurately.

Kiritchenko in [Kir05] proposed the hierarchical precision and recall measures, denoted

ashP andhR, respectively. IfC denotes the set of classes into which nodes are classified

(in SGO’s case,C refers to text words), then for each nodei,

hP =

∑

i

∣

∣

∣Ĉi ∩ Ĉ ′
i

∣

∣

∣

∑

i

∣

∣

∣Ĉ ′
i

∣

∣

∣

,

hR =

∑

i

∣

∣

∣Ĉi ∩ Ĉ ′
i

∣

∣

∣

∑

i

∣

∣

∣Ĉi

∣

∣

∣

,

whereCi ⊆ C is the correct classification,C ′
i ⊆ C is the assigned classification, and the·̂

operation denotes the inclusive union of all labels in the ancestor set. This measure assumes

that a classfication hierarchy exhibitshierarchical consistency; a hierarchy is deemed con-

sistent if each label includes complete ancestor sets. Formally, for each labelck ∈ Ci

for nodeCi, cj ∈ Ancestors(ck) implies cj ∈ Ci [KMF05]. In other words, hierarchi-

cal consistency takes the parent–child relationship exhibited by most hierarchical trees to

the extreme by requiring that all node labels must be inherited down to all their respective

children nodes.

While hierarchical consistency is an intuitive property ofmany trees, many hierarchies

in practice do not explicitly enforce this constraint. If this constraint were required, leaf

nodes could potentially have very large label sets while theancestor nodes would have

fewer descriptors. Of course, this can be avoided by adhering to a convention that places

each label at its most ancestral node. Although hierarchical consistency is intuitive as leaf
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nodes often represent the most restrictive nodes within thetree, if applied to a true tree

where taxa may belong to more than one parent, the labeling may produce unintended re-

sults. For example, consider the tree given in Figure 4.7. IfnodeC could be feasibly

considered to be a descendant of both nodeX and nodeY (i.e.,C contains labels that are

present in bothX andY ) where the labels ofX andY are disjoint, then the “tree” (more

precisely, the graph) given in Figure 4.8 could more accurately describe the evolutionary

relationship. If the root node can be ignored for the purposes of this argument, then en-

forcing hierarchical consistency on the tree would forceY to contain labels ofX and not

vice versa. In the case of the graph, however, hierarchical consistency can be applied easily.

This implies that the notion of hierarchical consistency isrobust within hierarchical graphs,

but when mutually independent evolution is assumed after each node, then this constraint

may produce unintended results. Related to this point, the unweightedhP andhR mea-

sures penalize misclassifying higher nodes more than lowerones. As such, these measures

can be considered top-down approaches.

Also, while these measures condense the information in a tree into a single number,

Figure 4.7: Simple tree that is hierarchically consistent if all labels inX occur inA andB
and all labels inY occur inC andD.
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Figure 4.8: Hierarchical graph extended from Figure 4.7.

they do not show how well a labeling performs as a function of tree depth. In the case of

SGO, this information is crucial as varying parameter settings within the NMF are expected

to affect performance at different depths within the tree. To address this issue, a simple

measure for gauging accuracy is to find the recall at each node. Since, in practice, words

in a label are unranked, the notion of precision carries little meaning. The recall values at

each level within a tree can be averaged to show how accurately a labeling is a function of

tree depth, and those can in turn be averaged to produce a single value that captures how

well the labeling performed overall.

4.4 Feature Vector Replacement

When working with gene documents, many cases exist where theterminology used in

MeSH is not found within the gene documents themselves. Eventhough a healthy per-

centage of the exact MeSH terms may exist in the corpus, the term-document matrix is so

heavily overdetermined (i.e., the number of terms is significantly larger than the number

of documents) that expecting significant recall values at any level within the tree becomes
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unreasonable. This is not to imply that the terms produced byNMF are without value. On

the contrary, the value in those terms is exactly that they may reveal what was previously

unknown. For the purposes of validation, however, some method must be developed that

enables a user to discriminate between labelings even though both have little or no recall

with the MeSH-labeled hierarchy. In effect, the vocabularyused to label the tree must be

controlled for the purposes of validation and evaluation.

To produce a labeling that is mapped into the MeSH vocabulary, the topr globally-

weighted MeSH headings are chosen for each document; these MeSH headings can be

extracted from the MeSH meta-collection (see Section 2.5).By inspection ofH, the dom-

inant feature associated with each document is chosen and assigned to that document. The

corresponding topr MeSH headings are then themselves parsed into tokens and assigned

to a new MeSH feature vector appropriately scaled by the corresponding coefficient inH.

The feature vector replacement algorithm is given in Algorithm 4.2.3

Once full MeSH feature vectors have been constructed, the tree can be labeled via the

procedure outlined in Algorithm 4.1. As a result of this replacement, better recall can

be expected, and the specific word usage properties inherentin the MeSH (or any other)

ontology can be exploited.

3Note thatm′ is distinguished fromm since the dictionary of MeSH headings will likely differ in size and
composition from the original corpus dictionary. The number of documents, however, remains constant.
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Algorithm 4.2 Feature Vector Replacement Algorithm

Input: MeSH Term-by-Document MatrixA′
m′×n

Factor MatricesWm×k andHk×n of original Term-by-Document MatrixAm×n

Global weight vectorg′,
Thresholdr number of MeSH headings to represent each document

Output: MeSH feature matrixW ′

for i = 1 : n do
Chooser top globally–weighted MeSH headings fromith column ofA′

Determinej = argmax
j<k

Hji

for h = 1 : r do
Parse MeSH headingh into tokens
Add each tokent with indexp to w′

j , thejth column ofW ′

i.e.,W ′
pj = W ′

pj + g′
p ×Hji

end for
end for
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Chapter 5

Results

The evaluation of the factorization produced by NMF is non-trivial as there is no set stan-

dard for examing the quality of basis vectors produced. For example, [CCSS+06] per-

formed several NMF runs then independently asked domain experts to interpret the result-

ing feature vectors. This chapter attempts to evaluate NMF by two distinct, automated

methods. First, the mathematical properties of the NMF runsare examined, then the accu-

racy of the application of NMF to hierarchical trees is scrutinized for each collection. In

both cases, the effects of each parameter is discussed.

5.1 Data Sets

Five data sets were used to test the effectiveness of NMF. Each group of genes specified

were related to a specific biological function, with some extraneous or “noisy” genes unre-

lated to that function possibly added. The full list of genesin each dataset can be found in
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Appendix A. Each token in every document collection was required to be present at least

twice in a single document and at least twice throughout the collection.

For each collection, two different initialization strategies were used: the NNDSVD

(Section 3.2.2) and randomization. Five different random trials were conducted while

three were performed using the NNDSVD method. Although the NNDSVD produces

a static starting matrix, different methods can be applied to remove zeros from the ini-

tial approximation to prevent them from getting “locked” throughout the update process.

Initalizations that maintained the original zero elementsare denoted NNDSVDz, while

NNDSVDa, NNDSVDe, and NNDSVDme substitute the average of all elements ofA, ǫ,

or ǫmachine, respectively, for those zero elements;ǫ was set to10−9 and was significantly

smaller than the smallest observed value in eitherH or W (typically around10−3), while

ǫmachine was the machine epsilon (the smallest positive value the computer could represent)

at approximately10−324. Both NNDSVDz and NNDSVDa are mentioned in [BG05], how-

ever, NNDSVDe and NNDSVDme were added as natural extensionsto NNDSVDz that

would not suffer from the restrictions of locking zeros due to the multiplicative update.

Four different constraints were placed on the iterations inaddition to the basic NMF:

smoothing onW , sparsity onW , smoothing onH, and sparsity onH. In the cases where

extra constraints were added, the parameter values tested were 0.1, 0.01, and 0.001; sparsity

values of 0.1, 0.25, 0.5, 0.75, and 0.9 were tested where applicable. The number of feature

vectors,k, was the remaining free parameter and was assigned the values of 2, 4, 6, 8,

10, 15, 20, 25, and 30. When all parameter settings are considered, NMF was applied to
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each collection over 2,500 times. The only exception is the 50TG collection, where over

7,500 runs were performed to inspect the effect of the various column normalizations on

the factorizations.1 For each value ofk, a total of 135 runs were performed when sparsity

was enforced on either eitherW or H, and 27 runs were performed when smoothness was

imposed on eitherW or H.

Each of the more than 30,000 NMF runs iterated until it reached 1,000 iterations or a

stationary point in bothW andH. That is, at iterationi, when‖Wi−1 −Wi‖F < τ and

‖Hi−1 − Hi‖F < τ , convergence is assumed. The parameterτ was set to 0.01. Since

convergence is not guaranteed under all constraints, if theobjective function increased

betweeen iterations, the factorization was stopped and assumed not to converge.

The log-entropy weighting scheme discussed in Chapter 2 wasapplied to generate to-

ken weights for each collection. To simulate the effect of more discriminating token se-

lection algorithms and to reduce the relative size of the dictionary, all tokens whose global

weight fell below the threshold of 0.8 were added to a stoplist, and the collection was

reparsed and reweighted. Any collection where this threshold was applied is denoted with

a “.8” appended to it (e.g.,50TGrefers to the original collection, while50TG.8denotes the

reweighted50TGcollection after all tokens with an initial global weight ofless than 0.8

were removed). The term counts concerning each collection before and after thresholding

are presented in Table 5.1.

The50TGcollection is comprised of 50 genes that are associated withtheReelin sig-

1Only two random runs were performed when any of the columns were normalized.
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Table 5.1: Corpus size for the five collections considered. The numbers in parentheses
show the term count after removing terms with a global weightof less than 0.8.

Collection # Terms # Documents
50TG 8,750 (3,073) 50

115IFN 8,758 (3,250) 115
Math1 3,896 (1,414) 46
Mea 3,096 (1,204) 45
Sey 5,535 (1,997) 35

naling pathway, and evidence suggests that some componentsof this pathway are asso-

ciated with Alzheimer’s disease. Within the 50 genes, threemain subgroups known to

be associated with development, Alzheimer’s disease, and cancer are present [HHWB05,

Hei04]. 50TGis the most heterogeneous of the five collections and is relatively well-studied

[CCSS+06].

115 different Interferon (IFN) genes form the115IFNcollection. IFNs are a type of cy-

tokine that is released by the immune system in response to viral attacks, and have recently

been linked to pathways that counterbalance apoptosis (cell death) [PKP+04]. All genes in

the115IFNcollection are considered IFN-stimulated genes (ISGs).

The three remaining sets of genes, denoted asMath1, Mea, andSey, are all taken from

microarray data obtained from mouse mutants with cerebellar defects. Each of the datasets

are presently under biological examination—at this point,the genes in each of the sets are

not known to be functionally related. As they pertain to current (unpublished) research, the

specific genes in the cerebellar datasets will not be released, but the application of labeling

methods to them is discussed.
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5.2 Evaluation Techniques

As mentioned in Chapter 3, the SVD produces the mathematically optimal low-rank ap-

proximation of any matrix with respect to the Frobenius norm. While NMF can never

produce a more accurate approximation than the SVD, its proximity to A relative to the

SVD can be measured. Namely, the relative error, computed as

RE =
‖A−WH‖F −

∥

∥

∥A− USV T
∥

∥

∥

F

‖A− USV T‖F
,

where both factorizations assume parameterk, can show how close the feature vectors

produced by the NMF are to the optimal basis [LMA06]. In addition to relative error, the

effects of the constraints with respect to convergence rates can be analyzed. A full list of

the average relative errors as well as the percentage of NMF runs that converged under the

various constraints is provided in Appendix B.

While measuring error norms and convergence is useful to expose mathematical proper-

ties and structural tendencies of the NMF, the ultimate goalof this application is to provide

a useful labeling of a hierarchical tree from the NMF. In manycases, the “best” labeling

may be provided by a suboptimal run of NMF.

Measuring recall (discussed in Chapters 2 and 4) is a quantitative way to validate

“known” information within a hierarchy. To avoid confusion, the mean average recall

(MAR) will denote the value attained when the average recallat each level is averaged
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acrossed all levels.2 For each collection, the parameter settings that provided the best la-

belings, both in the global and local sense, are discussed.

After applying the labeling algorithm provided by Algorithm 4.1 to the factors produced

by NMF from each collection, the MAR generated was very low (under 25%) for nearly

all parameter settings. Since the NMF-generated vocabulary did not overlap well with the

MeSH dictionary, the NMF features were mapped into MeSH features via the procedure

outlined in Algorithm 4.2, where the most dominant feature represented each document

only if the corresponding weight in theH matrix was greater than 0.5.3 Also, the top 10

MeSH headings were chosen to represent each document, and the top 100 corresponding

terms were extracted to formulate each new MeSH feature vector. For each collection, the

resulting MeSH feature vectors produced labelings with greatly increased MAR.

5.2.1 50TG

Relative Error and Convergence

Intuitively, ask increases, the NMF factorization should more closely approximateA. As

shown in Figure 5.1, this is exactly the case. Surprisingly,however, the average of all

converging NMF runs is under 10% relative error compared to the SVD, with that error

tending to rise ask increases.4 The proximity of the NMF to the SVD implies that, for this

small dataset, NMF can accurately approximate the data.

2Here, a hierarchy level refers to all nodes that share the same distance (number of edges) from the root.
3Trials were run with this threshold eliminated, but this provided little effect on overall recall results.
4This includes runs that normalized columns of eitherW , H , or both, even though the normalization often

increased the error.

64



 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 5  10  15  20  25  30

||A
-W

H
||

k

SVD
Best NMF

Average NMF
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collection.
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To study the effects of convergence, one set of NMF parameters must be chosen as the

baseline against which to compare. By examining the NMF withno additional constraints,

the NNDSVDa initialization method consistently produces the most accurate approxima-

tion when compared to NNDSVDe, NNDSVDme, NNDSVDz, and random initialization.

The relative error NNDSVDa generates is less than 1% for all tested values ofk ≤ 20, is

equal to 1% fork = 25, and is 2.5% whenk = 30. Unfortunately, NNDSVDa requires at

least 161 and at most 331 iterations to converge.

NNDSVDe performs comparably to NNDSVDa with regard to relative error, often

within a fraction of a percent. For smaller values ofk, NNDSVDe takes significantly longer

to converge than NNDSVDa, although the exact opposite is true for the larger value ofk.

NNDSVDz, on the other hand, converges much faster for smaller values ofk at the cost of

accuracy as the locked zero elements have an adverse effect on the best solution that can be

converged upon. Not surprisingly, NNDSVDme performed comparably to NNDSVDz in

many cases, however, it was able to achieve slightly more accurate approximations as the

number of iterations increased.5 Random initialization performs comparably to NNDSVDa

in terms of accuracy and favorably in terms of speed for smallk, but ask increases both

speed and accuracy suffer. A graph illustrating the convergence rates whenk = 25 is

depicted in Figure 5.2.

In terms of actual elapsed time, the improved performance ofthe NNDSVD does not

come without a cost. In the context of SGO, the time spent computing the initial SVD ofA

5In fact, NNDSVDme was identical to NNDSVDz in most cases and will not be mentioned henceforth
unless noteworthy behavior is observed.
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Figure 5.2: Convergence graph comparing the NNDSVDa, NNDSVDe, NNDSVDme,
NNDSVDz, and best random NMF runs of the50TGcollection for (k = 25).
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for the first step of the NNDSVD algorithm is assumed to be zerosince the SVD is needed

a priori for querying purposes. The time required to complete the NNDSVD, however,

is approximately 0.82 seconds perk; the initialization cost whenk = 25 is nearly 21

seconds, while the cost for random initialization is relatively negligible.6 Since the cost per

iteration is nearly .015 seconds perk, whenk = 25, the cost of performing the NNDSVD is

approximately 55 iterations. Convergence taking into account this cost is shown in Figure

5.3.

Balancing solution quality with execution time, random initialization is usually a suffi-

cient initialization strategy whenk < 10, while the structure of NNDSVD improves both

solution quality and overall execution time ask increases. This observation is made ev-

ident, for example, when comparing the number of iterationsperformed whenk = 25.

NNDSVDa can achieve 5% relative error in less than 19 iterations, while all the random

initializations took at least 200 iterations to reach that accuracy, if that accuracy was even

reached at all.

Assuming the NMF run for eachk that incorporates the NNDSVDa initialization with

no addition constraints is baseline, the effects of applying additional constraints can be

examined. Applying smoothness toH had little noticeable effect as far as the overall

convergence rate is concerned up to within 5% relative error. Satisfying the stationary

point stopping criteria, however, was rarely attained within the 1,000 iteration limit. With

β = 0.1, NNDSVDa quickly failed to converge whenk ≥ 8. Interestingly, both NNDSVDe

6All runs were performed on a machine running Debian Linux 3.0with an Intel Pentium III 1 GHz
processor and 256 MB memory.
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NNDSVDz, and best random NMF runs of the50TGcollection for (k = 25) taking into
account initialization time.
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and NNDSVDz were able to converge for all values ofβ. Since NNDSVDa substitutes the

initial zeros with the average value of the elements ofA, placing too much importance on

the norm ofH (which is increased potentially significantly under NNDSVDa), overcon-

strains the problem. This may imply that the initial coefficient matrixH is too sparse or the

number of formerly zero elements grows too large, thereby allowing the average elements

substituted to carry too much weight with respect to the norm. In effect, the substitution

becomes noise. By examining the sparsity of theH matrix, this hypothesis may be true as

the sparsity is below 40% whenk < 8 but climbs above 40% for the larger values ofk.

SmoothingW yielded tendencies similar to smoothingH, although a stationary point

was able to be reached in about the same number of iterations as the base case whenα was

small. Asα increased, reaching that final stationary point became harder to attain within

the iteration threshold.

The current implementation of the sparsity constraint is a function of two different

norms with respect to a matrix. The end effect can be considered an amplification of the

smoothness constraint. As such, the low convergence rate for enforcing sparsity onH

should be expected, especially when the NNDSVDa initialization is applied. In fact, spar-

sity is so sensitive that the only value ofβ that yielded results that did not fail to converge

was 0.001; only for smallk was a stationary point reached—all other runs met the iteration

limit. Table 5.2 illustrates the convergence tendencies with respect toα andβ.

Enforcing sparsity onW performed similarly to enforcing sparsity onH. Smaller val-

ues ofα for NNDSVDe and NNDSVDz once again attained the maximum number of
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Table 5.2: Number of iterations required to reach specific percentages of relative error.
These values reflect runs wherek = 25 and the NNDSVDe initialization was used. Values
in parentheses indicate the point where NMF was terminated due to increasing objective
function. All other runs enforcing sparsity terminated after 1 or 2 iterations.

Iterations Required To Reach
Relative Error

Constraint Parameter (α or β) Sparsity Stationary Point 1% 5% 10% 15% 20% 25% 50%
none 249 28 22 19 15 11 3

sparseW 0.001 0.1 (3)
sparseW 0.001 0.25 1000 26 21 17 14 10 3
sparseW 0.001 0.5 1000 27 21 18 15 11 3
sparseW 0.001 0.75 (18) 15 11 3
sparseW 0.001 0.9 (6) 3
smoothW 0.001 1000 28 22 19 15 11 3
smoothW 0.01 1000 29 23 19 15 11 3
smoothW 0.1 1000 30 24 20 16 12 3
sparseH 0.001 0.1 (2)
sparseH 0.001 0.25 1000 37 28 24 19 15 4
sparseH 0.001 0.5 1000 36 28 23 19 14 4
sparseH 0.001 0.75 (51) 31 24 20 16 12 3
sparseH 0.001 0.9 (7) 3
smoothH 0.001 250 28 22 19 15 11 3
smoothH 0.01 253 28 22 19 15 11 3
smoothH 0.1 1000 28 22 19 15 11 3

iterations. Interestingly, sparsity values of 0.5 and 0.25generated the most stable results,

with 0.5 yielding 1,000 iterations for all values ofk. Figures 5.4 and 5.5 show the effect

the various constraints have on the‖W‖ and‖H‖, respectively, while Figure 5.6 shows the

relative consistency of the corresponding approximations.7

If structured initialization is ignored and only random initialization runs examined,

then several observations can be made. First, very few combinations of parameter settings

yielded converging results when sparsity was enforced onW . Second, enforcing sparsity,

particularly onH, while more likely not to converge, was also more likely to reduce its

relative error quickly with respect to the number of iterations. Third, smoothing eitherW

7To include sparsity in these figures, the NNDSVDe initialization was used.
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or H tended to speed convergence to within 5% relative error, andthe number of iterations

required to reach a stationary point increased as the smoothing parameter increased.

As expected, smoothingH tended to decrease the magnitude of the values withinH at

the cost of increasing the values inW . SmoothingW produced a similar (and opposite)

effect, although not to the same degree. If sparsity is enforced onH, the magnitude of

the values withinH are greatly reduced and correspondingly compensated for with adjust-

ments inW . Similarly, sparsity onW shrinks the relative magnitude ofW at the expense

of H, and unlike its smoothing counterpart, the values attaineddiffer greatly from the un-

constrained case. Enforcing smoothness or sparsity onH causes different tokens to be

prominent within each feature and affects the labelings produced.

When the vocabulary size is reduced by applying a 0.8 global threshold, smaller relative

error is expected since the vocabulary size is significantlydecreased. Figure 5.7 shows how

relative error increases withk, although the relative error for eachk is less than its50TG

counterpart.

As far as initialization strategies are concerned, NNDSVDaremains the best in terms

of relative error, but only fork ≤ 15. For k ≥ 20, NNDSVDe outperforms NNDSVDa

in terms of both relative error and number of iterations required to converge. In many

cases, the NNDSVDe achieved relative error of 1% in as many orfewer iterations as

NNDSVDa, so the NNDSVDe will be considered the baseline against which to compare

the effects of constraints on convergence speed for the50TG.8collection. In general, ap-

plying smoothing constraints shows consequences similar to their 50TGcounterparts. In
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particular, NNDSVDa fails to converge when smoothingH if β = 0.1 andk > 6, which

corresponds to 30% original sparsity inH. Additionally, convergence is not achieved if

β = 0.01 andk = 30 when smoothingH, which corresponds to a 45% original sparsity

in H. Also similar to its50TG counterpart, applying sparsity to either factor increases

the number of iterations required to reach a stationary point, generally only converges for

smaller values ofα or β, and greatly reduces the norm of the corresponding constrained

factor at the cost of increasing the magnitude of the other. Since the matrix associated with

the50TG.8collection is smaller than the50TGmatrix, some small values ofk were able

to converge to a stationary point within the 1,000 iterationlimit.

Labeling Recall

With regard to the accuracy of the labelings, several trendsexist. As k increases, the

achieved MAR increases as well. This behavior could be predicted since increasing the

number of features also increases the size of the effective labeling vocabulary, thus enabling

a more robust labeling. Whenk = 25, the average MAR across all runs is approximately

68%.

Since the NNDSVDa initialization provided the best convergence properties, it shall

be used as a baseline against which to compare.8 In terms of MAR, NNDSVDa produced

below average results, with both NNDSVDe and NNDSVDz consistently outperforming

NNDSVDa for most values ofk; NNDSVDe and NNDSVDz attained similar MAR values

8If k is not specified, assumek = 25.
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as depicted in Figure 5.8. The recall of the baseline case using NNDSVDa andk = 25

depicted by node level is shown in Figure 5.9.

The 11 levels of nodes can be broken into thirds to analyze theaccuracy of a labeling

within a depth region of the tree. The MAR for NNDSVDa for eachof the thirds is approx-

imately 58%, 63%, and 54%, respectively. With respect to thetopmost third of the tree,

any constraint applied to any NNDSVD initialization other than smoothingW applied to

NNDSVDa provided an improvement over the 58% MAR. In all cases, the resulting MAR

was at least 75%. NNDSVDa performed slightly below average over the middle third at

63%. Overall, nearly any constraint improved or matched recall over the base case over all

thirds with the exception that enforcing sparsity onH underperformed NNDSVDa in the

bottom third of the tree; all other constraints achieved at least 54% MAR for the bottom

third.

With respect to different values ofk, similar tendencies exist over all thirds. NNDSVDa

is among the worst in terms of MAR with the exception that it does well in the topmost third

whenk is either 2 or 4. There was no discernable advantage when comparing NNDSVD

initialization to its random counterpart. Overall, the best NNDSVD (and hence repro-

ducible) MAR was achieved when enforcing sparsity onH with β = 0.001, sparseness

parameter 0.5 or 0.75, andk = 30 (shown in Figure 5.10). The nearly 78% MAR achieved

was reached when NNDSVDz, NNDSVDe, or NNDSVDme was used.

78



 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30

M
A

R

k

NNDSVDz
NNDSVDe
NNDSVDa

Figure 5.8: MAR as a function ofk under the various NNDSVD initialization schemes
with no constraints for the50TGcollection.

79



 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

A
ve

ra
ge

 R
ec

al
l

Node Level

Figure 5.9: Recall as a function of node level for the NNDSVDainitialization on the50TG
collection. The achieved MAR is 58.95%.
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Figure 5.10: Best recall achieved by the NNDSVD initialization for the50TGcollection.
The achieved MAR is 77.83%.
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5.2.2 115IFN

Relative Error and Convergence

Similar to the50TGcollection, the NNDSVDa initialization strategy is the most robust in

terms of fewest iterations required to reach 1% relative error for the115IFN collection.

The larger size of the dataset, however, becomes problematic as computing the NNDSVD

is equivalent to performing approximately 249 NMF iterations. The relative error of the

various initializations is given in Figure 5.11. Assuming that an NNDSVD is performed,

however, faster convergence rates can be expected relativeto its random counterpart for

largerk.

Interestingly, in some instances, although the time required to converge did not improve,

smoothingH reduced the number of iterations required to reach small relative errors. This

occurred most often for largerk and for smaller smoothing parameters. As with the50TG

set, a value of 0.1 proved too stringent and caused NMF to failto converge. When en-

forcing sparsity onH, sparsity values of 0.5 and 0.75 proved to be the most successful for

smallβ. Enforcing either constraint onW generated results consistent with those observed

with the 50TG collection. By reducing the vocabulary size to the115IFN.8collection,

NNDSVDa remained the best initialization strategy except whenk was 8, 10, or 15, when

NNDSVDe was superior. Enforcing sparsity on either the115IFNand115IFN.8seemed

to be sensitive to the initialization method, as both collections failed to converge for all

random initializations whenk ≥ 10.
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Figure 5.11: Convergence graph comparing the NNDSVDa, NNDSVDe, NNDSVDz, and
best random NMF runs of the115IFNcollection for (k = 25) taking into account initial-
ization time.
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Labeling Recall

The MAR achieved by the115IFN collection was, on average, comparable to the50TG

collection, although the best cases were not nearly as good as the50TGcollection. As with

50TG, MAR increased ask increased. Unlike50TG, however, the NNDSVDa initialization

produced MAR competitive with the other NNDSVD strategies.The NNDSVDa enforcing

sparsity onW with α = 0.001, k = 30, and sparsity parameter 0.5 produced the best MAR

for structured initialization runs, and its recall is depicted in Figure 5.12. Broken into thirds,

the MAR is 20%, 50%, and 79%.

5.2.3 Cerebellar Data Sets

Relative Error and Convergence

All three of the cerebellar data sets contained a slightly smaller number of documents and

approximately half the number of terms of the50TGset. Consequently, the actual error

achieved by the SVD was extremely low especially for largek, and the resulting relative

errors of the NMF runs grew at a higher rate ask increased. In general, NNDSVDa was

the best overall initialization strategy for mostk in terms of convergence speed and accu-

racy, although NNDSVDe tended to outperform for larger values ofk for the Math1and

Seycollections. The relative cost of initialization in terms of number of iterations was ap-

proximately 59, 59, and 37 iterations for theMath1, Mea, andSeycollections, respectively,

and in each case the overall speed of an NNDSVD-initialized NMF was much faster than

its randomized counterpart. With regard to the effect of additional constraints, nearly all
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Figure 5.12: Best recall achieved by the NNDSVD initialization for the115IFNcollection.
The achieved MAR is 49.79%.
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the tendencies observed with the50TGcollection are consistent with those seen with the

cerebellar data sets.

Labeling Recall

Best performance in terms of MAR was achieved for higher values ofk. With respect to

initialization, NNDSVD performed better than its random counterpart for theMeacollec-

tion, although random initialization was on par with NNDSVDfor both theMath1andSey

collections. As with the50TGcollection, NNDSVDa tended to produce lower MAR than

the other three NNDSVD methods. Overall, the highest MAR values achieved for each of

theMath1, Mea, andSeydatasets were 62%, 57%, and 81%, respectively.

5.2.4 General Observations

While comparing NMF runs over all five collections, several trends can be observed, both

with respect to mathematical properties and recall tendencies. First, and as expected, ask

increases, the approximation achieved by the SVD with respect toA is more accurate; the

NMF can provide a relatively close approximation toA in most cases, but the error also

increases withk. Second, NNDSVDa provides the fastest convergence in termsof number

of iterations to the closest approximations. Third, enforcing either sparsity or smoothing

on H tends to have a more noticeable effect on the norm ofH than performing the same

operation onW . Also, enforcingH constraints on a randomized seed would frequently

speed convergence to within 5% relative error, although it would rarely reach a stationary
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point. Of course, this observation may also be related to quality of the random seed gen-

erated. Unfortunately, convergence was a major issue, especially with sparsity. Sparsity

was extremely sensitive to the initial seed, and usually only small values ofα andβ led

to converging solutions. Extreme sparseness values of 0.1 or 0.9 rarely converged, while

0.5 proved to be the most successful. Finally, to generate relatively “good” approximation

error (within 5%), about 20–40 iterations are recommended using either NNDSVDa or

NNDSVDe initialization with no additional constraints when k is reasonably large (about

half the number of documents). For smallerk, performing approximately 25 iterations

under random initialization will usually accomplish 5% relative error, with the number of

iterations required decreasing ask decreases.

Frequently, the best labelings did not come from the most accurate approximations.

Overall, more accurate labelings resulted from higher values ofk because more feature

vectors increased the vocabulary size of the labeling dictionary. Generally speaking, the

NNDSVDe, NNDSVDme, and NNDSVDz schemes outperformed the NNDSVDa initial-

ization. Enforcing additional constraints on eitherW or H with small parameter tended to

increase the achieved MAR slightly for many of the NNDSVD runs. Overall, the accuracy

of the labelings appeared to be more a function ofk and the initial seed rather than the

constraints applied.
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Chapter 6

Conclusion

SGO and other text mining systems have become more popular inbiological research and

applications. As different methods become available, theymust be tailored to be useful

in their application domain, and attempts must be made to explain their functionality in

different terminology. In the case of SGO, the negativity imposed by the SVD creates

interpretability issues. As a result, the use of NMF was explored, and the application of

NMF to labeling hierarchical trees was examined on five different data sets. Also, auto-

mated methods were suggested to expand existing annotations, classify groups of genes,

and evaluate those classifications. Currently, these threetasks are frequently performed

manually [CCSS+06].

Much research is being performed concerning the NMF, and this work examines three

methods based on the MM update [LS99]. Many other NMF variations exist and more

are being developed, so their application to the biologicalrealm should be studied. For
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example, [SBPP06] proposes a hybrid least squares approachcalled GD-CLS to solve

NMF and overcomes the problem of “locking” zeroed elements encountered by MM,

[PMCK+06] proposes nonsmooth NMF as an alternative method to incorporate sparseness,

and [DLPP06] proposes an NMF technique that generates threefactor matrices and has

shown promising clustering results. NMF has been applied tomicroarray data [BTGM04],

but efforts need to be made to combine the text information with microarray data; some

variation of tensor factorization could possibly show how relationships change over time

[CZC+07].

With respect to the labeling method, MeSH terms are assignedto genes, but the MeSH

hierarchy is ignored. Developing methods to incorporate the information inherent in that

hierarchy could help produce more accurate gene classifications. The trees themselves are

built using simplifying assumptions—extending trees intohierarchical graphs has more

real applicability, although algorithm complexity may be prohibitive at the moment. Also,

methods such as natural language processing (NLP) techniques could be used to examine

sentence structure. Consequently, both the edges as well asnodes of the tree could be

labeled where nodes show the function of a gene and edges further specifies a gene’s effect

on that function. Of course, as data become more complex, visualization techniques are

another issue that this dissertation has ignored.

Regardless of the techniques employed, one of the issues that will always be preva-

lent regarding biological data is that of quality versus quantity. Inherently related to this

problem is the establishment of standards within the field especially as they pertain to hi-
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erarchical data. Efforts such as Gene Ontology (GO) are being built and refined [Con00],

but standard data sets against which to compare results and clearly defined and accepted

evaluation measures could facilitate clear comparison between differing methods.

In the case of SGO, developing methods to derive “known” datais a major issue (even

GO does not produce a “gold standard” hierarchy given a set ofgenes). Access to more

data and to other hierarchies would help test the robustnessof the method, but that remains

one of the problems inherent in the field. As discussed in Chapter 5, approximations that

are more mathematically optimal do not always produce the “best” labeling. Often, factor-

izations provided by the NMF can be deemed “good enough,” andthe final evaluation will

remain subjective. In the end, if automated approaches can approximate that subjectivity,

then greater understanding of more data will result.
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Appendix A

Genes Used in Test Data Set

The genes comprising each data set along with other associated information is presented in

this appendix.

1. Table A.1 lists the genes in the50TGcollection.

2. Table A.2 lists the genes in the115IFNcollection.

3. The genes in theMath1, Mea, andSeycollections are still under investigation and

are not presented.
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Table A.1: The 50 genes of the50TGdata set.

Gene Symbol Unigene ID LocusLink ID Official Gene Name
A2M Mm.30151 232345 alpha-2-macroglobulin
ABL1 Mm.1318 11350 v-abl Abelson murine leukemia oncogene 1

APBA1 Mm.22879 108119 amyloid beta (A4) precursor protein-binding, family A, member 1
APBB1 Mm.38469 11785 amyloid beta (A4) precursor protein-binding, family B, member 1
APLP1 Mm.2381 11803 amyloid beta (A4) precursor-like protein 1
APLP2 Mm.19133 11804 amyloid beta (A4) precursor-like protein 2
APOE Mm.305152 11816 apolipoprotein E
APP Mm.277585 11820 amyloid beta (A4) precursor protein

ATOH1 Mm.57229 11921 atonal homolog 1 (Drosophila)
BRCA1 Mm.244975 12189 breast cancer 1
BRCA2 Mm.236256 12190 breast cancer 2
CDK5 Mm.298798 12568 cyclin-dependent kinase 5

CDK5R Mm.142275 12569 cyclin-dependent kinase 5, regulatory subunit (p35)
CDK5R2 Mm.288703 12570 cyclin-dependent kinase 5, regulatory subunit 2 (p39)

DAB1 Mm.289682 13131 disabled homolog 1 (Drosophila)
DLL1 Mm.4875 13388 delta-like 1 (Drosophila)

DNMT1 Mm.128580 13433 DNA methyltransferase (cytosine-5) 1
EGFR Mm.8534 13649 epidermal growth factor receptor
ERBB2 Mm.290822 13866 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
ETS1 Rn.88756 24356 E26 avian leukemia oncogene 1, 5′ domain
FOS Mm.246513 14281 FBJ osteosarcoma oncogene
FYN Mm.4848 14360 Fyn proto-oncogene
GLI Mm.336839 14632 GLI-Kruppel family member GLI
GLI2 Mm.273292 14633 GLI-Kruppel family member GLI2
GLI3 Mm.5098 14634 GLI-Kruppel family member GLI3
JAG1 Mm.22398 16449 jagged 1
KIT Mm.247073 16590 kit oncogene

LRP1 Mm.271854 16971 low density lipoprotein receptor-related protein 1
LRP8 Mm.276656 16975 low density lipoprotein receptor-related protein 8, apolipoprotein
MAPT Mm.1287 17762 microtubule-associated protein tau
MYC Mm.2444 17869 myelocytomatosis oncogene

NOTCH1 Mm.290610 18128 Notch gene homolog 1 (Drosophila)
NRAS Mm.256975 18176 neuroblastoma ras oncogene
PAX2 Mm.192158 18504 paired box gene 2
PAX3 Mm.1371 18505 paired box gene 3
PSEN1 Mm.998 19164 presenilin 1
PSEN2 Mm.330850 19165 presenilin 2
PTCH Mm.138472 19206 patched homolog
RELN Mm.3057 19699 reelin

ROBO1 Mm.310772 19876 roundabout homolog 1 (Drosophila)
SHC1 Mm.86595 20416 src homology 2 domain-containing transforming protein C1
SHH Mm.57202 20423 sonic hedgehog
SMO Mm.29279 20596 smoothened homolog (Drosophila)
SRC Mm.22845 20779 Rous sarcoma oncogene

TGFB1 Mm.248380 21803 transforming growth factor, beta 1
TRP53 Mm.222 22059 transformation related protein 53
VLDLR Mm.4141 22359 very low density lipoprotein receptor
WNT1 Mm.1123 22408 wingless-related MMTV integration site 1
WNT2 Mm.33653 22413 wingless-related MMTV integration site 2
WNT3 Mm.5188 22415 wingless-related MMTV integration site 3
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Table A.2: The 115 genes in the115IFNdata set.

Gene Symbol Unigene ID LocusLink ID Official Gene Name
ADAR Mm.316628 56417 adenosine deaminase, RNA-specific
AIM1 Mm.292082 11630 absent in melanoma 1

AKAP8 Mm.328945 56399 A kinase (PRKA) anchor protein 8
ANKFY1 Mm.10313 11736 ankyrin repeat and FYVE domain containing 1

APOD Mm.2082 11815 apolipoprotein D
AZI2 Mm.92705 27215 5-azacytidine induced gene 2
B2M Mm.163 12010 beta-2 microglobulin

BLMH Mm.22876 104184 bleomycin hydrolase
CASP12 Mm.42163 12364 caspase 12
CASP4 Mm.1569 12363 caspase 4, apoptosis-related cysteine peptidase
CD47 Mm.31752 16423 CD47 antigen (Rh-related antigen, integrin-associated signal transducer)
CREM Mm.5244 12916 cAMP responsive element modulator

CXCL10 Mm.877 15945 chemokine (C-X-C motif) ligand 10
CYP26A1 Mm.42230 13082 cytochrome P450, family 26, subfamily a, polypeptide 1

DAXX Mm.271809 13163 Fas death domain-associated protein
DDX24 Mm.3935 27225 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24
DSC2 Mm.280547 13506 desmocollin 2

ETNK1 Mm.272548 75320 ethanolamine kinase 1
G1P2 Mm.4950 53606 ISG15 ubiquitin-like modifier
G7E Mm.22506 110956 DNA segment, Chr 17, human D6S56E 5

GADD45G Mm.281298 23882 growth arrest and DNA-damage-inducible 45 gamma
GATA6 Mm.329287 14465 GATA binding protein 6
GBP2 Mm.24038 14469 guanylate nucleotide binding protein 2
GBP4 Mm.45740 55932 guanylate nucleotide binding protein 4

GNA13 Mm.193925 14674 guanine nucleotide binding protein, alpha 13
GNB4 Mm.139192 14696 guanine nucleotide binding protein, beta 4
H2-BL Mm.195061 14963 histocompatibility 2, blastocyst
H2-D1 Mm.374036 14964 histocompatibility 2, D region locus 1
H2-K1 Mm.379883 14972 histocompatibility 2, K1, K region
H2-L Mm.33263 14980 histocompatibility 2, D region

H2-M3 Mm.14437 14991 histocompatibility 2, M region locus 3
H2-Q1 Mm.33263 15006 histocompatibility 2, Q region locus 1
H2-Q10 Mm.88795 15007 histocompatibility 2, Q region locus 10
H2-Q2 Mm.33263 15013 histocompatibility 2, Q region locus 2
H2-Q7 Mm.33263 15018 histocompatibility 2, Q region locus 7
H2-T10 Mm.195061 15024 histocompatibility 2, T region locus 10
HAS2 Mm.5148 15117 hyaluronan synthase 2

HTR1D Mm.40573 15552 5-hydroxytryptamine (serotonin) receptor 1D
IFI1 Mm.29938 15944 immunity-related GTPase family, M
IFI16 Mm.227595 15951 interferon activated gene 204

IFI202B Mm.218770 26388 interferon activated gene 202B
IFI203 Mm.261270 15950 interferon activated gene 203
IFI205 Mm.218770 226695 interferon activated gene 205
IFI35 Mm.45558 70110 interferon-induced protein 35
IFI47 Mm.24769 15953 interferon gamma inducible protein 47
IFIH1 Mm.136224 71586 interferon induced with helicase C domain 1
IFIT1 Mm.6718 15957 interferon-induced protein with tetratricopeptide repeats 1
IFIT2 Mm.2036 15958 interferon-induced protein with tetratricopeptide repeats 2
IFIT3 Mm.271850 15959 interferon-induced protein with tetratricopeptide repeats 3

IFITM3 Mm.141021 66141 interferon induced transmembrane protein 3
IGTP Mm.33902 16145 interferon gamma induced GTPase
IIGP1 Mm.261140 60440 interferon inducible GTPase 1
IIGP2 Mm.33902 54396 interferon inducible GTPase 2

IL13RA1 Mm.24208 16164 interleukin 13 receptor, alpha 1
IL15 Mm.4392 16168 interleukin 15

IL15RA Mm.200196 16169 interleukin 15 receptor, alpha chain
IL6 Mm.1019 16193 interleukin 6

IRF1 Mm.105218 16362 interferon regulatory factor 1
IRF5 Mm.6479 27056 interferon regulatory factor 5
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Genes in115IFNdata set (Table A.2 continued).

Gene Symbol Unigene ID LocusLink ID Official Gene Name
IRF7 Mm.3233 54123 interferon regulatory factor 7
ISG20 Mm.322843 57444 interferon-stimulated protein

ISGF3G Mm.2032 16391 interferon dependent positive acting transcription factor 3 gamma
JAK2 Mm.275839 16352 Janus kinase 2

JARID1A Mm.45767 214899 jumonji, AT rich interactive domain 1A (Rbp2 like)
LGALS3BP Mm.3152 19039 lectin, galactoside-binding, soluble, 3 binding protein

LGALS8 Mm.171186 56048 lectin, galactose binding, soluble 8
LGALS9 Mm.341434 16859 lectin, galactose binding, soluble 9

LY6E Mm.788 17069 lymphocyte antigen 6 complex, locus E
MAFK Mm.157313 17135 v-maf musculoaponeurotic fibrosarcoma oncogene family, protein K (avian)
MOV10 Mm.1597 17454 Moloney leukemia virus 10
MPEG1 Mm.3999 17476 macrophage expressed gene 1

MX1 Mm.33996 17857 myxovirus (influenza virus) resistance 1
MX2 Mm.14157 17858 myxovirus (influenza virus) resistance 2

MYD88 Mm.213003 17874 myeloid differentiation primary response gene 88
N4BP1 Mm.25117 80750 cDNA sequence BC004022
NDG1 Mm.26006 368204 Nur77 downstream gene 1
NDST2 Mm.4084 17423 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2

NMI Mm.7491 64685 N-myc (and STAT) interactor
NYREN18 Mm.5856 53312 RIKEN cDNA 6330412F12

OGFR Mm.250418 72075 opioid growth factor receptor
PBEF1 Mm.202727 59027 pre-B-cell colony-enhancing factor 1
PELI1 Mm.28957 67245 pellino 1

PLSCR2 Mm.10306 18828 phospholipid scramblase 2
PML Mm.278985 18854 promyelocytic leukemia
PNP Mm.17932 18950 purine-nucleoside phosphorylase

PRKR Mm.378990 19106 eukaryotic translation initiation factor 2-alpha kinase 2
PSMB10 Mm.787 19171 proteasome (prosome, macropain) subunit, beta type 10
PSMB8 Mm.180191 16913 proteosome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7)
PSMB9 Mm.390983 16912 proteosome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2)
PSME1 Mm.830 19186 proteasome (prosome, macropain) 28 subunit, alpha
PSME2 Mm.15793 19188 proteasome (prosome, macropain) 28 subunit, beta
PTPN13 Mm.3414 19249 protein tyrosine phosphatase, non-receptor type 13

RNPEPL1 Mm.200971 108657 arginyl aminopeptidase (aminopeptidase B)-like 1
SAMHD1 Mm.248478 56045 SAM domain and HD domain, 1
SERPINB9 Mm.272569 20723 serine (or cysteine) peptidase inhibitor, clade B, member 9
SFMBT2 Mm.329991 353282 Scm-like with four mbt domains 2
SLFN2 Mm.278689 20556 schlafen 2
SMYD2 Mm.156895 226830 SET and MYND domain containing 2
SOCS1 Mm.130 12703 suppressor of cytokine signaling 1
SOCS2 Mm.4132 216233 suppressor of cytokine signaling 2
STAT1 Mm.277406 20846 signal transducer and activator of transcription 1
STX3 Mm.272264 20908 syntaxin 3

STXBP1 Mm.278865 20910 syntaxin binding protein 1
TAP1 Mm.207996 21354 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)
TAP2 Mm.14814 21355 transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)

TAPBP Mm.154457 21356 TAP binding protein
TCIRG1 Mm.271689 27060 T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein A3
TGTP Mm.15793 21822 T-cell specific GTPase

TRIM21 Mm.321227 20821 tripartite motif protein 21
TRIM25 Mm.248445 217069 tripartite motif protein 25
UBE1L Mm.277125 74153 ubiquitin-activating enzyme E1-like
USP18 Mm.326911 24110 ubiquitin specific peptidase 18
VIG1 Mm.24045 58185 radical S-adenosyl methionine domain containing 2
XDH Mm.11223 22436 xanthine dehydrogenase
ZFP36 Mm.389856 22695 zinc finger protein 36
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Appendix B

NMF Statistics

This appendix contains average relative error and convergence percentage information for

the five data sets.

1. Table B.1 displays the average relative error of the NMF under different constraints

compared to the SVD for the 50TG data set.

2. Table B.2 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the 50TG data set.

3. Table B.3 displays the average relative error of the NMF under different constraints

compared to the SVD for the 50TG data set with a 0.8 global weight threshold en-

forced.

4. Table B.4 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the 50TG data set with a 0.8 global weight threshold enforced.
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5. Table B.5 displays the average relative error of the NMF under different constraints

compared to the SVD for the 115IFN data set.

6. Table B.6 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the 115IFN data set.

7. Table B.7 displays the average relative error of the NMF under different constraints

compared to the SVD for the 115IFN data set with a 0.8 global weight threshold

enforced.

8. Table B.8 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the 115IFN data set with a 0.8 global weight threshold enforced.

9. Table B.9 displays the average relative error of the NMF under different constraints

compared to the SVD for the Math1 data set.

10. Table B.10 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the Math1 data set.

11. Table B.11 displays the average relative error of the NMFunder different constraints

compared to the SVD for the Math1 data set with a 0.8 global weight threshold

enforced.

12. Table B.12 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the Math1 data set with a 0.8 global weight threshold enforced.

112



13. Table B.13 displays the average relative error of the NMFunder different constraints

compared to the SVD for the Mea data set.

14. Table B.14 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the Mea data set.

15. Table B.15 displays the average relative error of the NMFunder different constraints

compared to the SVD for the Mea data set with a 0.8 global weight threshold en-

forced.

16. Table B.16 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the Mea data set with a 0.8 global weightthreshold enforced.

17. Table B.17 displays the average relative error of the NMFunder different constraints

compared to the SVD for the Sey data set.

18. Table B.18 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the Sey data set.

19. Table B.19 displays the average relative error of the NMFunder different constraints

compared to the SVD for the Sey data set with a 0.8 global weight threshold enforced.

20. Table B.20 displays the percentage of NMF runs that either converged or reached

1,000 iterations for the Sey data set with a 0.8 global weightthreshold enforced.
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k no constraints W smooth H smooth W sparse H sparse
2 0.37% 0.38% 0.36% 0.78% 0.28%
4 0.90% 1.08% 0.90% 1.85% 0.77%
6 1.75% 1.80% 1.61% 2.69% 1.48%
8 2.10% 2.11% 1.83% 3.27% 1.44%
10 2.15% 2.65% 1.99% 3.73% 1.54%
15 4.13% 4.13% 2.95% 5.18% 2.41%
20 4.84% 4.54% 3.76% 7.34% 4.03%
25 7.80% 7.73% 5.88% 11.28% 4.99%
30 12.77% 11.89% 9.43% 18.46% 8.56%

Table B.1: Average relative error of the converging NMF runsfor the50TGcollection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00% 18.52% 76.30%
4 100.00% 88.89% 100.00% 10.37% 69.63%
6 100.00% 85.19% 100.00% 8.89% 51.85%
8 100.00% 81.48% 96.30% 10.37% 45.93%
10 100.00% 77.78% 96.30% 8.89% 45.19%
15 100.00% 81.48% 96.30% 8.89% 33.33%
20 100.00% 96.30% 96.30% 6.67% 26.67%
25 100.00% 88.89% 96.30% 4.44% 22.96%
30 100.00% 96.30% 96.30% 2.22% 24.44%

Table B.2: Percentage of NMF runs for the50TGcollection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.05% 0.06% 0.06% 0.07% 0.05%
4 0.70% 0.45% 0.65% 0.19% 0.31%
6 0.63% 0.52% 0.65% 0.58% 0.63%
8 1.08% 0.67% 0.62% 0.87% 0.84%
10 1.27% 0.85% 0.63% 1.07% 1.05%
15 2.31% 1.64% 1.69% 1.74% 1.94%
20 2.57% 2.35% 2.16% 2.31% 2.70%
25 5.96% 3.93% 5.08% 3.48% 3.06%
30 9.06% 9.68% 9.91% 5.58% 5.61%

Table B.3: Average relative error of the converging NMF runsfor the50TG.8collection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 79.17% 100.00% 15.83% 51.67%
4 100.00% 83.33% 100.00% 11.67% 27.50%
6 100.00% 83.33% 95.83% 10.00% 22.50%
8 100.00% 83.33% 95.83% 10.00% 15.00%
10 100.00% 87.50% 95.83% 8.33% 8.33%
15 100.00% 87.50% 91.67% 6.67% 5.83%
20 100.00% 91.67% 79.17% 5.00% 4.17%
25 100.00% 87.50% 75.00% 3.33% 5.83%
30 100.00% 91.67% 70.83% 3.33% 5.00%

Table B.4: Percentage of NMF runs for the50TG.8collection that converged.

115



k no constraints W smooth H smooth W sparse H sparse
2 0.25% 0.27% 0.25% 0.75% 0.20%
4 0.76% 0.89% 0.85% 1.68% 0.71%
6 1.22% 1.33% 1.18% 2.49% 1.09%
8 1.58% 1.67% 1.47% 2.71% 1.39%
10 1.86% 2.12% 1.83% 3.64% 1.95%
15 2.61% 2.95% 2.70% 5.87% 5.14%
20 3.52% 3.70% 3.27% 7.38% 6.45%
25 4.77% 4.76% 4.39% 8.67% 7.80%
30 4.90% 5.21% 4.71% 8.99% 9.27%

Table B.5: Average relative error of the converging NMF runsfor the115IFNcollection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00% 25.19% 52.59%
4 100.00% 81.48% 100.00% 14.81% 30.37%
6 100.00% 85.19% 100.00% 11.85% 29.63%
8 100.00% 88.89% 96.30% 11.11% 21.48%
10 100.00% 81.48% 96.30% 10.37% 11.85%
15 100.00% 85.19% 96.30% 8.89% 4.44%
20 100.00% 88.89% 96.30% 6.67% 4.44%
25 100.00% 92.59% 96.30% 4.44% 2.22%
30 100.00% 85.19% 92.59% 4.44% 2.22%

Table B.6: Percentage of NMF runs for the115IFNcollection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.02% 0.02% 0.02% 0.03% 0.02%
4 0.18% 0.22% 0.14% 0.10% 0.10%
6 0.37% 0.45% 0.41% 0.33% 0.34%
8 0.44% 0.49% 0.60% 0.41% 0.36%
10 0.79% 0.75% 0.56% 0.41% 0.41%
15 0.85% 1.28% 0.90% 0.46% 0.46%
20 1.44% 1.54% 1.41% 0.73% 0.73%
25 2.32% 2.67% 2.23% 1.50% 1.50%
30 3.94% 2.86% 2.71% 2.37% 2.22%

Table B.7: Average relative error of the converging NMF runsfor the115IFN.8collection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 83.33% 100.00% 16.67% 20.00%
4 100.00% 91.67% 87.50% 10.00% 7.50%
6 100.00% 87.50% 79.17% 10.00% 5.83%
8 100.00% 91.67% 70.83% 8.33% 4.17%
10 100.00% 87.50% 70.83% 6.67% 3.33%
15 100.00% 87.50% 66.67% 6.67% 3.33%
20 100.00% 83.33% 62.50% 5.00% 1.67%
25 100.00% 91.67% 50.00% 3.33% 1.67%
30 100.00% 83.33% 50.00% 1.67% 1.67%

Table B.8: Percentage of NMF runs for the115IFN.8collection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.45% 0.48% 0.40% 0.95% 0.35%
4 1.20% 1.46% 1.05% 2.54% 0.94%
6 1.83% 1.97% 1.49% 3.59% 1.33%
8 2.40% 2.41% 1.77% 4.21% 1.64%
10 3.25% 3.33% 2.33% 5.90% 2.29%
15 5.54% 5.18% 4.09% 8.12% 4.24%
20 7.29% 6.91% 5.64% 12.35% 12.67%
25 8.04% 8.80% 8.71% 17.66% 17.88%
30 12.86% 12.94% 13.69% 27.99% 28.93%

Table B.9: Average relative error of the converging NMF runsfor theMath1collection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 88.89% 100.00% 20.00% 71.11%
4 100.00% 85.19% 100.00% 11.85% 51.85%
6 100.00% 88.89% 100.00% 10.37% 34.81%
8 100.00% 92.59% 100.00% 10.37% 28.15%
10 100.00% 88.89% 96.30% 9.63% 28.15%
15 100.00% 88.89% 96.30% 8.89% 22.22%
20 100.00% 96.30% 96.30% 6.67% 8.89%
25 100.00% 92.59% 96.30% 2.22% 6.67%
30 100.00% 96.30% 96.30% 2.22% 8.89%

Table B.10: Percentage of NMF runs for theMath1collection that converged.

118



k no constraints W smooth H smooth W sparse H sparse
2 0.05% 0.05% 0.05% 0.05% 0.05%
4 0.14% 0.22% 0.23% 0.18% 0.15%
6 0.35% 0.73% 0.58% 0.35% 0.47%
8 1.11% 0.87% 1.23% 0.31% 0.31%
10 1.01% 0.24% 0.20% 0.43% 0.37%
15 3.03% 2.45% 1.50% 0.71% 0.71%
20 1.77% 4.25% 4.06% 1.16% 1.29%
25 12.56% 13.55% 12.19% 2.11% 2.11%
30 24.42% 23.53% 22.66% 4.03% 4.03%

Table B.11: Average relative error of the converging NMF runs for theMath1.8collection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 91.67% 100.00% 20.00% 42.50%
4 100.00% 79.17% 95.83% 11.67% 13.33%
6 100.00% 79.17% 79.17% 10.00% 11.67%
8 100.00% 79.17% 83.33% 10.00% 8.33%
10 100.00% 87.50% 79.17% 9.17% 9.17%
15 100.00% 91.67% 75.00% 6.67% 6.67%
20 100.00% 95.83% 70.83% 5.00% 5.83%
25 100.00% 100.00% 75.00% 1.67% 5.00%
30 100.00% 100.00% 62.50% 1.67% 3.33%

Table B.12: Percentage of NMF runs for theMath1.8collection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.33% 0.34% 0.31% 0.51% 0.28%
4 0.97% 0.99% 0.65% 1.34% 0.64%
6 1.60% 1.31% 1.02% 1.52% 0.95%
8 1.60% 1.45% 1.03% 2.12% 0.94%
10 1.69% 1.65% 1.13% 2.34% 1.24%
15 3.30% 2.87% 2.26% 4.15% 2.36%
20 5.65% 5.04% 4.14% 7.21% 7.47%
25 9.26% 8.39% 8.04% 14.82% 15.14%
30 15.42% 15.31% 13.00% 22.28% 23.07%

Table B.13: Average relative error of the converging NMF runs for theMeacollection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00% 20.74% 55.56%
4 100.00% 92.59% 100.00% 13.33% 42.96%
6 100.00% 85.19% 100.00% 10.37% 36.30%
8 100.00% 88.89% 96.30% 9.63% 25.93%
10 100.00% 85.19% 100.00% 8.89% 22.96%
15 100.00% 85.19% 88.89% 6.67% 20.74%
20 100.00% 88.89% 96.30% 6.67% 8.89%
25 100.00% 100.00% 88.89% 2.22% 8.89%
30 100.00% 96.30% 92.59% 2.22% 6.67%

Table B.14: Percentage of NMF runs for theMeacollection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.02% 0.02% 0.02% 0.02% 0.01%
4 0.12% 0.19% 0.15% 0.12% 0.12%
6 1.20% 0.43% 0.79% 0.08% 0.07%
8 0.76% 0.55% 0.67% 0.16% 0.16%
10 0.56% 0.62% 0.42% 0.24% 0.23%
15 1.89% 1.02% 0.67% 0.36% 0.36%
20 4.37% 4.24% 4.31% 0.48% 0.53%
25 5.67% 5.51% 3.78% 0.76% 0.76%
30 11.30% 11.00% 10.35% 1.23% 1.23%

Table B.15: Average relative error of the converging NMF runs for theMea.8collection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 70.83% 100.00% 16.67% 40.83%
4 100.00% 87.50% 87.50% 11.67% 23.33%
6 100.00% 87.50% 75.00% 10.00% 10.00%
8 100.00% 87.50% 75.00% 10.00% 8.33%
10 100.00% 87.50% 75.00% 6.67% 9.17%
15 100.00% 95.83% 75.00% 6.67% 6.67%
20 100.00% 95.83% 75.00% 5.00% 5.83%
25 100.00% 95.83% 70.83% 3.33% 5.00%
30 100.00% 91.67% 66.67% 1.67% 3.33%

Table B.16: Percentage of NMF runs for theMea.8collection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.48% 0.51% 0.46% 1.49% 0.39%
4 1.50% 1.71% 1.53% 3.35% 1.45%
6 2.46% 2.62% 1.97% 5.52% 1.59%
8 2.98% 2.97% 2.32% 6.15% 1.47%
10 4.18% 4.12% 3.33% 8.33% 2.38%
15 6.32% 6.19% 4.73% 11.34% 4.29%
20 11.38% 11.25% 8.94% 19.51% 8.38%
25 23.23% 18.94% 18.97% 36.60% 21.77%
30 56.39% 53.81% 54.05% N/A% 60.54%

Table B.17: Average relative error of the converging NMF runs for theSeycollection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00% 22.22% 80.00%
4 100.00% 85.19% 100.00% 13.33% 60.74%
6 100.00% 88.89% 100.00% 12.59% 49.63%
8 100.00% 92.59% 96.30% 11.85% 44.44%
10 100.00% 85.19% 96.30% 9.63% 38.52%
15 100.00% 96.30% 96.30% 6.67% 28.15%
20 100.00% 88.89% 96.30% 4.44% 27.41%
25 100.00% 96.30% 96.30% 2.22% 25.93%
30 100.00% 100.00% 96.30% 0.00% 20.00%

Table B.18: Percentage of NMF runs for theSeycollection that converged.
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k no constraints W smooth H smooth W sparse H sparse
2 0.05% 0.05% 0.04% 0.07% 0.04%
4 0.33% 0.46% 0.18% 0.22% 0.15%
6 1.74% 1.42% 1.19% 0.33% 0.52%
8 0.26% 0.79% 0.71% 0.42% 1.03%
10 0.54% 0.60% 1.66% 0.61% 0.74%
15 4.89% 3.73% 1.51% 1.17% 1.18%
20 9.66% 8.21% 7.17% 1.97% 1.98%
25 16.36% 19.91% 14.94% 4.04% 4.04%
30 66.87% 61.84% 62.69% 13.12% 17.45%

Table B.19: Average relative error of the converging NMF runs for theSey.8collection.

k no constraints W smooth H smooth W sparse H sparse
2 100.00% 83.33% 100.00% 18.33% 57.50%
4 100.00% 79.17% 95.83% 11.67% 35.00%
6 100.00% 91.67% 95.83% 11.67% 20.83%
8 100.00% 87.50% 91.67% 10.00% 13.33%
10 100.00% 91.67% 91.67% 8.33% 11.67%
15 100.00% 95.83% 79.17% 5.00% 8.33%
20 100.00% 95.83% 83.33% 3.33% 6.67%
25 100.00% 95.83% 70.83% 1.67% 6.67%
30 100.00% 100.00% 70.83% 1.67% 2.50%

Table B.20: Percentage of NMF runs for theSey.8collection that converged.
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