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Abstract

Understanding functional gene relationships is a chaliengroblem for biological ap-
plications. High-throughput technologies such as DNA wacrays have inundated biolo-
gists with a wealth of information, however, processing theormation remains problem-
atic. To help with this problem, researchers have begunyapgptext mining techniques
to the biological literature. This work extends previousrkvbased on Latent Semantic
Indexing (LSI) by examining Nonnegative Matrix Factoripat (NMF). Whereas LSI in-
corporates the singular value decomposition (SVD) to apprate data in a dense, mixed-
sign space, NMF produces a parts-based factorization ghditectly interpretable. This
space can, in theory, be used to augment existing ontolageannotations by identifying
themes within the literature. Of course, performing NMFglaet come without a price—
namely, the large number of parameters. This work attero@aalyze the effects of some
of the NMF parameters on both convergence and labeling acgu®ince there is a dearth
of automated label evaluation techniques as well as “g@iddzird” hierarchies, a method
to produce “correct” trees is proposed as well as a techrimjiebel trees and to evaluate

those labels.
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Chapter 1

Introduction

The emergence of high-throughput techniques in genomicdée@mics, and related bi-
ological fields have generated large amounts of data thdilemasearchers to examine
biological systems from a global viewpoint. Unfortunatdigwever, the sheer mass of in-
formation available is overwhelming, and data such as gepeession profiles from DNA
microarray analysis can be difficult to understand fullyref@ domain experts. Addition-
ally, performing these experiments in the lab can be expensith respect to both time
and money.

With access to online repositories of biomedical literatoecoming widely available in
recent years, text mining techniques have been applie@setthatabases and are becoming
increasingly accepted as a method to validate lab resuttsaadirect future research by
uncovering latent relationships. [JLKHO1] was among thst fio utilize online text to

expose gene relationships by exploiting term co-occuggratterns within the literature.



In many cases, the information gleaned from online databiaselated to gene function.
In the biological context, uncovering gene function (phgpe) is one of the primary goals
of research and is also one of the most difficult to verify. &neral, protein structure,
not the primary sequence (genotype), indicates functiarfoktunately, structure analysis
is expensive, time-consuming, and difficult—current teghas may not even reveal true
structure as proteins must be first crystallized to be exadifrotein function, however,
can be examined biochemically, although many of the availaiethods remain remain
time-consuming and expensive.

Since direct examination of proteins is difficult, literegthas become an accepted data
source to examine phenotype. Unfortunately, many of teeditire sources are themselves
imperfect; many of the medical literature databases ordnreemanually indexed. While
manual annotation adds a degree of confidence to an aseacitéte subjectivity involved
can be scrutinized. For example, [FR83] has shown thatdiftenanual indexers of MED-
LINE produce consistent associations only 40-50% of the ti@iven the time required
to read and classify an article, automated methods may hetpase the annotation rate as
well as improve existing annotations.

One such tool that may help improve annotation as well agiigganctional groups of
genes is the Semantic Gene Organizer (SGO). SGO is a sofawair®enment based upon
latent semantic indexing (LSI) that enables researchargtgroups of genes in a global

context as a hierarchical tree or dendrogram [HeiO4]. Therkenk approximation pro-

IMore specifically, genes code for proteins which in turngaut a specific function.



vided by LSI (for the original term-to-document associasipexposes latent relationships
between genes, and the resulting hierarchical tree is ahastion of those relationships
that is reproducible and easily interpreted by biologift#iWBO05] has shown that the
SGO can identify groups of related genes more accuratefytdran co-occurrence meth-
ods. LSl is based upon the singular value decomposition (§%D96], and the properties
of the SVD are well-known. Unfortunately, since the inputadia a nonnegative matrix of
weighted term frequencies, the negative values prevatetttal basis vectors of the SVD
are not easily interpreted.

The decomposition produced by the recently popular nortivegaatrix factorization
(NMF), however, can be readily interpreted. [PT94] is amtmgfirst in recent years to
investigate this factorization, and [LS99] later popudad it. Generally speaking, NMF
is an iterative algorithm that preserves the nonnegatwitthe original data. The fac-
torization produces a low-rank, parts-based representati the original data. In effect,
common themes present in the data can be identified simplgdpecting the factor ma-
trices. Depending on the interpretation, the factorizatian induce both clustering and
classification. If NMF can accurately model the input dat@ntit can be used to classify
that data. Within the context of SGO, this means that the ggaf genes presented in
the hierarchical trees can be assigned labels that idehgfy common attributes such as
protein function.

The interpretability of NMF, however, comes at a price. Ngymeonvergence and sta-

bility are not guaranteed. Also, many variations of the NMBpgmsed by [LS99] exist,



each with different parameters. The goals of this studywofdld: to provide a qualita-
tive assessment of the NMF and its various parameterscpkatiy as they apply to the
biomedical context, and to provide an automated way to ifjasemedical data as well
as provide a method for evaluating that labeled data asguenstatic input treé. As a
byproduct, a method for generating “gold standard” tregsoposed.

To appreciate how NMF is applied in this context, a generdleustanding of SGO is
required. First, a background chapter describing the vegiace model and gene document
construction process employed by SGO is presented in Ghapt€hapter 3 discusses
the two factorization schemes in detail—both the SVD and NIVi€e construction and
labeling algorithms are examined in Chapter 4. Finally,gt&a5 evalutes the performance

of NMF, and Chapter 6 discusses future research.

2The input tree is assumed to be static to avoid biologicalizapions of changing known associations.
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Chapter 2

The Vector Space Model

Traditionally, the field of information retrieval (IR) iswdded into Boolean, probabilistic,
and vector space models [BYRN99]. Within the context of S&wledge of the general
vector space model and the impact of term weighting is nacgsBefore the documents
can be constructed, however, an understanding of the dodwreation process is useful;
unlike most IR applications, document construction is atrmel process within the SGO

environment.

2.1 Data Representation

An underlying assumption of the vector space model is thanmmg can be extracted
from a document solely based on the words that comprise terAémoving articles and
other commonly used termstppword$ from the text and ignoring capitalization and most

punctuation, the remaining non-alphanumeric terms (atamits calledoken$ comprise



a parsed document; all tokens within a corpus form a dictipna

Further preprocessing steps can be performed on the dacyido limit the vocabulary
to the most significant terms. For example, many terms carddaded from the dictionary
if they do not meet a certain frequency threshold either gjlgk{within the corpus) or
locally (within the document), or similarly if they exceedraeshold.

Another common preprocessing procedure is applyistgaminglgorithm such as the
Porter Stemmer [vVRRP80, Por80]. This algorithm attempssdm all forms of a word into
its common base, essentially stripping all prefixes andxasdffrom a word in an attempt
to eliminate all morphological variation. For example, fglging” and “weights” stem
back to the base word “weight.” Determining the base “wor&tem to is, unfortunately,
a difficult and imperfect process that may introduce addéleerrors. Overall, however,
stemming is understood to have a marginal impact on retresalts [Hul96].

While stemming is a way to reduce the vocabulary si@edowingis a way to change
vocabulary size, usually by increasing it [Dam95]. By usagliding window of size
n across the text, each token becomesiagram of characters. Granted much overlap
is produced for each word, the dictionary is guaranteed tatbraost size~", whereX
is the number of characters in the language (usually plubtirekspace). Although the
effectiveness of this approach can be argued [H8%&], the idea of a sliding window has
merit in some application areas. For example, by extendiegsliding window's atomic
unit to words instead of characters, phrases can be indexgd“New York City” can be

indexed as one token rather than three separate ones).fielthef bioinformatics, [SB03]



has applied the sliding window concept to proteins to dgvpkptide motifshat comprise
the dictionary. Regardless of the preprocessing step tisethe vector space model to
be successful, the dictionary must contain most if not alihef tokens (after stemming,
windowing, or another procedure is applied) that will bedusequery.

Once the dictionary is built, a corpus is represented byrnar n term-by-document
matrix A = [w;;], wherew;; is the weight associated with tokérin documentj, m is
the number of tokens in the dictionary, ands the number of documents in the corpus.
Furthermore, the columns of correspond to document vectors of length while the
rows of A are term vectors of length. In this particular context, the document vectors
or columns ofA also correspond to particular genes. A sample corpus amdspunding
term-document matrix is given in Tables 2.1 and 2.2; thedngopy weighting scheme

discussed in Section 2.2 was used to generate the term weight

2.2 Term Weighting

Defining the appropriate weighting scheme for each corpappdication-dependent. Typ-
ically, each weighty,; is based on some function of the frequency of a token within a

document or the entire corpus. In general,

wij = l;;gid;,



Table 2.1: Sample collection with dictionary terms disgldyn bold.

Document Text

dl Work-relatedstresscan be considered a factor contributingarxiety.

d2 Liver cancer is most commonly associated witthcoholism andcirrhosis. It is well-known
thatalcoholism can causeirrhosis and increase the risk &dney failure.

d3 Bone marrow transplants are often needed for patients JPétikemia and other types afan-
cer thatdamage bone marrow Exposure to toxic chemicals is a risk factor feakemia.

d4 Different types ofblood cells exist in bone marrow. Bone marrow procedures can deteq
tuberculosis

d5 Abnormalstressor pressurecan cause aanxiety attack. Continuedstresscan elevatédlood
pressure

d6é Alcoholism can cause higblood pressure(hypertension) and increase the risk difirth de-
fectsandkidney failure.

d7 The presence afpeech defectin children is a sign ofautism. As of yet, there is no consensy
on what causeautism.

ds8 Alcoholism, often triggered at an early age by factors such as enviroharel genetic predis
position, can lead toirrhosis. Cirrhosis is thescarring of theliver.

do Autism affects approximately 0.5% ahildren in the US. The link betweealcoholism and
birth defects is well-known; researchers are currently studying the bekweenalcoholism
andautism.

t

Table 2.2: Term-document matrix for the sample collectroiable 2.1.

di dz2 d3 d4 d5 dé d7 ds d9

alcoholism
anxiety
attack
autism
birth
blood
bone
cancer
cells
children
cirrhosis
damage
defects
failure
hypertension
kidney
leukemia
liver
marrow
pressure
scarring
speech
stress
tuberculosis

0.4338 0.2737 0.2737 | 0.4338
0.4745 0.4745
0.6931
0.7520 0.7520
0.4745 0.4745
0.3466 | 0.3466 | 0.3466
0.7520 | 0.7520
0.4745 | 0.4745
0.6931
0.4745 0.4745
0.7520 0.7520
0.6931
0.3466 | 0.3466 0.3466
0.4745 0.4745
0.6931
0.4745 0.4745
1.0986
0.4745 0.4745
0.7520 | 0.7520
0.7804 | 0.4923
0.6931
0.6931
0.4923 0.7804

0.6931




wherel;; denotes the local weight of terinin document;, g; corresponds to the global
weight of term:, andd; is a document normalization factor for the columns4ofSince
most weighting schemes are based on word frequency, usinghaafization factor helps
eliminate the effect of document length discrepancies aadsning.

By default, SGO utilizes thivg-entropyweighting scheme, given by

lij = log(1+ fij),

> (pij log pij)
g o= 14|,

logn

where f;; is the frequency of tokehnin documentj andp;; = fi;/ X fi; is the probability
j
of tokeni occurring in documenj. By design, tokens that appear less frequently across
the collection but more frequently within a document will ¢pgen higher weight. That
is, distinguishing tokens will tend to have higher weighésigned to them, while more

common tokens will have weights closer to zero.

2.3 Similarity

Measuring similiarity between any two vectors in the docotrgpace is accomplished by

computing the cosine of the angle between them and is repisssby

m
> Wi Wi 5
k=1

N L) 7
> Weiy| 22 Wi
E=1 k=1

sim (d;, dj) = cos ©;; =



where©;,; is the angle between any two documentndj. In the vector space model,
nonzero similarities exist only if two documents share canrterms; this caveat is evi-
denced by the sample collection similarity matrix presémteTable 2.3.

On the other hand, a measure of distance can be calculated by

dist (dl, dj) =1 —cos @U (21)

The numerical similarity and distance values by themseatagy little meaning; however,
such measures are useful when constructing similarity astdrite matrices that show
pairwise similarities and distances between every contioimaf two documents in the
collection. In fact, this measure is not a metric; that isy&epn (2.1) does not satisfy the
triangle inequality (oaddivity) required by many tree construction algorithms to guaente
the production of a “correct” tree. However, the “best figdrcan be found by minimizing

Equation (4.1).

2.4 Gene Document Construction

An abundance of medical and biological literature existslaabases worldwide. The
United States National Library of Medici@® (NLM) maintains one such bibliographic
database, called MEDLINE) (Medical Literature, Analysis, and Retrieval System On-
line). MEDLINE covers topics that concern biomedical pit@aters such as biomedical

research, chemical sciences, clinical sciences, anctiéases. Currently, MEDLINE con-

10



Table 2.3: Document-to-document similarity matrix for gample collection.

dl d2 d3 d4 d5 dé 7 ds d9
di 1 0 0 0 0.6234 0 0 0 0
d2 0 1 0.1003 0 0 0.3380 0 0.6094 0.1271
d3 0 0.1003 1 0.4359 0 0 0 0 0
d4 0 0 0.4359 1 0.0565 0.0617 0 0 0
d5 | 0.6234 0 0 0.0565 1 0.2695 0 0 0
dé 0 0.3380 0 0.0617  0.2695 1 0.0778 0.0493 0.3081
d7 0 0 0 0 0 0.0778 1 0 0.6711
ds 0 0.6094 0 0 0 0.0493 0 1 0.0889
d9 0 0.1271 0 0 0 0.3081 0.6711 0.0889 1

tains over 15 million citations to biologically-relatediales spanning over 5,000 journals,
with approximately 2,000—4,000 citations added daily [NLNEach citation is manually
tagged with Medical Subject Headiy(MeSH) terms; MeSH is a controlled vocabulary
provided by NLM organized in a hierarchical fashion.

NLM provides PubMed and NLM Gateway as tools to search MEOE.ISince MED-
LINE covers a broad range of topics and genes themselvesahages, simply querying
PubMed for a particular gene is not guaranteed to returtiams relevant to the gene in
guestion; PubMed searches are subject to the problems ohggny and polysemy. For
a more gene-centric search, LocusLink can be used. Lockssiprovided by the Na-
tional Center for Biotechnology Information (NCBI), a dsion of NLM that specializes in
molecular biology. LocusLink, which has been upgraded tordaGGene [MOPTO0Y5], is a
human-curated database that contains a myriad of infoomatertaining to each gene.
In particular, many genes are linked to key relevant MEDLIbIEations via PubMed.
Unfortunately, since EntrezGene is human-curated, itereme of MEDLINE and other

databases is sparse, but its lack of quantity of citationsmspensated by the quality of its

11



citations.

Unlike traditional IR fields, creating a document colleatis an iterative, non-trivial
process requiring expert knowledge. To creagere documerftext document to represent
agene), an ad hoc method is applied [Hei04]. Titles and attstof all MEDLINE citations
generated via PubMed cross-referenced in the Mouse, RatHaman EntrezGene (or
LocusLink) entries are concatenated into a document fdr gaoe. Since the coverage of
MEDLINE provided by EntrezGene and PubMed is both incongpéetd imperfect, many
errors can be introduced. For example, many of the genesaiiages since their names
have changed over time or depending on which field is refamgrtbem. As such, trying
to find all references to a particular gene can be difficultteRng techniques iteratively
applied to the gene document collection can produce mongratecgene representations
and are discussed in [HHWBOS5]. After the process is compégieh gene document may
not have complete coverage of all related MEDLINE matebat, each of its constituent
abstracts will have been validated at some level by manuation, hopefully resulting in

a good representative document.

2.5 MeSH Meta-Collection

In addition to the constructing gene documents, constrigdleSH documents can help
with the evaluation process. Since each abstract assdaiate a gene is tagged with
possibly multiple MeSH headings by a human indexer, a MeSie glbocument can be

created by concatenating those headings. In effect, tpi®aph takes advantage of known

12



associations indicated by the human indexer to create a-codection of MeSH terms
that can help summarize the information contained in thgireil gene corpus. Although
MeSH is a hierarchy, that hierarchy is ignored when headangsassigned to an abstract.
Also, the MeSH headings can themselves be weighted wittetdgepy weights to help
find more distinguishing headings. These weighted MeSHihgadtan be assigned to a
hierarchical tree via the method outlined in Algorithm 4xhere each node is represented
by its dominant MeSH heading. The resulting labeling candrsiclered a “gold standard”
against which to compareFor the purposes of this dissertation, the MeSH meta-daiec
constructed for a collection is indicated by appendingléSH” to the collection name
(e.g., if the50TG collection is being examined, thes0TG MeSH indicates the MeSH

meta-collection associated wiio TG.

1This procedure is explained in more detail is Section 4.2.
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Chapter 3

Dimension Reduction Techniques

The vector space model presented in Chapter 2 suffers freputise of dimensionalityn
other words, as the problem sizes increase and become mup#eog the processing time
required to construct a vector space and query throughewtdhument space increases as
well. In addition, the vector space model exclusively measterm co-occurence—that is,
the inner product between two documents is nonzero if anglibtilere exist at least one
shared term between them. No attempt to discern the undgrstructure of the data is
made, and problems suchsgonymy andpolysem$ will reduce the effectiveness of the
model.

To combat the problem of dimensionality, dimension reductechniques are typically
employed. A multitude of techniques exist, each with its @ivengths and weaknesses. To

combat the synonymy problem, Latent Semantic Indexing)(IsSliscussed. Nonnegative

Lif two different words have the same meaning, then they anersyms.
2Polysemy refers to words having multiple definitions.

15



Matrix Factorization (NMF) is examined to analyze furthiee uinderlying structure of the

data set in question.

3.1 Latent Semantic Indexing

LSl is based on the singular value decomposition (SVD). G&enatrix, A, the SVD is
given by

A=UxVT,

whereU is them x r matrix of eigenvectors oft AT, ¥ is ther x r diagonal matrix of-
singular values ofd, VT is ther x n matrix of eigenvectors afi” A, andr is the rank ofA.
Furthermore, botld/ andV have orthonormal columns, and the diagonal mafrixas, by
convention, only positive elements ordered by decreasiagmiude [GL96]. If an SVD is

performed on the sample term-document matrix, the leftildargnatrix is given by

0.0563 —0.3569 —0.1740 0.0172  —0.0333 0.0203 0.0878 —0.3844 0.0897
0.0189 —0.1156 0.3191 0.0723 0.1516 —0.1855 —0.0951 —0.1927 —0.5269
0.0234 —0.1356 0.3521 0.0778 0.1355 —0.1565 —0.0040 0.0441 0.5135
0.0200 —-0.2783 —0.1083 —0.5975 0.1165 —0.2264 —0.0296 —0.1097 0.0917
0.0306 —0.2523 0.0096 —0.1781 —0.0957 0.2573 0.3105 —0.3327 —0.0403
0.1270 —0.1586 0.2396 0.0209 —0.2300 0.0327 0.0593 0.1308 0.1034
0.5231 0.1042 0.0206 —0.0412 —0.1411 —0.0705 0.0180 —0.0075 —0.0201
0.2261 —0.0938 —0.1417 0.1206 0.2138 0.0757 —0.3714 —0.1106 0.1234
0.1980 0.0352 0.0566 —0.0311 —0.4297 —0.1915 —0.0695 —0.0409 —0.0051
0.0126 —0.1758 —0.0684 —0.3774 0.0736 —0.1430 —0.0186 —0.0692 0.0579
0.0692 —0.3585 —0.3502 0.3751 0.0360 —0.3172 —0.0176 0.0666 0.0337
0.2841 0.0609 —0.0375 —0.0068 0.2996 0.1265 0.0862 0.0340 —0.0133
0.0254 —0.2367 —0.0149 —-0.2781 —0.0289 0.1025 0.0825 0.0786 —0.1088
0.0535 —0.2838 —0.0680 0.1220 —0.1047 0.2724 —0.2987 0.0429 —0.0742
0.0323 —0.2162 0.0699 —0.0048 —0.1651 0.4135 0.1922 0.2581 —0.3018
0.0535 —0.2838 —0.0680 0.1220 —0.1047 0.2724 —0.2987 0.0429 —0.0742
0.4506 0.0965 —0.0595 —0.0108 0.4752 0.2006 0.1367 0.0539 —0.0211
0.0437 —0.2264 —0.2212 0.2369 0.0228 —0.2003 —0.0111 0.0421 0.0213
0.5231 0.1042 0.0206 —0.0412 —0.1411 —0.0705 0.0180 —0.0075 —0.0201
0.0492 —0.3062 0.4459 0.0841 0.0352 0.1173 0.1318 0.2329 0.3636
0.0181 —0.1324 —0.1535 0.1628 0.0209 —0.2762 0.6119 0.2569 —0.1622
0.0061 —0.1045 —0.0439 —0.2956 0.0820 —0.1705 —0.2880 0.6424 —0.1583
0.0293 —0.1762 0.4768 0.1072 0.2133 —0.2572 —0.1002 —0.1813 —0.3323
0.1980 0.0352 0.0566 —0.0311 —0.4297 —0.1915 —0.0695 —0.0409 —0.0051
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the right singular matrix by

0.0119 —0.0822 0.2514 0.0590 0.1479 —-0.1880 —0.1354 —0.2914 —0.8750
0.1299 —-0.4916 —0.3751 0.3896 0.0212 —0.0264 —0.6321 —0.1750 0.1320
0.8064 0.1512 —0.0832 —0.0146 0.5174 0.2084 0.0867 0.0305 —0.0090
0.5619 0.0873 0.1253 —-0.0664 —0.7420 —0.3155 —0.0699 —0.0366 —0.0035
V= 0.0663 —0.3371 0.7802 0.1657 0.2340 —0.2579 —0.0041 0.0395 0.3504 ,
0.0916 —0.5373 0.1548 —0.0103 —0.2851 0.6812 0.1934 0.2311  —0.2059
0.0173 —0.2599 —0.0974 —0.6299 0.1415 —0.2810 —0.2899 0.5753 —0.1080
0.05612 —0.3292 —0.3402 0.3468 0.0361 —0.4551 0.6158 0.2300 —0.1107
0.0350 —0.3774 —0.1238 —0.5434 0.0439 —0.0627 0.2625 —0.6657 0.1658

and the singular values on the diagonatuby

diagX¥) = (1.967,1.7217,1.5358, 1.4765, 1.1965, 1.1417,0.6974, 0.6205, 0.4729) .

To generate a rank-approximationA, of A wheres < r, each matrix factor is trun-

cated to its firsk columns. That isA, is computed as

A, =USVE.

Not only is A, a lower rank approximation od, it is the best rank-approximation ofA

with respect to the Frobenius norm; [EY36] has shown that

1A = Asllp < [[A =Bl

for any matrixB of rank s. In this lower rank space, document-to-document simyasit

computed as the inner product of the two documents in quedianatrix form,

ATA, = (V,2,) (V.2
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will denote the similarity of each document in the corpuswuerg other. This calculation
measures the dot product between the columns,of
Similarly, term-to-term similarity can be computed as thedr product of the two terms

in question. In matrix form,

AAT = (Us,) (US,)T

yields a square, symmetric matrix that contains the dotyrbdetween any two rows in
the scaled termspace.
One of the main drawbacks of the standard vector space medbakt there is no
straightforward way to compare terms to documents showddnged arise. Sincd is
m x n wherem differs fromn most of the time, a dot product cannot be taken between
document and term vectors. In the rare case wheexjualsn, the difference in the defi-
nition of axis components would make such a comparison mgéss. With a low-rank,
square matrix approximatiad,, however, comparing a document with a term is possible.
Rather than performing a dot product of rows or columng gfinspection of the defi-
nition of A, yields a similarity value between each term/document p&iat is, given term

i and documeni, and by observing that

A, = UV, (3.1)

the dot product between thith row of U, >.'/? and thejth column ofV,x!/? represents the
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similarity between termi and documeni. In other words, the factored term and document
axes must be stretched or shrunk by a factor 6f [DDL +90].

If document-to-document similarity is computed in the rahkpace provided by the
SVD for the sample collection, inspection of the matrix irblEa3.1 shows that intuitive
document similarities are present. Although documentandldé share no common terms,
sim(dl,d6) = 0.55, probably sincepressureis related tostressvia document d5. This
comparison is made because the lower-rank space providdek8VD forces documents
to be represented by fewer components. Hence, hints of terpaf LS| as well as some
of the possible shortcomings of the bag of words model aregotg(sincgpressurecan be

considered to be used in two different contexts in docum@hisnd d6).

3.2 Nonnegative Matrix Factorization

In its simplest form, given am x n nonnegative matrixl, nonnegative matrix factorization
(NMF) is a technique that attempts to find two nonnegativeofamatrices})V andH, such
that

A~WH, (3.2)

whereWW andH arem x k andk x n matrices, respectively. In the context of this disser-
tation, A = [a;;] iS anm x n matrix that represents the gene document collection. Each

entry a;; represents the term weighaf tokeni in gene document. Hence, the rows of

3Section 2.2 discusses term weighting in more detail.
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Table 3.1: Document-to-document similarity matrix for gample collection. Similarities

were calculated by computing the cosine between each nizedadocument pair in the
rank-4 space generated by the SVD.

dl d2 d3 d4 d5 dé d7 d8 d9
d1 1 -0.0918 -0.0752  0.1469  0.9941 0.5515 -0.1698 -0.1901 120.1
d2 | -0.0918 1 0.1270 -0.0090 -0.0153 0.5848 -0.0488 0.9841 06.17
d3 | -0.0752  0.1270 1 0.9659 -0.0469 0.0095 -0.0138 0.0453 068.01
d4 | 0.1469 -0.0090 0.9659 1 0.1705 0.0971  0.0277 -0.1179  0.0171
d5 | 0.9941 -0.0153 -0.0469  0.1705 1 0.6366 -0.1006 -0.1254 268.(q
dé | 0.5515 0.5848 0.0095 0.0971  0.6366 1 0.3931  0.4535 0.5677
d7 | -0.1698 -0.0488 -0.0138 0.0277 -0.1006  0.3931 1 -0.1450 720.9
d8 | -0.1901  0.9841  0.0453 -0.1179 -0.1254  0.4535 -0.1450 1 52.06
do | -0.1121  0.1706 -0.0108 0.0171 -0.0266 0.5677 0.9727 0.0652 1

A represent term vectors that show how terms are distributeasa the entire collection,
while the columns ofA show which terms are present within a gene document. The opti
mal choice ofk is application-dependent and is often empirically chosBmically, & is
chosen so that < min (m,n) [WCDO3].

The goal of NMF is to approximate the original term by geneuwtoent space as accu-
rately as possible with the factor matricés and H. As noted earlier in Section 3.1, the
SVD will produce the optimal low-rank approximation for agiyen ranks with respect to
the Frobenius norm. Unfortunately, that optimality freqie comes at the cost of negative
elements. The factor matrices of the NMF, however, aretstnmonnegative which may
facilitate direct interpretability of the factorizatiomhus, although an NMF approximation
may not be optimal from a mathematical standpoint, it mayugcgeent and yield better
insight into the dataset than the SVD for certain applicatio

Upon completion of NMF, the factor matricés and A will, in theory, accurately ap-

proximate the original matri¥l and yet contain some valuable information about the data
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set in question. For example, Equation (3.2) can be rewrése ~ Wh. Thatis, columns
a of A are approximated by linear combinations of the columns$lofveighted by the
columnsh of H. Thus,W can be thought of as a basis of the datadin Since onlyk
columns are used to represent the original datakaisdisually much smaller tham W is

a more accurate basis dfthe closer that the columns o are to true representations of
the latent structure inherent in the data represented.byhat is, error in the overall ap-
proximation is minimized the closer thHt becomes to representing the dominant features
in the original data. As aresull’ is commonly referred to as ttieature matrixcontaining
feature vectorshat describe the themes inherent within the data, wHilean be called a
coefficient matrixsince its columns describe how each document spans eaahefeaid to
what degree.

If NMF is applied to the sample term-document matrix in Tab[2, one possible fac-
torization is given in Tables 3.2 and 3.3; the approximatmthe term-document matrix
generated by mutliplyingl” x H is given in Table 3.4. The top-weighted terms for each
feature are presented in Table 3.5. By inspection, the sangilection has features that
representeukemiaalcoholism anxiety andautism If each document and term is assigned
to its most dominant feature, then the original term-doauinmeatrix can be reorganized
around those features. The restructured matrix typicabgmbles a block diagonal matrix

and is given in Table 3.6.
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Table 3.2: Feature matriX” for the sample collection.

fl f2 3 fa
alcoholism | 0.0006 | 0.3503
anxiety 0.4454
attack 0.4913
autism 0.0030 0.8563
birth 0.1111| 0.0651 | 0.2730
blood 0.0917 | 0.0538 | 0.3143
bone 0.5220 0.0064
cancer 0.1974 | 0.1906
cells 0.1962 0.0188
children 0.0019 0.5409
cirrhosis 0.0015 | 0.5328
damage 0.2846
defects 0.0662 0.4161
failure 0.0013 | 0.2988
hypertension 0.1454 | 0.1106
kidney 0.0013 | 0.2988
leukemia 0.4513
liver 0.0009 | 0.3366
marrow 0.5220 0.0064
pressure 0.066 | 0.6376
scarring 0.208
speech 0.4238
stress 0.6655
tuberculosis | 0.1962 0.0188

Table 3.3: Coefficient matriX/ for the sample collection.

dl dz2 d3 d4 d5 dé d7 ds d9
i 0.0409 | 1.6477 | 1.1382 | 0.0001 | 0.0007
f2 1.3183 0.0049 | 0.6955 | 0.0003 | 0.9728 | 0.2219
f3 | 0.3836 0.0681 | 1.1933 | 0.3327
f4 0.1532 | 0.9214 0.799
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Table 3.4: Approximation to sample term-document matrsegiin Table 2.2.

d1l d2 d3 d4 d5 dé d7 d8 d9
alcoholism 0.4618 | 0.0010 | 0.0007 | 0.0017 | 0.2436 | 0.0001 | 0.3408 | 0.0777
anxiety 0.1708 0.0303 | 0.5315| 0.1482
attack 0.1884 0.0334 | 0.5863 | 0.1635
autism 0.0040 0.1333 | 0.7890 | 0.0029 | 0.6848
birth 0.0250 | 0.1464 0.0044 | 0.0783 | 0.1407 | 0.2516 | 0.1080 | 0.2428
blood 0.1206 | 0.0746 | 0.1511 | 0.1258 | 0.3754 | 0.1420 0.0523 | 0.0119
bone 0.0025 | 0.0214 | 0.8602 | 0.5946 | 0.0077 | 0.0025
cancer 0.2593 | 0.3252 | 0.2247 | 0.001 | 0.1327 | 0.0001 | 0.1854 | 0.0423
cells 0.0072 | 0.0080 | 0.3233 | 0.2246 | 0.0224 | 0.0064
children 0.0025 0.0842 | 0.4984 | 0.0019 | 0.4326
cirrhosis 0.7025 | 0.0024 | 0.0017 | 0.0026 | 0.3705 | 0.0002 | 0.5183 | 0.1183
damage 0.0116 | 0.4689 | 0.3239 0.0002
defects 0.0873 0.0003 | 0.1098 | 0.3834 | 0.0644 | 0.3472
failure 0.3939 | 0.0022 | 0.0015 | 0.0015 | 0.2078 | 0.0001 | 0.2906 | 0.0663
hypertension| 0.0424 | 0.1916 0.0075| 0.1327 | 0.1379 0.1414 | 0.0323
kidney 0.3939 | 0.0022 | 0.0015 | 0.0015 | 0.2078 | 0.0001 | 0.2906 | 0.0663
leukemia 0.0185| 0.7437 | 0.5137 0.0003
liver 0.4437 | 0.0015| 0.0011 | 0.0017 | 0.2341 | 0.0001 | 0.3274 | 0.0747
marrow 0.0025 | 0.0214 | 0.8602 | 0.5946 | 0.0077 | 0.0025
pressure 0.2445 | 0.0870 0.0434 | 0.7612 | 0.2580 0.0642 | 0.0147
scarring 0.2742 0.0010 | 0.1446 | 0.0001 | 0.2023 | 0.0462
speech 0.0649 | 0.3905 0.3386
stress 0.2553 0.0453 | 0.7942 | 0.2214
tuberculosis | 0.0072 | 0.0080 | 0.3233 | 0.2246 | 0.0224 | 0.0064

Table 3.5: Top 5 words for each feature from the sample dudlec

fl f2 3 f4
bone cirrhosis stress autism
marrow | alcoholism | pressure| children
leukemia liver attack speech
damage kidney anxiety | defects
cancer failure blood birth
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Table 3.6: Rearranged term-document matrix for the sangsleation.

d3

daa

d2

dé

ds

dl

d5

d7

d9

bone
cancer
cells
damage
leukemia
marrow
tuberculosis

0.7520
0.4745

0.6931
1.0986
0.7520

0.7520

0.6931

0.7520
0.6931

0.4745

alcoholism
cirrhosis
failure
hypertension
kidney
liver
scarring

0.4338
0.7520
0.4745

0.4745
0.4745

0.2737

0.4745
0.6931
0.4745

0.2737
0.7520

0.4745
0.6931

0.4338

anxiety
attack
blood

pressure
stress

0.3466

0.3466
0.4923

0.4745

0.4923

0.4745
0.6931
0.3466
0.7804

0.7804

autism
birth
children
defects
speech

0.4745

0.3466

0.7520

0.4745
0.3466
0.6931

0.7520
0.4745

0.4745

0.3466

3.2.1 Cost Function

Each iteration of NMF should improve its approximation o tiriginal data matrix4 with

respect to some cost function. Equation (3.2) can be renrds

A=WH+C(AWH),

whereC (A, W H) is a cost or error function. Typically,' is defined as either squared

Euclidean distance or divergence. Squared Euclideamdistar equivalently, the squared
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Frobenius norm, is given by

|A=WHI; =Y (4 - (WH),)".

ij

This distance measure is zero if and onlyit= W H and is the primary measure used for
derivations in this dissertation.
The divergence measure, given by

(WH),,

ij

D(A|WH)=>" <Aij log

ij

— A + (WH)ij> )

is also zero if and only ifA = W H but is not symmetric inMd andWH. If 3, A =
>2i; WH = 1, then the divergence measure is the Kullback-Leibler disece or relative
entropy [LSO01].

NMF attempts to minimize the cost functian with respect tolV’ and H subject to
the constraints that both” and H must remain nonnegative. Both of the cost functions
discussed are convex in eithBr or H, but not both variables together. As such, find-
ing global minima to the problem is unrealistic—howeverdiitg several local minima is
within reason. Also, for each solution, the matri€Bsand H are not unique. This property

is evident when examining/ D D! H for any nonnegative invertible matri [BBL *06].
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3.2.2 Initialization

As previously noted, NMF may converge to a number of localtsohs. Exactly to which
solution NMF converges depends not only on the update rufdamad, but on the starting
point. The initial estimates fol” and H affect both the final solution obtained as well as
how fast NMF converges to that solution. Although many alization strategies exist in
the literature, in practice, most applications initializeth 1/ and H to random positive
entries.

Structured initialization is a way to speed convergenceigver, the cost of performing
the structured initialization must be weighed against geedup in convergence as well as
the solution quality. Since NMF attempts to uncover laténicture of the original data
in a lower dimensional space, any method that can quicklyeqimate that structure will

likely improve convergence over random initialization.

Other Methods

Centroid clusteringoased on Spherical K-Means was proposed in [WCDO04] as a mhetho
to improve upon random initialization. Giveny Spherical K-Means can produce a cen-
troid matrix M which can be arrived upon either by convergence or by cornglet fixed
number of iterations. Witld/, compute the nonnegative coefficient mathixwhich mini-
mizes||A — M N || using the nonnegative least squares algorithm [LH7#]and H are
initialized to M and NV, respectively. This method, however, suffers from a simdiaw-

back to NMF—the initial partitioning of is frequently assigned in some random fashion
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[DFGO1]. Like NMF, K-Means can be sensitive to the initiatgtzoning [Hei06], meaning
that multiple runs to local optima will have to replace fingliaa global optim4.

Similar to the centroid clustering, [LMAQOG6] propos8¥D-centroid initializatioralong
with the next three schemes. While clustering on the origiata matrixA can be relatively
expensive, clustering on the SVD factor matvixcan be a faster alternative assuming the
SVD is readily available. Once a clustering W6fis achieved, for each centroid of V/,

a new cluster centroid is computed with the corresponding columns of the origirzaad
matrix A and entered into the initial column; of W(©. As a result, some of the structure
inherent in the best-fit, low-rank space provided by the SWViD the nonnegativity ofA
can be exploited while the cost of directly clusteriAgs avoided. This method, however,
still suffers from the same drawbacks as any K-Means-bagedigam.

Random Acol initializatioralso exploits the nonnegativity of. Rather than forming
a densdV () with positive entries, random Acol forms column of W(© by averaging
p columns ofA. As a result, much of the original sparsity in the data is @nesd. Simi-
larly, random C initialization(so nhamed after its inspiration from the CUR decomposition
[DKMO6]) is another strategy that is basically random Agopked to the longest columns
of A rather than all ofA. As a result, the most dense columns/btend to be chosen as
initial estimates for columns df’® since they will tend to have the largest 2-norm and
will more likely be centroid centers.

Inspired by the term co-occurrence matrix presented inQShio-occurrence initial-

4Finding the optimal partitioning for any data set with resip@ cluster coherence is known to be NP-
complete [KPR98, GJW82].
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izationforms the columns oft(¥) as the “Topical Space” output from Algorithm 2 of that
paper. Since the co-occurrence matti®” is typically very large, initializing? with this

method is impractical.

NNDSVD

[BGO5] proposes the Non-negative Double Singular Value dbgmosition (NNDSVD)
scheme. NNDSVD aims to exploit the SVD as the optimal rardgproximation ofA.
The heuristic overcomes the negative elements of the SVDnlfigr@ng nonnegativity
whenever encountered and is given in Algorithm 3.1.

[BGO5] shows that the best nonnegative approximation talairary matrix M is the
matrix M, which is formed by zeroing all the negative elements. tivielly, for each SVD
dimensionG"Y) = u;vT, whereGY) denotes the rank-1 outer product of tjta left and
right singular vectors, NNDSVD form&"’, the best nonnegative approximation to that
dimension. The most dominant singular triplet of that agpnation is then calculated via
the SVD and the corresponding singular vectors are insag@dcolumn or row i’ (%) or
H© respectively. The dominant singular triplet can be chasdse nonnegative since the
original matrix,G ., is nonnegative.

The SVD can produce the optimal rakkapproximation ofA as

k
Ak = UkAg = ZO’jG(j)

J=1

whereGU) = uja; andUy = [uy, ..., ug] A, = |oway, ..., ora]. Simply seeding the
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Algorithm 3.1 NNDSVD Initialization

Input: Term-by-Document Matrixd, Integerk < min(m,n)
Output: Initial Factor MatricedV'©), 7 ©)

Perform truncated SVD ofl of £ dimensions
Initialize first column oflil” with the first column o/
Initialize first row of H with the first row of\V” scaled by the first singular value
for j =2:kdo
Form matrixG'Y) by multiplying columnj of U with row j of V7
Form matrixG'?) by setting negative elements 6f?) to 0
Compute the maximum singular triplet, s, v) of G(ﬁ)
Set columry of W tou
Set row; of H to v’ scaled by thgth singular value and
end for

NMF by using the nonnegative elements of the singular vectan be done, however,
such a step can overconstrain the initialization as theywmtoaof the zeroed elements may
itself be nonnegative (and hence store meaningful infaonatAs a result, by computing
the matrixGY) corresponding to theth singular vector pair and in turn forming rank-1
approximations to its nonnegative elements, more of thggrai data can be preserved. In
any case, the big advantage of NNDSVD is that it exploits sofhtlee structure inherent in
the data and provides NMF with a static initialization—if N\onverges, it will converge

to the same minima.

3.2.3 Update Rules

Once bothiV and H have been initialized, those initial estimates are iteedyiimproved

upon, usually in either a multiplicative or an additive fesh
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Multiplicative Rules

The standard multiplicative update rule originally propd$y Lee and Seung and com-

monly referred to as the Multiplicative Method (MM) is givey

(W TA) ,
Hej ey HC)JCJ. ’ (33)
W.. «— W. (ALT)ZC (3.4)
’c ’c (‘IYHHT)ZC' .

Since all the components of, W, and H are guaranteed to be nonnegative, the updated
matrices are guaranteed to be nonnegative. Lee and Seungraised that the Euclidean
distance cost function is nonincreasing when MM is applied & invariant if and only

if W and H are at a stationary point. The update factor becomes unigydf only if

A =W H, which is as expected.

There are two practical extensions to MM that are commonlpleyed. To ensure
numerical stability, a small positive numhas added to the denominator of both Equations
(3.3) and (3.4). Also, botli/ andWW are updated “simultaneously” or by using the most
up-to-date iterate rather than by updating each factorixnattependently of the other. As

a result, faster convergence is usually observed.
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Additive Rules

In addition to multiplicative rules, additive rules are@lsommonly used to update esti-
mates of both factor matrices. Lee and Seung have shown that
T T
H.j — H.; + 1, [(W A)Cj - (W WH)C]}
is one such rule that can reduce the squared distance forsoaievalues ofj.; (similar
update forlV). In fact, certain choices of.; can be shown to be equivalent to the multi-
plicative update. Many implementations of additive ruleswever, ensure that nonnega-

tivity is maintained by explicitly resetting negative vakithat result from the subtraction

due to roundoff or other errors.

3.2.4 Stopping Criteria

Any of a number of methods can be employed to determine whstofiterations. Com-
monly, NMF is run for a fixed number of predetermined itemasio Not surprisingly,
this approach will usually cause NMF to over- or under-iteraAnother approach is to
halt when the differenéebetween successive iterates is below a tolerance; thathisnw
|Woig — Whew|| < 7 andlor||Hyy — Hpew|| < 7. Obviously, the choice of tolerance
determines the number of iterations completed. Similadyne methods will calculate the

objective function or the difference of objective functigalues between iterations. Al-

SAssume Frobenius matrix norm unless otherwise specified.
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though with any method that requires threshold checkingftérénces between iterates,

those iterates in question must be stored, and frequently eemputation must take place.

3.2.5 Additional Constraints

NMF with the MM update proposed by Lee and Seung is guaranteeahverge to a local
solution, however, additional constraints can be placethertost function to help ensure
any of a variety of behaviors such as faster convergence rtaiigcestructural properties
of the factor matrices. Unfortunately, once additionalstomints are placed on the cost
function, most update rules are no longer guaranteed toecgav In general, additional

constraints redefine the overall minimization problem t@aant of
win ||A — WH|7 + oy (W) + 5Jy (H) (3.5)

wherea and 3 are parameters anfl (1) and.J,(H ) are functions that describe the addi-
tional constraints placed div and H.

The framework presented in Equation (3.5) is not all-inefeis-there can be other con-
straints that may not fit this form. For example, many aldponi¢ require that columns of
either W or H be normalized, either after each iteration or after corsecg has been
reached. Normalization will, in theory, force unique s@us at each minima. Unfortu-
nately, however, this normalization usually comes at th& ob convergence speed, i.e.
number of iterations performed.

Two additional constraints that do follow the framework g@eted in Equation (3.5)
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are the notions osmoothingandsparsity In each case, the constraints are intended to
guarantee structural properties in the factor matricesgehier, for many parameter settings
a problem can quickly become overconstrained and may neecge. If the solution does
converge, however, the resulting factor matrices can dfa&d to more intuitive interpreta-

tions of the data.

Smoothing

Smoothing a solution is meant as a filter to rednoese In the case of NMF, smoothing
a factor matrix reduces the number and relative magnitudgbf amplitude components.
In effect, the solution is more likely to have all of its conm@mts with similar magnitude.
To accomplish this il/, set

JL(W) = |W|%.

This can also be done td, depending on the results desired within the problem contex

[PPPGO04] showed that if smoothing is enforced on BétAnd H, the update rule becomes

(WTA)cj — PH,
He; < Hg (WTWH)Cj—i-(:"
(AHT) —aWi
Wie — Wi (WHHCT)Z‘C""": )

wherea, 5 € R are parameters that denote the degree to which smoothnk s ven-

forced.
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Sparsity

Whereas smoothing brings the relative magnitudes of aisalatoser together, enforcing
sparsityconstraints aims to accomplish nearly the opposite effBased on nonnegative
sparse coding, sparsity constraints within NMF was origyrmoposed in [Hoy02]. Unfor-
tunately, sparseness was controlled implicitly, and patansettings had to be determined
empirically to achieve the desired level of sparsenesserliat{Hoy04], Hoyer improved

upon his original idea by explicitly adjusting sparsenéssined by

Vi = (Elwil) /X
vn—1 ’

sparseness) = (3.6)

wheren is the length of vectox. This measure, which is based on theand L, norms,
evaluates to one if and only if exactly one nonzero compoeggists inz. On the other
hand, a value of zero can only be attained if all componenis ltentical magnitude.
Hoyer's NMF algorithm with sparseness constraints is aguteld gradient descent al-
gorithm that utilizes both multiplicative and additive @#é rules in conjunction with a
projection operator to produce an approximation. [PPAGAsuthe sparseness defined in
Equation (3.6) to form a different approach using only nulitative updates via the fol-
lowing derivation. Assuming thatl denotes the vector formed by stacking the columns of
H, the general objective function in Equation (3.5) can beritésn to incorporate sparse-

Nness as

g

2
9 )

FOV,H) = 3 1A= WHIE + 5 (o 7], - | 7],
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wherewy is derived from Equation (3.6) and is computed as
wy = Vkn — (\/kn - 1) sparsenesdd) .

The partial derivatives with respect i are

af]ij (la-wH|3) = —(WTA)”,Jr (WTWH)Z,J,
9 ~ _ H _ _
oty (ol L)) = 2= ) 21,
2

and can be simplified to

azij (F (W, H)) = = (WTA)_+ (WIWH)_+ 8 (erHy + ).

where

cT = wfq—wH HF[_HI (37)
2|4,
oo = ], e ], @9

Equivalently, this is expressed in matrix form as

VEW,H) = -WTA+WTWH + 3 (ciH + &, F),
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whereFE denotes & x n matrix of ones. Following [LS01], consider

0
Hij = Hij = bij g (F (W, H))
ij

as the formula for updating/, where

Hy;

0= W),

By substitution, the update rule then becomes

(WTA) L ﬁ (Clﬂij + CQEZ‘j)
H’Lj - H’L] Y ’

(WTWH>ij

wherec,; andc, are defined in Equations (3.7) and (3.8), respectively.obofig a similar
procedure, sparsenesss constraints can be placedildporhe update rule derived then

becomes

(AHT) —a(aWi+ eEj)
Wi; = Wi < ;

(WHHT),
where

wiy = Vmk — (W - 1) sparseness$’)

replacesvy andWW replacesH in the definition ofc; andcs.
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3.3 Comparison Between LSI and NMF

Both LSI and NMF are dimension reduction techniques thattaicompress the original
space to gain insight or reveal some underlying structutkardata. The SVD in LSI pro-
duces the mathematically optimal low-rank approximatmmeinyf; that approximation is
unique, and the basis produced is orthogonal. Given thegothal bases produced, data
can be projected into the low-rank space, and queries candecegsed. That orthogonal-
ity, however, comes at the price of negativity and densitye Basis vectors will be dense
(hence not accurately reflecting the original data) andhvaille negative components mean-
ing that the axes of the basis vectors cannot be easily fadié in terms of the original
data.

Since the NMF factor matrices usually maintain a good dealpafrsity to reflect the
original data and are guaranteed to remain nonnegative, MN&he other hand, produces
“basis” vectors that are easily identifiable in the origisphce. This sparsity can lead to a
reduction in storage requirements [LMAO6]. UnfortunatéyF has convergence prob-
lems when additional constraints are enforced. Also, iersgive to its initialization—for
example, if the initialization sets an element to zero, flggven the mulitiplicative update
rule, that element will remain zero throughout all the sujosat iterations. This property
may have a negative effect on the overall solution qualityegking of solution quality,
NMF is not guaranteed to find a global minima. For any givenim& an infinite number
of solutions exist, and NMF will not necessarily produce #agne solution on any two

given runs. As an additional burden, NMF and its variantstralarge number of param-
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eters that must be set, and those parameters may not haveignegplainable result or
may not correlate to similar parameter settings. For examypilike the SVD, there is no
straightforward way to relate feature vectowith £ + 1.

While both techniques have their shortcomings, their gitgsican complement each
other nicely. While there is no straightforward way to trf@ns one factorization into
another, when used in tandom they can uncover differenigpties of the data. The density
of the SVD lends itself to global support—vectors in thatewiill produce similarities
to others that would not have been obvious in the originah.d#s a result, LSI seems
to be the optimal choice when viewing the entire data set ab@enor when trying to
uncover latent structure. NMF, on the other hand, exceldustering and classification
and showing why a relationship between two entities exigtiIfNs known for itsparts-
basedfactorization, meaning that it shows local rather than glgloperties of the data.
Rather than uncovering an optimal space that makes no seterens of the original data,

NMF can identify where data groups exist and suggest labelhét group.
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Chapter 4

Performance Evaluation

Both IR (Chapter 2) and dimension reduction techniques &) have been introduced—
this chapter will show how those techniques can be intezdrabd automatically evaluated
in biological applications. LSI, discussed in Section 34n be used to create a global
picture of the data automatically. In this particular context, tghdbal picture is most
meaningful when viewed as a hierarchical tree. Once a trbails a labeling algorithm
can be applied to identify branches of the tree. Finally,@dgtandard” tree and a standard

performance measure that evaluates the quality of tre¢slahgst be defined and applied.

4.1 Hierarchical Tree Construction

One popular tool for visualizing the evolution of taxa oviend is anevolutionary tree
also known as a phylogeny, phylogenetic tree, or hieraathtiee. Formally, a tree is a

cycle-free graplG; = (V, E') whereV is the set of vertices (or nodes) afdis the set of
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edges. That is, any two nodes in the graph have exactly oggepath between them. A
simple phylogeny is depicted in Figure 4.1.

If two vertices are connected by an edge, then each of theegsiis said to have that
edgencident upont; the degreeof any vertex is the number of edges incident upon it. Each
node of degree 1 (which are denoted by lettered nodes iné-#d) are calleteaf nodes
every other node in a phylogeny is commonly referred to astamior or ancestral node.
Since information is only known about the taxa a priori, thglpgeny must bénferred If
a phylogeny truly depicts ancestral relationships, thertdlp node becomes tiheot node
of arooted treg and the tree usually takes on the form of a directed acycéply (DAG)
with a direction pointing away from the root.

Generally speaking, taxa can refer to any of a variety oftiestsuch as organisms,
genes, proteins, and languages, while the edges can reppesent—child relationships
along with additional information. Exactly what informai edges represent is usually

determined by the input data and the type of tree buildinghottemployed. Regardless

A B C D EF F G

Figure 4.1: A sample phylogeny.
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of the type of method employed, most phylogeny inferencesas adhere to the prin-
ciple of minimum evolution [KSZ71]. Namely, they follow Oam’s razor and prefer the
simplest solution over more complicated ones. Althoughyndifierent tree building al-
gorithms exist, most can usually be classified as sequencistance-based methods, and

a representative few are discussed in this chapter.

4.1.1 Sequence-Based Methods

As the name suggests, sequence-based methods assumee thmgduthtaxa are a set of
sequences, commonly of DNA or amino acids. Most sequenseebmethods operate
under the assumptions that any two characters are mutuagpendent within a given
sequence, and that evolution occurs independently aferseguences diverge in a tree
[Sha01]. Under these assumptions, a tree can be built whereaves are the sequences
and the edges describe some evolutionary phenomenon sgehasduplication, mutation,
or speciation. For example, the binary input given in Tabllecan be represented by the
tree in Figure 4.2 [Fel82], where each labeled edge denb&sharacter state at which
there is a change. Using the same convention, this exampleasaly be extended to DNA,
protein, and other sequence data.

One easy evaluation for a phylogenetic tree is to computentimeber of character
changes depicted by the tree, also known adHammingor edit distance In Figure 4.2,
the tree has 10 such changes (computed by adding the numblkeamdes denoted along

the edges). Methods that attempt to minimize this scorealedparsimonyor minimum-
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Table 4.1: Sample data set of binary strings.

Character
Taxon|1 2 3 4 5 6
A 11 0 0 0O
B 0O 01 0 11
C 1 1 00 11
D 001100
E 01 0 0 1 1

A C EF B D

Figure 4.2: A parsimony tree based on the data in Table 4.1.
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evolution methods.

The problem of finding a most parsimonious labeling of a treerga topology is
known as theSmall Parsimony ProblenFitch presented an algorithm in [Fit71] to solve
the problem, while Sankoff presented a similar solutionht weighted problem using a
dynamic programming approach [San75] that can solve thalgmoin O (mnk), wherem
is the sequence length,is the number of taxa, andis the number of values any character
state can assume.

The Large Parsimony Problepon the other hand, id/P-complete. That is, given
a set ofn sequences of lengtim, the problem of finding both the tree and the labeling
that produces the most parsimonious score possible haspamentially large solution
space. One common search heuristic employed to find locatieos is callednearest
neighbor interchang€NNI) [Rob71]. One NNI can be employed by selecting an edge
and hypothetically removing the two nodes it connects. Hsellting subtrees (four will
occur if the an internal edge is removed and the tree is bjremg then swapped in the
original tree and the corresponding parsimony computed.iiiterchange with the lowest
parsimony score is enacted, and the process repeated éulgals in the tree. A sample of
three possible neighbors is given in Figure 4.3, where tisbehedge represents the edge
defining the subtrees of the NNI [JP04].

Not far removed from parsimony is the notionampatibility Rather than including
all taxa and trying to minimize the parsimony score, coniplity methods attempt to

maximize the number of characters that can be used to crepéefect phylogeny. A
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Figure 4.3: Three neighbor trees induced by a NNI about tishethedge. The labeled
nodes can represent full subtrees.

perfect phylogengxists if and only if an edge representing a particular stagange forms
a subtree; the tree given in Figure 4.2 is not a perfect pleylpdecause multiple edges
exist that denote changes in states 5 and 6, and any one efédgges does not induce a
subtree. Thd.arge Compatibility Problemwhich is similar to its parsimony counterpart,
attempts to find the maximum number of characters that wiluge a perfect phylogeny
as well as the phylogeny it induces. This problem, predigta also known to be\/P-

complete in the when a variable number of states is allow&WB2].

4.1.2 Distance-Based Methods

With sequence-based methods, the input data is assumed sebef character strings, and
the edges of the inferred tree models the divergences ir thioisgs. On the other hand,

distance-based methods assume that the input is a matriaimvipe distances between
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n taxa, and the edges of the phylogeny produced represeahdest between nodes. As
with sequence-based methods, the independent evolutensaleciation is assumed. An
example tree built upon distance data given in Table 4. 2smgin Figure 4.4.

Typically in the biological context, the distance data gated is the edit distance be-
tween two sequences or some function thereof. Similar tpaih@mony problem, the small
version of the distance problem (determining branch lengiven a tree) can be solved rel-
atively easily, but the more practical large version (detaing the optimal tree along with
branch lengths) igV"’P-complete. As can be expected, a variety of heuristics ,ewish

many of them being least squares approaches. That is, thetivejfunction

n

LSQ(T) = 3" wij (Dy; — di)? (4.1)

i=1 j#i

is to be minimized, wherd);; is the observed distance;; is the predicted distance in
treeT, andw;; is some weight, usually set to 1. Fitch in [FM67] proposed tidm-up
method that finds a local optimum to this function in polynahtime, however, since that

algorithm operates i(n*), clustering more than a handful of taxa becomes an impedctic

Table 4.2: Sample pairwise distance data for the tree givé&igure 4.4 [Sha01l].

A B C

0O 0.08 045
008 0 043
045 043 O

QW
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Figure 4.4: A tree where the branch lengths correspond tdigtances given in Table 4.2
[ShaO01].

exercise.

Saitou and Nei proposed the popular neighbor-joining (Ndjhod in [SN87] as a
heuristic that infers phylogenies from a pairwise distamegrix in O(n?) time. NJ begins
by assigning each taxon to its own cluster (commonly refetceas a “star” configura-
tion). The two closest taxa are joined into one cluster wittnibh lengths computed by
the method described in [FM67], and the new— 1) x (n — 1) distance matrix is recom-
puted with the new cluster substituted for the two joinesgstdts. This process is repeated
until all taxa are in one cluster. NJ has since been refineld algorithms such as BIONJ
in [Gas97] and WEIGHBOR in [BSHO0O0], but the time complexityadl of NJ's variants
remainsO(n?).

By applying a greedy approach to generate an initial tre@(in*) time and applying
NNIs, Desper and Gascuel in [DG02] were able to generateaigcphylogenies i) (n?)

time. The Greedy Minimum Evolution (GME) algorithm is usexinitialize the tree,
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whereby a tree of size 3 is initialized and each node is adgie@fdacing the edge that
gives the resulting tree the minimum length. This compatatan be accomplished in
O(n?) time, which is the input size. The FastNNI algorithm then ioy@s upon the initial
tree by traversing through all the internal edges and peifay an NNI if it results in a
better tree. FastNNI runs i@ (n? + pn), wherep is the number of swaps needed. Sipce
is usually much smaller tham this can be done i®(n?) time.

BME and BNNI, balanced versions of GME and FastNNI that giNdirey subtrees
rather than taxa equal weight, were also implemented anelfeand to have running times
of O(n* x diam(T")) andO(n? 4+ np diam(T")), respectively, where diafit’) is the diameter
(number of edges) of the tré@. In the worst case, diafit’) can evaluate ta, however,
in practice it typically is equivalent twg(n) or \/n. Either GME or BME coupled with
FastNNI or BNNI were found to have trees that were close tcetteb than the topological

accuracy provided by NJ, and in all cases were produced faste

4.2 Labeling Algorithm

Once a hierarchy is produced, labeling the internal nodeshe#p describe the nature of
the relationships represented by the hierarchy strugbleieing labels on the internal nodes
can be accomplished by any number of methods, althoughvediatew well-established
automated methods exist. In the field of machine learning ptloblem where each taxa
can belong to any number of classes is known as multi-labhghical classification.

One such labeling algorithm from this field uses a Bayesiamé&work based upon support
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vector machine classifiers to make functional predicti®@ST06]. In the particular case
of SGO, since the SVD is readily available, a concatenatfaalldhe documents that are
members of each subtree that each node induces can be fonti¢ldeanear terms in the
LSI-based vector space found via Equation (3.1). The regulhbeling may not initially

satisfy many of the consistency properties desired in thehma learning field, but it
provides a basis against which to compare NMF labels.

To apply labels from the NMF, a bottom-up approach is usedahg given document,
the highest weighted row index @f is chosen, which corresponds to the most dominant
feature vector iV for that document. The terms in that feature vector are asdigo
that document and weighted by the corresponding coeffigieft. As a result, each doc-
ument has a ranked list @f terms with weights associated with it. In practice, thisiks
thresholded to a fixed number of terms.

Once each document has its associated terms, they can geeasg the hierarchy by
simply inheriting them upward. That is, when two siblingsand B have parent’, each
term from bothA and B are added to the list associated withAs a result, terms common
to both A and B will be more likely to be highly weighted withi'. This process is itera-
tively applied to the entire tree. At higher levels withirettiee, this method tends to give
more weight to the denser subtrees and to the more commoatywsrds. Consequently,
broader terms tend to be dominant closer to the root, whicttugive. The full algorithm
is presented in Algorithm 4.1.

This bottom-up approach can be modified to incorporate nf@e just the dominant
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Algorithm 4.1 Bottom—up labeling algorithm.

Input: Factor MatricesV,, ., and Hy.,
Hierarchical Tredl’
p, threshold on number of terms to inherit
Output: Labeled Tred”

nodes = leaf nodes of’
fori=1:ndo
Determinej = argr?ggc Hj;
Assign topp terms fromjth column oflV to node:
i.e., for term index, assign weightV,; x i,
end for
while [nodes| > 1 do
Remove two sibling noded and B (with parentC) from nodes
Merge term lists fromd and B (add weights for common terms)
Assign terms ta@”
PushC' ontonodes
end while

feature vector—as many dsfeature vectors can be used to associate terms with each
document. Doing so would make the terms a closer approxamati the original term-
document matrix and would have the end effect of assigningrapics to each document.
Making this modification can produce more accurate labgbedding upon the exclusiv-

ity of the assignments within the dataset. Also, averagatigar than simply adding term
weights places equal importance to the terms associatédeadh subtree. Another vari-
ation may also scale the inherited terms by the correspgnratianch lengths of the tree.
The end result would give higher preference to terms thaasseciated with genes that are
closer to each other, although some heurisitic would haueetapplied to accommodate
negative branch lengths.

This algorithm, which is in many respects analogous to Nd,km slightly modified
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and applied to any tree where a ranked list can be assignetiotaxon. For example, by
guerying the SVD-generated vector space for each documeanked list of terms can be
created for each document and the tree labeled accordifiigéy‘correct” MeSH labeling

is generated in a similar manner. Using the subtree in Figuseand the log-entropy
weights from thes0TG MeSHmeta-collection to generate a ranked list, MeSH headings
are inherited up the tree by averaging the weights of eadimgibode to give each subtree
an equal contribution to its parehiThe top 5 MeSH headings at each stage are depicted in
Figure 4.6% By using Algorithm 4.1 or a derivative of it and assuming thitial ranking
procedure is accurate, any ontology annotation can be eatlamth terms from the text it

represents.

4.3 Recall Measure

Once labelings are produced for a given hierarchical treeeasure of “goodness” must
be calculated to determine which labeling is the “best.” WHealing with simple return

lists of documents that can classified as either relevanbbreievant to a user’s needs,
IR methods typically default to using precision and reaalliescribe the performance of a

given retrieval systenPrecisionis defined as

1The50TGMeSHcollection contained 9,126 MeSH headings.
2For evaluation purposes, only the top-ranked MeSH headinged to label the “correct” tree.
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reln  dabl lrp8 vldlr

Figure 4.5:Relnsubtree extracted from tfe®TGtree.

where R denotes the set of relevant documents within the returrahistl is the set of
returned document&ecall on the other hand, is denoted by

_ |8

R - )
T

whereT denotes the set of all relevant documents [BB99]. In othexdsgrecision mea-
sures how accurately a system returns relevant documehile, iecall quantifies the sys-
tem’s coverage of all relevant documents. The goal of atirmifation retrieval systems is
to have high levels of precision at high levels of recall. attiinately, however, as the level
of recall rises, precision tends to fall.

To depict a system’s performance, precision-recall grapdgonstructed whereby pre-
cision is plotted against the standard decile ranges (086, 20%, etc) of recall. To con-
dense this into a single number, the concept ofithmint interpolatedaverage precision

is introduced as
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[AS]

Figure 4.6: Top 5 MeSH labels associated with each node af¢lken Figure 4.5. The number in parentheses indicate tighive

associated with each MeSH heading; the weights assigneattoleaf node are the log-entropy weights from 50& G MeSH

collection.

B

cell adhesion molecules, neuronal/*metabolism (0.66)
cell adhesion molecules, neuronal/*genetics (0.65)
extracellular matrix proteins/*genetics (0.65)
extracellular matrix proteins/*metabolism (0.60)
receptors, lipoprotein/*metabolism (0.52)

C

cell adhesion molecules, neuronal/*genetics (1.30)
extracellular matrix proteins/*genetics (1.30)
extracellular matrix proteins/genetics/*physiology7®)
cerebral cortex/*abnormalities/pathology (0.75)
nerve tissue proteins/genetics/*physiology (0.75)

reln

cell adhesion molecules, neuronal/*genetics (1.67)
extracellular matrix proteins/*genetics (1.67)
brain/embryology/enzymology (1.39)
extracellular matrix proteins/biosynthesis/*genetit80)
extracellular matrix proteins/genetics/*metabolisnB8@).

dabl
pdedtagments (1.10)
extrédal matrix proteins/*genetics (0.94)
cell adhesion molestneuronal/*genetics (0.94)
*chromosomes, human, pair 1 (0.85)
brain/cytology/*physiology (0.81)

A

receptors, ldl/*genetics (0.80)
cell adhesion molecules, neuronal/*metabolism (0.57)
IdI-receptor related protein 1 (0.56)
lipoproteins, vidl/metabolism (0.55)
rabbits/genetics (0.55)

vidir

epaws, Idl/*genetics (1.61)

rabbits/genetics (1.10)
lipomiois, vidl/metabolism (1.10)

myatiam/chemistry (1.10)
lipoproteinisll/*metabolism (0.92)

[rp8
receptors, lipoprotein/*genetics (0.92)
cell asibe molecules, neuronal/*metabolism (0.76)
IdI-receptor related protein 1 (0.75)
*alternative splicing (0.71)
@dHalar matrix proteins/*metabolism (0.70)



Whereﬁ(x) is called the pseudo-precision and is the maximum precigpho theith
document, and is typically chosen to be eleven.

Another measure of a system’s performance can be given lnydmc mean of preci-
sion and recall and is known as the F-measure. This measuee, loy

_ 2(PxR)

-~ (P+R)’
is a nonnegative fraction that achieves unity if and onlyoifitoprecision and recall are one
[BYRN99]. A weighted version of' can also be applied to stress either component over
the other.

Unfortunately in this context, however, the set being meskis not as a simple as a
return list. In the case of SGO, one labelled hierarchy mastdmpared to another. Sur-
prisingly, relatively little work has been done that addessthis problem. Graph similarity
algorithms exist, but most all of those algorithms compaiferihg topologies—the labels
on the nodes of the graphs are artifacts that are usuallyegndVhen comparing labels
that occur in a hierarchical fashion, a single number evanas wanted to allow compari-

son of large amounts of data, but the ability to measurereiffigproperties of the labeling at

some point would also be useful. In this context, identigymow well a labeling performed
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at different levels within the hierarchy could help evatutite system more accurately.
Kiritchenko in [Kir05] proposed the hierarchical precisiand recall measures, denoted
ashP andhR, respectively. IfC' denotes the set of classes into which nodes are classified

(in SGO’s case(' refers to text words), then for each nagle

~

Do éiﬂ :
hP = N ,
Do Cin Az’
hR = _ ,
Ei 7

whereC; C C'is the correct classificatiod;; C C'is the assigned classification, and the
operation denotes the inclusive union of all labels in theeator set. This measure assumes
that a classfication hierarchy exhibiterarchical consistengya hierarchy is deemed con-
sistent if each label includes complete ancestor sets. &tynfior each labek, € C;

for nodeC;, ¢; € Ancestors(c,) impliesc; € C; [KMFO5]. In other words, hierarchi-
cal consistency takes the parent—child relationship ébdalby most hierarchical trees to
the extreme by requiring that all node labels must be inbegiown to all their respective
children nodes.

While hierarchical consistency is an intuitive propertynadny trees, many hierarchies
in practice do not explicitly enforce this constraint. ligltonstraint were required, leaf
nodes could potentially have very large label sets whileaheestor nodes would have
fewer descriptors. Of course, this can be avoided by adjé¢oira convention that places

each label at its most ancestral node. Although hierartha@sistency is intuitive as leaf
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nodes often represent the most restrictive nodes withirtrdee if applied to a true tree
where taxa may belong to more than one parent, the labeliygono@luce unintended re-
sults. For example, consider the tree given in Figure 4.7notde C' could be feasibly
considered to be a descendant of both n&dand nodeY” (i.e., C' contains labels that are
present in bothX andY’) where the labels oK andY are disjoint, then the “tree” (more
precisely, the graph) given in Figure 4.8 could more acelyatescribe the evolutionary
relationship. If the root node can be ignored for the purpadehis argument, then en-
forcing hierarchical consistency on the tree would forcé contain labels ofX and not
vice versa. Inthe case of the graph, however, hierarchacadistency can be applied easily.
This implies that the notion of hierarchical consistenapisust within hierarchical graphs,
but when mutually independent evolution is assumed afteln eade, then this constraint
may produce unintended results. Related to this point, tveeightedh P and h R mea-
sures penalize misclassifying higher nodes more than lowes. As such, these measures
can be considered top-down approaches.

Also, while these measures condense the information ineaitte a single number,

A B C D

Figure 4.7: Simple tree that is hierarchically consistéatlilabels inX occur inA and B
and all labels it occur inC andD.
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A B C D

Figure 4.8: Hierarchical graph extended from Figure 4.7.

they do not show how well a labeling performs as a functiorre¢ depth. In the case of
SGO, thisinformation is crucial as varying parameter sggtiwithin the NMF are expected
to affect performance at different depths within the tree. a@idress this issue, a simple
measure for gauging accuracy is to find the recall at each. duhee, in practice, words

in a label are unranked, the notion of precision carrieke litteaning. The recall values at
each level within a tree can be averaged to show how accyiatabeling is a function of

tree depth, and those can in turn be averaged to produce la salge that captures how

well the labeling performed overall.

4.4 Feature Vector Replacement

When working with gene documents, many cases exist wher¢eth@nology used in

MeSH is not found within the gene documents themselves. Bwaungh a healthy per-
centage of the exact MeSH terms may exist in the corpus, thedecument matrix is so
heavily overdetermined (i.e., the number of terms is sigaiftly larger than the number
of documents) that expecting significant recall values gtlevel within the tree becomes
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unreasonable. This is not to imply that the terms producedMy are without value. On
the contrary, the value in those terms is exactly that they reeeal what was previously
unknown. For the purposes of validation, however, some atethust be developed that
enables a user to discriminate between labelings even thiooilp have little or no recall
with the MeSH-labeled hierarchy. In effect, the vocabulasgd to label the tree must be
controlled for the purposes of validation and evaluation.

To produce a labeling that is mapped into the MeSH vocabutaeytopr globally-
weighted MeSH headings are chosen for each document; theS¢iMeadings can be
extracted from the MeSH meta-collection (see Section B§)nspection ofH, the dom-
inant feature associated with each document is chosen aighed to that document. The
corresponding top MeSH headings are then themselves parsed into tokens agdess
to a new MeSH feature vector appropriately scaled by theesponding coefficient iii/.
The feature vector replacement algorithm is given in Aljoni 4.23

Once full MeSH feature vectors have been constructed, #gecan be labeled via the
procedure outlined in Algorithm 4.1. As a result of this se@ment, better recall can
be expected, and the specific word usage properties inhierém MeSH (or any other)

ontology can be exploited.

3Note thatn' is distinguished fromn since the dictionary of MeSH headings will likely differ ilze and
composition from the original corpus dictionary. The numtiedocuments, however, remains constant.
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Algorithm 4.2 Feature Vector Replacement Algorithm

Input: MeSH Term-by-Document Matrid’ .,
Factor MatricesV,,,.r and H;.,, of original Term-by-Document Matrid,,, .,
Global weight vector/,

Threshold- number of MeSH headings to represent each document

Output: MeSH feature matrix}’

fori=1:ndo
Chooser top globally—weighted MeSH headings frath column ofA’
Determinej = argr?ggc Hj;
for h=1:rdo
Parse MeSH headinfginto tokens
Add each token with indexp to wj, the jth column of W’
e, Wy, =W, + g, x Hj;
end for
end for
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Chapter 5

Results

The evaluation of the factorization produced by NMF is nowidl as there is no set stan-
dard for examing the quality of basis vectors produced. Kample, [CCSS06] per-
formed several NMF runs then independently asked domaierexfo interpret the result-
ing feature vectors. This chapter attempts to evaluate NMBndo distinct, automated
methods. First, the mathematical properties of the NMF arasexamined, then the accu-
racy of the application of NMF to hierarchical trees is sigriaed for each collection. In

both cases, the effects of each parameter is discussed.

5.1 Data Sets

Five data sets were used to test the effectiveness of NMm gaup of genes specified
were related to a specific biological function, with somea&xé€ous or “noisy” genes unre-

lated to that function possibly added. The full list of gemmesach dataset can be found in
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Appendix A. Each token in every document collection was ieglto be present at least
twice in a single document and at least twice throughout tlection.

For each collection, two different initialization straieg were used: the NNDSVD
(Section 3.2.2) and randomization. Five different randoiag were conducted while
three were performed using the NNDSVD method. Although tidDISVD produces
a static starting matrix, different methods can be appleedemove zeros from the ini-
tial approximation to prevent them from getting “lockedtdabhghout the update process.
Initalizations that maintained the original zero elemeants denoted NNDSVDz, while
NNDSVDa, NNDSVDe, and NNDSVDme substitute the average loglainents ofA, ¢,

Or €machine, FESPECtively, for those zero elementsyas set tal0~° and was significantly
smaller than the smallest observed value in eittiesr 1V (typically around10~3), while
Emachine WAS the machine epsilon (the smallest positive value theoden could represent)
at approximatelyi0—32%. Both NNDSVDz and NNDSVDa are mentioned in [BG05], how-
ever, NNDSVDe and NNDSVDme were added as natural extenssoNSNDSVDz that
would not suffer from the restrictions of locking zeros dogthte multiplicative update.

Four different constraints were placed on the iterationaddition to the basic NMF:
smoothing oV, sparsity onl//, smoothing o, and sparsity orf{. In the cases where
extra constraints were added, the parameter values tested\i, 0.01, and 0.001; sparsity
values of 0.1, 0.25, 0.5, 0.75, and 0.9 were tested wherécapf®. The number of feature
vectors,k, was the remaining free parameter and was assigned thesvaiii® 4, 6, 8,

10, 15, 20, 25, and 30. When all parameter settings are camesidNMF was applied to
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each collection over 2,500 times. The only exception is iE® collection, where over
7,500 runs were performed to inspect the effect of the var@mlumn normalizations on
the factorizations. For each value of, a total of 135 runs were performed when sparsity
was enforced on either eith® or H, and 27 runs were performed when smoothness was
imposed on eithel” or H.

Each of the more than 30,000 NMF runs iterated until it redch@®00 iterations or a
stationary point in botiV and H. That is, at iterationi, when||W;_; — W;||» < 7 and
|H;—1 — H;||r < 7, convergence is assumed. The parameteras set to 0.01. Since
convergence is not guaranteed under all constraints, ibhjective function increased
betweeen iterations, the factorization was stopped andvass not to converge.

The log-entropy weighting scheme discussed in Chapter Zaypled to generate to-
ken weights for each collection. To simulate the effect ofendiscriminating token se-
lection algorithms and to reduce the relative size of théahary, all tokens whose global
weight fell below the threshold of 0.8 were added to a stopéad the collection was
reparsed and reweighted. Any collection where this threlsivas applied is denoted with
a “.8" appended to it (e.g50TGrefers to the original collection, whieOTG.8denotes the
reweighted50TG collection after all tokens with an initial global weight &ss than 0.8
were removed). The term counts concerning each collectdoré and after thresholding
are presented in Table 5.1.

The50TGcollection is comprised of 50 genes that are associatedthétReelin sig-

10Only two random runs were performed when any of the columme wermalized.
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Table 5.1: Corpus size for the five collections consideretie umbers in parentheses
show the term count after removing terms with a global wedajié¢ss than 0.8.

Collection # Terms # Documents
50TG 8,750 (3,073) 50
115IFN | 8,758 (3,250) 115
Mathl | 3,896 (1,414) 46
Mea 3,096 (1,204) 45
Sey 5,535 (1,997) 35

naling pathway, and evidence suggests that some compouoietits pathway are asso-
ciated with Alzheimer’s disease. Within the 50 genes, thmaen subgroups known to
be associated with development, Alzheimer’s disease, andet are present [HHWBO5,
Hei04]. 50TGis the most heterogeneous of the five collections and isvelaivell-studied
[CCSSH06].

115 different Interferon (IFN) genes form thié5IFNcollection. IFNs are a type of cy-
tokine that is released by the immune system in responseahatiacks, and have recently
been linked to pathways that counterbalance apoptosigi@ath) [PKP 04]. All genes in
the115IFNcollection are considered IFN-stimulated genes (ISGS).

The three remaining sets of genes, denotelllaihl, Mea andSey are all taken from
microarray data obtained from mouse mutants with cereted#iects. Each of the datasets
are presently under biological examination—at this pahe,genes in each of the sets are
not known to be functionally related. As they pertain to eatr(unpublished) research, the
specific genes in the cerebellar datasets will not be retedse the application of labeling

methods to them is discussed.
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5.2 Evaluation Techniques

As mentioned in Chapter 3, the SVD produces the mathemigticptimal low-rank ap-
proximation of any matrix with respect to the Frobenius nortthile NMF can never
produce a more accurate approximation than the SVD, itsipiioxto A relative to the

SVD can be measured. Namely, the relative error, computed as

e JA=WHIE - |a-vusvT|
N A= USVTl, ’

where both factorizations assume paramétecan show how close the feature vectors
produced by the NMF are to the optimal basis [LMAOG6]. In adxfitto relative error, the
effects of the constraints with respect to convergence rede be analyzed. A full list of
the average relative errors as well as the percentage of Nikié&-that converged under the
various constraints is provided in Appendix B.

While measuring error norms and convergence is useful tossxmathematical proper-
ties and structural tendencies of the NMF, the ultimate gb#lis application is to provide
a useful labeling of a hierarchical tree from the NMF. In maages, the “best” labeling
may be provided by a suboptimal run of NMF.

Measuring recall (discussed in Chapters 2 and 4) is a qatwéitway to validate
“known” information within a hierarchy. To avoid confusipthe mean average recall

(MAR) will denote the value attained when the average reaftach level is averaged
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acrossed all levels.For each collection, the parameter settings that providedest la-
belings, both in the global and local sense, are discussed.

After applying the labeling algorithm provided by Algornitt4.1 to the factors produced
by NMF from each collection, the MAR generated was very lowdgr 25%) for nearly
all parameter settings. Since the NMF-generated vocapdldmot overlap well with the
MeSH dictionary, the NMF features were mapped into MeSHuifest via the procedure
outlined in Algorithm 4.2, where the most dominant featugpresented each document
only if the corresponding weight in the matrix was greater than 035Also, the top 10
MeSH headings were chosen to represent each document, etapti00 corresponding
terms were extracted to formulate each new MeSH featur@rdeor each collection, the

resulting MeSH feature vectors produced labelings witlatlyencreased MAR.

5.2.1 50TG
Relative Error and Convergence

Intuitively, ask increases, the NMF factorization should more closely axprate A. As
shown in Figure 5.1, this is exactly the case. Surprisingbwever, the average of all
converging NMF runs is under 10% relative error comparech&3VD, with that error
tending to rise a increases$. The proximity of the NMF to the SVD implies that, for this

small dataset, NMF can accurately approximate the data.

°Here, a hierarchy level refers to all nodes that share the shstance (number of edges) from the root.

3Trials were run with this threshold eliminated, but thisyided little effect on overall recall results.

4This includes runs that normalized columns of eitiérH, or both, even though the normalization often
increased the error.
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Figure 5.1: Error measures for the SVD, best NMF run, andeeNMF run for th&0TG
collection.
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To study the effects of convergence, one set of NMF parasetest be chosen as the
baseline against which to compare. By examining the NMF witladditional constraints,
the NNDSVDa initialization method consistently producles imost accurate approxima-
tion when compared to NNDSVDe, NNDSVDme, NNDSVDz, and randbitialization.
The relative error NNDSVDa generates is less than 1% foeatked values ot < 20, is
equal to 1% fork = 25, and is 2.5% whei = 30. Unfortunately, NNDSVDa requires at
least 161 and at most 331 iterations to converge.

NNDSVDe performs comparably to NNDSVDa with regard to rekterror, often
within a fraction of a percent. For smaller valuespNNDSVDe takes significantly longer
to converge than NNDSVDa, although the exact opposite esfouthe larger value of.
NNDSVDz, on the other hand, converges much faster for smadleies ofk at the cost of
accuracy as the locked zero elements have an adverse efféet best solution that can be
converged upon. Not surprisingly, NNDSVDme performed camaply to NNDSVDz in
many cases, however, it was able to achieve slightly morerate approximations as the
number of iterations increas@drandom initialization performs comparably to NNDSVDa
in terms of accuracy and favorably in terms of speed for siabut ask increases both
speed and accuracy suffer. A graph illustrating the corerezg rates wheh = 25 is
depicted in Figure 5.2.

In terms of actual elapsed time, the improved performandee@NNDSVD does not

come without a cost. In the context of SGO, the time spent ecaimg the initial SVD ofA

5In fact, NNDSVDme was identical to NNDSVDz in most cases ariltivot be mentioned henceforth
unless noteworthy behavior is observed.
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Figure 5.2: Convergence graph comparing the NNDSVDa, NND&VNNDSVDme,
NNDSVDz, and best random NMF runs of th@TGcollection for ¢ = 25).
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for the first step of the NNDSVD algorithm is assumed to be zanoe the SVD is needed
a priori for querying purposes. The time required to conglée NNDSVD, however,
is approximately 0.82 seconds pkr the initialization cost wherk = 25 is nearly 21
seconds, while the cost for random initialization is refalty negligible® Since the cost per
iteration is nearly .015 seconds gewhenk = 25, the cost of performing the NNDSVD is
approximately 55 iterations. Convergence taking into aotthis cost is shown in Figure
5.3.

Balancing solution quality with execution time, randontiadization is usually a suffi-
cient initialization strategy wheh < 10, while the structure of NNDSVD improves both
solution quality and overall execution time Asncreases. This observation is made ev-
ident, for example, when comparing the number of iteratipegormed wherk = 25.
NNDSVDa can achieve 5% relative error in less than 19 itersti while all the random
initializations took at least 200 iterations to reach thatuaacy, if that accuracy was even
reached at all.

Assuming the NMF run for each that incorporates the NNDSVDa initialization with
no addition constraints is baseline, the effects of appgladditional constraints can be
examined. Applying smoothness # had little noticeable effect as far as the overall
convergence rate is concerned up to within 5% relative er8atisfying the stationary
point stopping criteria, however, was rarely attained imithe 1,000 iteration limit. With

£ = 0.1, NNDSVDa quickly failed to converge whén> 8. Interestingly, both NNDSVDe

SAll runs were performed on a machine running Debian Linux ®ith an Intel Pentium 11l 1 GHz
processor and 256 MB memaory.

68



130

NN DSVIDa —

NNDSVDe
N NNDSVDz — |
120 NNDSVDme ——
random ——
SVvD
110
100
T
= 90
<
80
70
60
50 | | | |
0 20 40 60 80 100
iteration

Figure 5.3: Convergence graph comparing the NNDSVDa, NND&VNNDSVDme,
NNDSVDz, and best random NMF runs of tB@TG collection for ¢ = 25) taking into
account initialization time.
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and NNDSVDz were able to converge for all valuegiofSince NNDSVDa substitutes the
initial zeros with the average value of the elementsipplacing too much importance on
the norm ofH (which is increased potentially significantly under NNDS&)Dovercon-
strains the problem. This may imply that the initial coe#iti matrixH is too sparse or the
number of formerly zero elements grows too large, thereloyahg the average elements
substituted to carry too much weight with respect to the noimeffect, the substitution
becomes noise. By examining the sparsity of thenatrix, this hypothesis may be true as
the sparsity is below 40% wheén< 8 but climbs above 40% for the larger valuesiof

SmoothinglV yielded tendencies similar to smoothiif although a stationary point
was able to be reached in about the same number of iteraahe dase case whenwas
small. Asa increased, reaching that final stationary point becameehaodattain within
the iteration threshold.

The current implementation of the sparsity constraint isigction of two different
norms with respect to a matrix. The end effect can be considen amplification of the
smoothness constraint. As such, the low convergence ratenforcing sparsity or{
should be expected, especially when the NNDSVDa inititibzeis applied. In fact, spar-
sity is so sensitive that the only value @that yielded results that did not fail to converge
was 0.001; only for smalt was a stationary point reached—all other runs met the iterat
limit. Table 5.2 illustrates the convergence tendencighb vaspect tax andg.

Enforcing sparsity oml” performed similarly to enforcing sparsity dh. Smaller val-

ues ofa for NNDSVDe and NNDSVDz once again attained the maximum nemdj
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Table 5.2: Number of iterations required to reach specificgrgages of relative error.
These values reflect runs where= 25 and the NNDSVDe initialization was used. Values
in parentheses indicate the point where NMF was terminatiedtal increasing objective
function. All other runs enforcing sparsity terminateceaft or 2 iterations.

Iterations Required To Reach
Relative Error
Constraint | Parameterq or 3) | Sparsity | Stationary Point| 1% | 5% | 10% | 15% | 20% | 25% | 50%
none 249 28 22 19 15 11 3
sparseW 0.001 0.1 ?3)
sparseW 0.001 0.25 1000 26 21 17 14 10 3
sparseW 0.001 0.5 1000 27 21 18 15 11 3
sparseW 0.001 0.75 (18) 15 11 3
sparseW 0.001 0.9 (6) 3
smoothW 0.001 1000 28 22 19 15 11 3
smoothW 0.01 1000 29 23 19 15 11 3
smoothW 0.1 1000 30 24 20 16 12 3
sparseH 0.001 0.1 2)
sparseH 0.001 0.25 1000 37 28 24 19 15 4
sparseH 0.001 0.5 1000 36 28 23 19 14 4
sparseH 0.001 0.75 (51) 31 24 20 16 12 3
sparseH 0.001 0.9 ©) 3
smoothH 0.001 250 28 22 19 15 11 3
smoothH 0.01 253 28 22 19 15 11 3
smoothH 0.1 1000 28 22 19 15 11 3

iterations. Interestingly, sparsity values of 0.5 and @2Berated the most stable results,
with 0.5 yielding 1,000 iterations for all values bf Figures 5.4 and 5.5 show the effect
the various constraints have on thi&’|| and|| /||, respectively, while Figure 5.6 shows the
relative consistency of the corresponding approximations

If structured initialization is ignored and only randomtialization runs examined,
then several observations can be made. First, very few catibns of parameter settings
yielded converging results when sparsity was enforcetlorSecond, enforcing sparsity,
particularly onH, while more likely not to converge, was also more likely tduee its

relative error quickly with respect to the number of itesas. Third, smoothing eithé#

"To include sparsity in these figures, the NNDSVDe initigiiaa was used.
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or H tended to speed convergence to within 5% relative errortl@dumber of iterations
required to reach a stationary point increased as the singgthrameter increased.

As expected, smoothing tended to decrease the magnitude of the values wiihat
the cost of increasing the valuesiivi. Smoothingl/ produced a similar (and opposite)
effect, although not to the same degree. If sparsity is erfbonH, the magnitude of
the values within/ are greatly reduced and correspondingly compensated foragdjust-
ments inW. Similarly, sparsity ori¥ shrinks the relative magnitude of at the expense
of H, and unlike its smoothing counterpart, the values attathier greatly from the un-
constrained case. Enforcing smoothness or sparsity arauses different tokens to be
prominent within each feature and affects the labelingsipced.

When the vocabulary size is reduced by applying a 0.8 gltivashold, smaller relative
error is expected since the vocabulary size is significatgtyeased. Figure 5.7 shows how
relative error increases with, although the relative error for eaéhis less than it$0TG
counterpart.

As far as initialization strategies are concerned, NNDSV&maains the best in terms
of relative error, but only fok < 15. Fork > 20, NNDSVDe outperforms NNDSVDa
in terms of both relative error and number of iterations remito converge. In many
cases, the NNDSVDe achieved relative error of 1% in as manfewer iterations as
NNDSVDa, so the NNDSVDe will be considered the baseline ragjavhich to compare
the effects of constraints on convergence speed fob@i&5.8collection. In general, ap-

plying smoothing constraints shows consequences sinailtrair 50TG counterparts. In
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Figure 5.7: Error measures for the SVD, best NMF run, andameNMF run for the
50TG.8collection.
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particular, NNDSVDa fails to converge when smoothiiigf 5 = 0.1 andk > 6, which
corresponds to 30% original sparsity #h. Additionally, convergence is not achieved if
6 = 0.01 andk = 30 when smoothing?, which corresponds to a 45% original sparsity
in H. Also similar to its50TG counterpart, applying sparsity to either factor increases
the number of iterations required to reach a stationarytpganerally only converges for
smaller values oty or 3, and greatly reduces the norm of the corresponding constiai
factor at the cost of increasing the magnitude of the otheceShe matrix associated with
the 50TG.8collection is smaller than th80TG matrix, some small values @f were able

to converge to a stationary point within the 1,000 iterationit.

Labeling Recall

With regard to the accuracy of the labelings, several tremdst. Ask increases, the
achieved MAR increases as well. This behavior could be ptedisince increasing the
number of features also increases the size of the effeetinedihg vocabulary, thus enabling
a more robust labeling. When= 25, the average MAR across all runs is approximately
68%.

Since the NNDSVDa initialization provided the best conesce properties, it shall
be used as a baseline against which to compameterms of MAR, NNDSVDa produced
below average results, with both NNDSVDe and NNDSVDz cdesity outperforming

NNDSVDa for most values of; NNDSVDe and NNDSVDz attained similar MAR values

8If k is not specified, assume= 25.
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as depicted in Figure 5.8. The recall of the baseline casggd$NDSVDa andk = 25
depicted by node level is shown in Figure 5.9.

The 11 levels of nodes can be broken into thirds to analyzac¢haracy of a labeling
within a depth region of the tree. The MAR for NNDSVDa for eadhhe thirds is approx-
imately 58%, 63%, and 54%, respectively. With respect totdipenost third of the tree,
any constraint applied to any NNDSVD initialization otheah smoothindgl?” applied to
NNDSVDa provided an improvement over the 58% MAR. In all s&asee resulting MAR
was at least 75%. NNDSVDa performed slightly below averaggs the middle third at
63%. Overall, nearly any constraint improved or matchedltewver the base case over all
thirds with the exception that enforcing sparsity Bnunderperformed NNDSVDa in the
bottom third of the tree; all other constraints achievedeast 54% MAR for the bottom
third.

With respect to different values &f similar tendencies exist over all thirds. NNDSVDa
is among the worst in terms of MAR with the exception that kglavell in the topmost third
whenk is either 2 or 4. There was no discernable advantage whenaamgad\NNDSVD
initialization to its random counterpart. Overall, the bBENDSVD (and hence repro-
ducible) MAR was achieved when enforcing sparsity rwith 5 = 0.001, sparseness
parameter 0.5 or 0.75, arid= 30 (shown in Figure 5.10). The nearly 78% MAR achieved

was reached when NNDSVDz, NNDSVDe, or NNDSVDme was used.
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Figure 5.9: Recall as a function of node level for the NNDSVilaalization on the50TG
collection. The achieved MAR is 58.95%.
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Figure 5.10: Best recall achieved by the NNDSVD initialieatfor the 50TG collection.
The achieved MAR is 77.83%.
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5.2.2 115IFN

Relative Error and Convergence

Similar to the50TGcollection, the NNDSVDa initialization strategy is the mosbust in
terms of fewest iterations required to reach 1% relativereior the 1151FN collection.
The larger size of the dataset, however, becomes probleasmtomputing the NNDSVD
is equivalent to performing approximately 249 NMF iteraso The relative error of the
various initializations is given in Figure 5.11. Assumimgtan NNDSVD is performed,
however, faster convergence rates can be expected refatiterandom counterpart for
largerk.

Interestingly, in some instances, although the time regitio converge did notimprove,
smoothingH reduced the number of iterations required to reach smaillivelerrors. This
occurred most often for largérand for smaller smoothing parameters. As withS8 G
set, a value of 0.1 proved too stringent and caused NMF tddasbnverge. When en-
forcing sparsity o, sparsity values of 0.5 and 0.75 proved to be the most suatéss
small 3. Enforcing either constraint di generated results consistent with those observed
with the 50TG collection. By reducing the vocabulary size to th&5IFN.8collection,
NNDSVDa remained the best initialization strategy excepemk was 8, 10, or 15, when
NNDSVDe was superior. Enforcing sparsity on either #i&IFNand115IFN.8seemed
to be sensitive to the initialization method, as both caitets failed to converge for all

random initializations whek > 10.
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Figure 5.11: Convergence graph comparing the NNDSVDa, NMID& NNDSVDz, and
best random NMF runs of thel5IFN collection for ¢ = 25) taking into account initial-
ization time.
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Labeling Recall

The MAR achieved by th&15IFN collection was, on average, comparable to 308 G
collection, although the best cases were not nearly as gotite&0TGcollection. As with
50TG MAR increased as increased. Unlik60TG however, the NNDSVDa initialization
produced MAR competitive with the other NNDSVD strategi€se NNDSVDa enforcing
sparsity oriV with o = 0.001, £ = 30, and sparsity parameter 0.5 produced the best MAR
for structured initialization runs, and its recall is dapitin Figure 5.12. Broken into thirds,

the MAR is 20%, 50%, and 79%.

5.2.3 Cerebellar Data Sets

Relative Error and Convergence

All three of the cerebellar data sets contained a slightlglennumber of documents and
approximately half the number of terms of te8TGset. Consequently, the actual error
achieved by the SVD was extremely low especially for lakgand the resulting relative
errors of the NMF runs grew at a higher ratekascreased. In general, NNDSVDa was
the best overall initialization strategy for mastn terms of convergence speed and accu-
racy, although NNDSVDe tended to outperform for larger ealofk for the Mathl and
Seycollections. The relative cost of initialization in termsraumber of iterations was ap-
proximately 59, 59, and 37 iterations for thkath1, Mea andSeycollections, respectively,
and in each case the overall speed of an NNDSVD-initializ&tFNvas much faster than

its randomized counterpart. With regard to the effect ofigmltal constraints, nearly all
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Figure 5.12: Best recall achieved by the NNDSVD initialiaatfor the115IFNcollection.
The achieved MAR is 49.79%.
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the tendencies observed with th8TG collection are consistent with those seen with the

cerebellar data sets.

Labeling Recall

Best performance in terms of MAR was achieved for highereslofk. With respect to
initialization, NNDSVD performed better than its randonuaterpart for theMea collec-
tion, although random initialization was on par with NNDSW® both theMathlandSey
collections. As with th&0TGcollection, NNDSVDa tended to produce lower MAR than
the other three NNDSVD methods. Overall, the highest MARIgalachieved for each of

theMathl, Mea andSeydatasets were 62%, 57%, and 81%, respectively.

5.2.4 General Observations

While comparing NMF runs over all five collections, severahts can be observed, both
with respect to mathematical properties and recall tendené&irst, and as expected, /as
increases, the approximation achieved by the SVD with i&@dped is more accurate; the
NMF can provide a relatively close approximationAan most cases, but the error also
increases wittk. Second, NNDSVDa provides the fastest convergence in tefmsmber

of iterations to the closest approximations. Third, enfagceither sparsity or smoothing
on H tends to have a more noticeable effect on the normi¥ dhan performing the same
operation onlV. Also, enforcingH constraints on a randomized seed would frequently

speed convergence to within 5% relative error, althougloitile rarely reach a stationary
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point. Of course, this observation may also be related tditguaf the random seed gen-
erated. Unfortunately, convergence was a major issuecedigewith sparsity. Sparsity
was extremely sensitive to the initial seed, and usually emtall values otx andj led
to converging solutions. Extreme sparseness values ofr@9aarely converged, while
0.5 proved to be the most successful. Finally, to generéaéwely “good” approximation
error (within 5%), about 20-40 iterations are recommendgdgueither NNDSVDa or
NNDSVDe initialization with no additional constraints wig is reasonably large (about
half the number of documents). For smallerperforming approximately 25 iterations
under random initialization will usually accomplish 5%ate error, with the number of
iterations required decreasing/adecreases.

Frequently, the best labelings did not come from the mostirate approximations.
Overall, more accurate labelings resulted from highereslaf £ because more feature
vectors increased the vocabulary size of the labelingahetiy. Generally speaking, the
NNDSVDe, NNDSVDme, and NNDSVDz schemes outperformed théSMDa initial-
ization. Enforcing additional constraints on eith&ror H with small parameter tended to
increase the achieved MAR slightly for many of the NNDSVDsu@verall, the accuracy
of the labelings appeared to be more a functiork @nd the initial seed rather than the

constraints applied.
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Chapter 6

Conclusion

SGO and other text mining systems have become more popubéslogical research and
applications. As different methods become available, thegt be tailored to be useful
in their application domain, and attempts must be made tétagxgheir functionality in
different terminology. In the case of SGO, the negativityporsed by the SVD creates
interpretability issues. As a result, the use of NMF was evgd, and the application of
NMF to labeling hierarchical trees was examined on five diffié data sets. Also, auto-
mated methods were suggested to expand existing ann&atiiassify groups of genes,
and evaluate those classifications. Currently, these tiasdes are frequently performed
manually [CCSS06].

Much research is being performed concerning the NMF, arsdvtbrk examines three
methods based on the MM update [LS99]. Many other NMF vannetiexist and more

are being developed, so their application to the biologiealm should be studied. For
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example, [SBPP06] proposes a hybrid least squares appoadield GD-CLS to solve
NMF and overcomes the problem of “locking” zeroed elememisoantered by MM,
[PMCK™06] proposes nonsmooth NMF as an alternative method topocate sparseness,
and [DLPPO6] proposes an NMF technique that generates thcter matrices and has
shown promising clustering results. NMF has been applieditooarray data [BTGMO04],
but efforts need to be made to combine the text informatidh wiicroarray data; some
variation of tensor factorization could possibly show h@hationships change over time
[CzC*0T7].

With respect to the labeling method, MeSH terms are assigngénes, but the MeSH
hierarchy is ignored. Developing methods to incorporageitiiormation inherent in that
hierarchy could help produce more accurate gene clas®iisatThe trees themselves are
built using simplifying assumptions—extending trees ihterarchical graphs has more
real applicability, although algorithm complexity may b@pibitive at the moment. Also,
methods such as natural language processing (NLP) teasmpuld be used to examine
sentence structure. Consequently, both the edges as wetides of the tree could be
labeled where nodes show the function of a gene and edgbésffsiecifies a gene’s effect
on that function. Of course, as data become more complexahzation techniques are
another issue that this dissertation has ignored.

Regardless of the techniques employed, one of the issuesvilhalways be preva-
lent regarding biological data is that of quality versusmig. Inherently related to this

problem is the establishment of standards within the fiefieeiglly as they pertain to hi-
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erarchical data. Efforts such as Gene Ontology (GO) aregglairit and refined [Con00],
but standard data sets against which to compare resultsl@adycdefined and accepted
evaluation measures could facilitate clear comparisowden differing methods.

In the case of SGO, developing methods to derive “known” dasamajor issue (even
GO does not produce a “gold standard” hierarchy given a sgenés). Access to more
data and to other hierarchies would help test the robusti¢le method, but that remains
one of the problems inherent in the field. As discussed in @ndyp approximations that
are more mathematically optimal do not always produce tlest'dabeling. Often, factor-
izations provided by the NMF can be deemed “good enough,tla@dinal evaluation will
remain subjective. In the end, if automated approaches garo@imate that subjectivity,

then greater understanding of more data will result.
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Appendix A

Genes Used In Test Data Set

The genes comprising each data set along with other assdadbrmation is presented in

this appendix.

1. Table A.1 lists the genes in tB@®TGcollection.
2. Table A.2 lists the genes in ti45IFN collection.

3. The genes in thMathl, Mea andSeycollections are still under investigation and

are not presented.
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Table A.1: The 50 genes of tl®TGdata set.

Gene Symbol | Unigene ID | LocusLink ID Official Gene Name
A2M Mm.30151 232345 alpha-2-macroglobulin
ABL1 Mm.1318 11350 v-abl Abelson murine leukemia oncogene 1
APBA1 Mm.22879 108119 amyloid beta (A4) precursor protein-binding, family A, meen 1
APBB1 Mm.38469 11785 amyloid beta (A4) precursor protein-binding, family B, misen 1
APLP1 Mm.2381 11803 amyloid beta (A4) precursor-like protein 1
APLP2 Mm.19133 11804 amyloid beta (A4) precursor-like protein 2
APOE Mm.305152 11816 apolipoprotein E
APP Mm.277585 11820 amyloid beta (A4) precursor protein
ATOH1 Mm.57229 11921 atonal homolog 1 (Drosophila)
BRCA1 Mm.244975 12189 breast cancer 1
BRCA2 Mm.236256 12190 breast cancer 2
CDK5 Mm.298798 12568 cyclin-dependent kinase 5
CDK5R Mm.142275 12569 cyclin-dependent kinase 5, regulatory subunit (p35)
CDK5R2 Mm.288703 12570 cyclin-dependent kinase 5, regulatory subunit 2 (p39)
DAB1 Mm.289682 13131 disabled homolog 1 (Drosophila)
DLL1 Mm.4875 13388 delta-like 1 (Drosophila)
DNMT1 Mm.128580 13433 DNA methyltransferase (cytosine-5) 1
EGFR Mm.8534 13649 epidermal growth factor receptor
ERBB2 Mm.290822 13866 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
ETS1 Rn.88756 24356 E26 avian leukemia oncogene *,domain
FOS Mm.246513 14281 FBJ osteosarcoma oncogene
FYN Mm.4848 14360 Fyn proto-oncogene
GLI Mm.336839 14632 GLI-Kruppel family member GLI
GLI2 Mm.273292 14633 GLI-Kruppel family member GLI2
GLI3 Mm.5098 14634 GLI-Kruppel family member GLI3
JAG1 Mm.22398 16449 jagged 1
KIT Mm.247073 16590 kit oncogene
LRP1 Mm.271854 16971 low density lipoprotein receptor-related protein 1
LRP8 Mm.276656 16975 low density lipoprotein receptor-related protein 8, apofirotein
MAPT Mm.1287 17762 microtubule-associated protein tau
MYC Mm.2444 17869 myelocytomatosis oncogene
NOTCH1 Mm.290610 18128 Notch gene homolog 1 (Drosophila)
NRAS Mm.256975 18176 neuroblastoma ras oncogene
PAX2 Mm.192158 18504 paired box gene 2
PAX3 Mm.1371 18505 paired box gene 3
PSEN1 Mm.998 19164 presenilin 1
PSEN2 Mm.330850 19165 presenilin 2
PTCH Mm.138472 19206 patched homolog
RELN Mm.3057 19699 reelin
ROBO1 Mm.310772 19876 roundabout homolog 1 (Drosophila)
SHC1 Mm.86595 20416 src homology 2 domain-containing transforming protein C1
SHH Mm.57202 20423 sonic hedgehog
SMO Mm.29279 20596 smoothened homolog (Drosophila)
SRC Mm.22845 20779 Rous sarcoma oncogene
TGFB1 Mm.248380 21803 transforming growth factor, beta 1
TRP53 Mm.222 22059 transformation related protein 53
VLDLR Mm.4141 22359 very low density lipoprotein receptor
WNT1 Mm.1123 22408 wingless-related MMTYV integration site 1
WNT2 Mm.33653 22413 wingless-related MMTV integration site 2
WNT3 Mm.5188 22415 wingless-related MMTYV integration site 3
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Table A.2: The 115 genes in tH45IFN data set.

Gene Symbol | Unigene ID | LocusLink ID Official Gene Name
ADAR Mm.316628 56417 adenosine deaminase, RNA-specific
AIM1 Mm.292082 11630 absent in melanoma 1
AKAPS Mm.328945 56399 A kinase (PRKA) anchor protein 8
ANKFY1 Mm.10313 11736 ankyrin repeat and FYVE domain containing 1
APOD Mm.2082 11815 apolipoprotein D
AZI2 Mm.92705 27215 5-azacytidine induced gene 2
B2M Mm.163 12010 beta-2 microglobulin
BLMH Mm.22876 104184 bleomycin hydrolase
CASP12 Mm.42163 12364 caspase 12
CASP4 Mm.1569 12363 caspase 4, apoptosis-related cysteine peptidase
CD47 Mm.31752 16423 CDA47 antigen (Rh-related antigen, integrin-associatgdasitransducer)
CREM Mm.5244 12916 cAMP responsive element modulator
CXCL10 Mm.877 15945 chemokine (C-X-C motif) ligand 10
CYP26A1 Mm.42230 13082 cytochrome P450, family 26, subfamily a, polypeptide 1
DAXX Mm.271809 13163 Fas death domain-associated protein
DDX24 Mm.3935 27225 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24
DscC2 Mm.280547 13506 desmocollin 2
ETNK1 Mm.272548 75320 ethanolamine kinase 1
G1P2 Mm.4950 53606 ISG15 ubiquitin-like modifier
G7E Mm.22506 110956 DNA segment, Chr 17, human D6S56E 5
GADDA45G Mm.281298 23882 growth arrest and DNA-damage-inducible 45 gamma
GATA6 Mm.329287 14465 GATA binding protein 6
GBP2 Mm.24038 14469 guanylate nucleotide binding protein 2
GBP4 Mm.45740 55932 guanylate nucleotide binding protein 4
GNA13 Mm.193925 14674 guanine nucleotide binding protein, alpha 13
GNB4 Mm.139192 14696 guanine nucleotide binding protein, beta 4
H2-BL Mm.195061 14963 histocompatibility 2, blastocyst
H2-D1 Mm.374036 14964 histocompatibility 2, D region locus 1
H2-K1 Mm.379883 14972 histocompatibility 2, K1, K region
H2-L Mm.33263 14980 histocompatibility 2, D region
H2-M3 Mm.14437 14991 histocompatibility 2, M region locus 3
H2-Q1 Mm.33263 15006 histocompatibility 2, Q region locus 1
H2-Q10 Mm.88795 15007 histocompatibility 2, Q region locus 10
H2-Q2 Mm.33263 15013 histocompatibility 2, Q region locus 2
H2-Q7 Mm.33263 15018 histocompatibility 2, Q region locus 7
H2-T10 Mm.195061 15024 histocompatibility 2, T region locus 10
HAS2 Mm.5148 15117 hyaluronan synthase 2
HTR1D Mm.40573 15552 5-hydroxytryptamine (serotonin) receptor 1D
IFI1 Mm.29938 15944 immunity-related GTPase family, M
IFI16 Mm.227595 15951 interferon activated gene 204
IF1202B Mm.218770 26388 interferon activated gene 202B
IF1203 Mm.261270 15950 interferon activated gene 203
IF1205 Mm.218770 226695 interferon activated gene 205
IFI35 Mm.45558 70110 interferon-induced protein 35
IF147 Mm.24769 15953 interferon gamma inducible protein 47
IFIH1 Mm.136224 71586 interferon induced with helicase C domain 1
IFIT1 Mm.6718 15957 interferon-induced protein with tetratricopeptide retseh
IFIT2 Mm.2036 15958 interferon-induced protein with tetratricopeptide refsea
IFIT3 Mm.271850 15959 interferon-induced protein with tetratricopeptide repea
IFITM3 Mm.141021 66141 interferon induced transmembrane protein 3
IGTP Mm.33902 16145 interferon gamma induced GTPase
IIGP1 Mm.261140 60440 interferon inducible GTPase 1
IIGP2 Mm.33902 54396 interferon inducible GTPase 2
IL13RA1 Mm.24208 16164 interleukin 13 receptor, alpha 1
IL15 Mm.4392 16168 interleukin 15
IL15RA Mm.200196 16169 interleukin 15 receptor, alpha chain
IL6 Mm.1019 16193 interleukin 6
IRF1 Mm.105218 16362 interferon regulatory factor 1
IRF5 Mm.6479 27056 interferon regulatory factor 5
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Genes inl15IFNdata set (Table A.2 continued).

Gene Symbol | Unigene ID | LocusLink ID Official Gene Name
IRF7 Mm.3233 54123 interferon regulatory factor 7
1ISG20 Mm.322843 57444 interferon-stimulated protein
ISGF3G Mm.2032 16391 interferon dependent positive acting transcription fagtgamma
JAK2 Mm.275839 16352 Janus kinase 2
JARID1A Mm.45767 214899 jumoniji, AT rich interactive domain 1A (Rbp2 like)
LGALS3BP Mm.3152 19039 lectin, galactoside-binding, soluble, 3 binding protein
LGALS8 Mm.171186 56048 lectin, galactose binding, soluble 8
LGALS9 Mm.341434 16859 lectin, galactose binding, soluble 9
LY6E Mm.788 17069 lymphocyte antigen 6 complex, locus E
MAFK Mm.157313 17135 v-maf musculoaponeurotic fibrosarcoma oncogene famigtepr K (avian)
MOV10 Mm.1597 17454 Moloney leukemia virus 10
MPEG1 Mm.3999 17476 macrophage expressed gene 1
MX1 Mm.33996 17857 myxovirus (influenza virus) resistance 1
MX2 Mm.14157 17858 myxovirus (influenza virus) resistance 2
MYD88 Mm.213003 17874 myeloid differentiation primary response gene 88
N4BP1 Mm.25117 80750 cDNA sequence BC004022
NDG1 Mm.26006 368204 Nur77 downstream gene 1
NDST2 Mm.4084 17423 N-deacetylase/N-sulfotransferase (heparan glucosén@iny
NMI Mm.7491 64685 N-myc (and STAT) interactor
NYREN18 Mm.5856 53312 RIKEN cDNA 6330412F12
OGFR Mm.250418 72075 opioid growth factor receptor
PBEF1 Mm.202727 59027 pre-B-cell colony-enhancing factor 1
PELI1 Mm.28957 67245 pellino 1
PLSCR2 Mm.10306 18828 phospholipid scramblase 2
PML Mm.278985 18854 promyelocytic leukemia
PNP Mm.17932 18950 purine-nucleoside phosphorylase
PRKR Mm.378990 19106 eukaryotic translation initiation factor 2-alpha kinase 2
PSMB10 Mm.787 19171 proteasome (prosome, macropain) subunit, beta type 10
PSMB8 Mm.180191 16913 proteosome (prosome, macropain) subunit, beta type &(fargtifunctional peptidase 7
PSMB9 Mm.390983 16912 proteosome (prosome, macropain) subunit, beta type ®(fargtifunctional peptidase 2
PSME1 Mm.830 19186 proteasome (prosome, macropain) 28 subunit, alpha
PSME2 Mm.15793 19188 proteasome (prosome, macropain) 28 subunit, beta
PTPN13 Mm.3414 19249 protein tyrosine phosphatase, non-receptor type 13
RNPEPL1 Mm.200971 108657 arginyl aminopeptidase (aminopeptidase B)-like 1
SAMHD1 Mm.248478 56045 SAM domain and HD domain, 1
SERPINB9 Mm.272569 20723 serine (or cysteine) peptidase inhibitor, clade B, member 9
SFMBT2 Mm.329991 353282 Scm-like with four mbt domains 2
SLFN2 Mm.278689 20556 schlafen 2
SMYD2 Mm.156895 226830 SET and MYND domain containing 2
SOCs1 Mm.130 12703 suppressor of cytokine signaling 1
SOCS2 Mm.4132 216233 suppressor of cytokine signaling 2
STAT1 Mm.277406 20846 signal transducer and activator of transcription 1
STX3 Mm.272264 20908 syntaxin 3
STXBP1 Mm.278865 20910 syntaxin binding protein 1
TAP1 Mm.207996 21354 transporter 1, ATP-binding cassette, sub-family B (MDRP)A
TAP2 Mm.14814 21355 transporter 2, ATP-binding cassette, sub-family B (MDRP)A
TAPBP Mm.154457 21356 TAP binding protein
TCIRG1 Mm.271689 27060 T-cell, immune regulator 1, ATPase, H+ transporting, lgspal VO protein A3
TGTP Mm.15793 21822 T-cell specific GTPase
TRIM21 Mm.321227 20821 tripartite motif protein 21
TRIM25 Mm.248445 217069 tripartite motif protein 25
UBE1L Mm.277125 74153 ubiquitin-activating enzyme E1-like
USP18 Mm.326911 24110 ubiquitin specific peptidase 18
VIG1 Mm.24045 58185 radical S-adenosyl methionine domain containing 2
XDH Mm.11223 22436 xanthine dehydrogenase
ZFP36 Mm.389856 22695 zinc finger protein 36
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Appendix B

NMF Statistics

This appendix contains average relative error and conmesgpercentage information for

the five data sets.

1. Table B.1 displays the average relative error of the NM#fewrdifferent constraints

compared to the SVD for the 50TG data set.

2. Table B.2 displays the percentage of NMF runs that eitbeverged or reached

1,000 iterations for the 50TG data set.

3. Table B.3 displays the average relative error of the NMé&eumlifferent constraints
compared to the SVD for the 50TG data set with a 0.8 global tgigeshold en-

forced.

4. Table B.4 displays the percentage of NMF runs that eitbeverged or reached

1,000 iterations for the 50TG data set with a 0.8 global wetigieshold enforced.
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10.

11.

12.

. Table B.5 displays the average relative error of the NMé&feurdifferent constraints

compared to the SVD for the 115IFN data set.

. Table B.6 displays the percentage of NMF runs that eitbeverged or reached

1,000 iterations for the 115IFN data set.

. Table B.7 displays the average relative error of the NM#fewrifferent constraints

compared to the SVD for the 115IFN data set with a 0.8 globagmehreshold

enforced.

. Table B.8 displays the percentage of NMF runs that eitbeverged or reached

1,000 iterations for the 115IFN data set with a 0.8 globalethreshold enforced.

. Table B.9 displays the average relative error of the NM#fewrdifferent constraints

compared to the SVD for the Math1 data set.

Table B.10 displays the percentage of NMF runs that etbaverged or reached

1,000 iterations for the Math1 data set.

Table B.11 displays the average relative error of the NiMdter different constraints
compared to the SVD for the Mathl data set with a 0.8 globabkteihreshold

enforced.

Table B.12 displays the percentage of NMF runs that eitbaverged or reached

1,000 iterations for the Math1 data set with a 0.8 global Weiggreshold enforced.
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13.

14.

15.

16.

17.

18.

19.

20.

Table B.13 displays the average relative error of the NiMéter different constraints

compared to the SVD for the Mea data set.

Table B.14 displays the percentage of NMF runs that ettbaverged or reached

1,000 iterations for the Mea data set.

Table B.15 displays the average relative error of the Niddter different constraints
compared to the SVD for the Mea data set with a 0.8 global welyleshold en-

forced.

Table B.16 displays the percentage of NMF runs that ettbaverged or reached

1,000 iterations for the Mea data set with a 0.8 global welilgigshold enforced.

Table B.17 displays the average relative error of the Niddter different constraints

compared to the SVD for the Sey data set.

Table B.18 displays the percentage of NMF runs that eitbaverged or reached

1,000 iterations for the Sey data set.

Table B.19 displays the average relative error of the NiMdter different constraints

compared to the SVD for the Sey data set with a 0.8 global vi#ngéshold enforced.

Table B.20 displays the percentage of NMF runs that ettbaverged or reached

1,000 iterations for the Sey data set with a 0.8 global wetigteshold enforced.
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k | no constraints W smooth H smooth W sparse H sparse

2 0.37% 0.38% 0.36% 0.78% 0.28%
4 0.90% 1.08% 0.90% 1.85% 0.77%
6 1.75% 1.80% 1.61% 2.69% 1.48%
8 2.10% 2.11% 1.83% 3.27% 1.44%
10 2.15% 2.65% 1.99% 3.73% 1.54%
15 4.13% 4.13% 2.95% 5.18% 2.41%
20 4.84% 4.54% 3.76% 7.34% 4.03%
25 7.80% 7.73% 5.88% 11.28% 4.99%
30 12.77% 11.89% 9.43% 18.46% 8.56%

Table B.1: Average relative error of the converging NMF réorghe50TGcollection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00%  18.52%  76.30%
4 100.00% 88.89% 100.00% 10.37%  69.63%
6 100.00% 85.19% 100.00% 8.89% 51.85M%
8 100.00% 81.48% 96.30% 10.37%  45.93%
10 100.00% 77.78% 96.30% 8.89% 45.19%
15 100.00% 81.48% 96.30% 8.89% 33.33%
20 100.00% 96.30% 96.30% 6.67% 26.67%
25 100.00% 88.89% 96.30% 4.44% 22.96%
30 100.00% 96.30% 96.30% 2.22% 24.44%

Table B.2: Percentage of NMF runs for th@TGcollection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.05% 0.06% 0.06% 0.07% 0.05%
4 0.70% 0.45% 0.65% 0.19% 0.31%
6 0.63% 0.52% 0.65% 0.58% 0.63%
8 1.08% 0.67% 0.62% 0.87% 0.84%
10 1.27% 0.85% 0.63% 1.07% 1.05%
15 2.31% 1.64% 1.69% 1.74% 1.94%
20 2.57% 2.35% 2.16% 2.31% 2.70%
25 5.96% 3.93% 5.08% 3.48% 3.06%
30 9.06% 9.68% 9.91% 5.58% 5.61%

Table B.3: Average relative error of the converging NMF rtorghe 50TG.8collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 79.17% 100.00% 15.83% 51.67%
4 100.00% 83.33% 100.00% 11.67%  27.50%
6 100.00% 83.33% 95.83% 10.00%  22.50P%
8 100.00% 83.33% 95.83% 10.00%  15.00P6
10 100.00% 87.50% 95.83% 8.33% 8.33%
15 100.00% 87.50% 91.67% 6.67% 5.83%
20 100.00% 91.67% 79.17% 5.00% 4.17%
25 100.00% 87.50% 75.00% 3.33% 5.83%
30 100.00% 91.67% 70.83% 3.33% 5.00%

Table B.4: Percentage of NMF runs for th@TG.8collection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.25% 0.27% 0.25% 0.75% 0.20%
4 0.76% 0.89% 0.85% 1.68% 0.71%
6 1.22% 1.33% 1.18% 2.49% 1.09%
8 1.58% 1.67% 1.47% 2.71% 1.39%
10 1.86% 2.12% 1.83% 3.64% 1.95%
15 2.61% 2.95% 2.70% 5.87% 5.14%
20 3.52% 3.70% 3.27% 7.38% 6.45%
25 4.77% 4.76% 4.39% 8.67% 7.80%
30 4.90% 5.21% 4.71% 8.99% 9.27%

Table B.5: Average relative error of the converging NMF rtorghe 115IFN collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00%  25.19%  52.59%
4 100.00% 81.48% 100.00% 14.81%  30.37%
6 100.00% 85.19% 100.00%  11.85%  29.63%
8 100.00% 88.89% 96.30% 11.11%  21.48%
10 100.00% 81.48% 96.30% 10.37%  11.85%
15 100.00% 85.19% 96.30% 8.89% 4.44%
20 100.00% 88.89% 96.30% 6.67% 4.44%
25 100.00% 92.59% 96.30% 4.44% 2.22%
30 100.00% 85.19% 92.59% 4.44% 2.22%

Table B.6: Percentage of NMF runs for th&5IFN collection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.02% 0.02% 0.02% 0.03% 0.02%
4 0.18% 0.22% 0.14% 0.10% 0.10%
6 0.37% 0.45% 0.41% 0.33% 0.34%
8 0.44% 0.49% 0.60% 0.41% 0.36%
10 0.79% 0.75% 0.56% 0.41% 0.41%
15 0.85% 1.28% 0.90% 0.46% 0.46%
20 1.44% 1.54% 1.41% 0.73% 0.73%
25 2.32% 2.67% 2.23% 1.50% 1.50%
30 3.94% 2.86% 2.71% 2.37% 2.22%

Table B.7: Average relative error of the converging NMF rtorshe 1151FN.8collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 83.33% 100.00% 16.67%  20.00%
4 100.00% 91.67% 87.50% 10.00% 7.50%
6 100.00% 87.50% 79.17% 10.00% 5.83%
8 100.00% 91.67% 70.83% 8.33% 4.17%
10 100.00% 87.50% 70.83% 6.67% 3.33%
15 100.00% 87.50% 66.67% 6.67% 3.33%
20 100.00% 83.33% 62.50% 5.00% 1.67%
25 100.00% 91.67% 50.00% 3.33% 1.67%
30 100.00% 83.33% 50.00% 1.67% 1.67%

Table B.8: Percentage of NMF runs for th&5IFN.8collection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.45% 0.48% 0.40% 0.95% 0.35%
4 1.20% 1.46% 1.05% 2.54% 0.94%
6 1.83% 1.97% 1.49% 3.59% 1.33%
8 2.40% 2.41% 1.77% 4.21% 1.64%
10 3.25% 3.33% 2.33% 5.90% 2.29%
15 5.54% 5.18% 4.09% 8.12% 4.24%
20 7.29% 6.91% 5.64% 12.35% 12.67%
25 8.04% 8.80% 8.71% 17.66%  17.88%
30 12.86% 12.94% 13.69% 27.99%  28.93%

Table B.9: Average relative error of the converging NMF rtorghe Math1collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 88.89% 100.00% 20.00%  71.11%
4 100.00% 85.19% 100.00% 11.85%  51.85%
6 100.00% 88.89% 100.00% 10.37%  34.81%
8 100.00% 92.59% 100.00% 10.37%  28.15%
10 100.00% 88.89% 96.30% 9.63% 28.15%
15 100.00% 88.89% 96.30% 8.89% 22.22%
20 100.00% 96.30% 96.30% 6.67% 8.89?

25 100.00% 92.59% 96.30% 2.22% 6.67%
30 100.00% 96.30% 96.30% 2.22% 8.89%

Table B.10: Percentage of NMF runs for thkathlcollection that converged.
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k | no constraints W smooth H smooth W sparse H sparse

2 0.05% 0.05% 0.05% 0.05% 0.05%
4 0.14% 0.22% 0.23% 0.18% 0.15%
6 0.35% 0.73% 0.58% 0.35% 0.47%
8 1.11% 0.87% 1.23% 0.31% 0.31%
10 1.01% 0.24% 0.20% 0.43% 0.37%
15 3.03% 2.45% 1.50% 0.71% 0.71%
20 1.77% 4.25% 4.06% 1.16% 1.29%
25 12.56% 13.55% 12.19% 2.11% 2.11%
30 24.42% 23.53% 22.66% 4.03% 4.03%

Table B.11: Average relative error of the converging NMFsfor theMath1.8collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 91.67% 100.00%  20.00%  42.50%
4 100.00% 79.17% 95.83% 11.67%  13.33%
6 100.00% 79.17% 79.17% 10.00% 11.67P%
8 100.00% 79.17% 83.33% 10.00% 8.33%
10 100.00% 87.50% 79.17% 9.17% 9.17%
15 100.00% 91.67% 75.00% 6.67% 6.67%
20 100.00% 95.83% 70.83% 5.00% 5.83%
25 100.00% 100.00%  75.00% 1.67% 5.00%
30 100.00% 100.00%  62.50% 1.67% 3.33%

Table B.12: Percentage of NMF runs for thkath1.8collection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.33% 0.34% 0.31% 0.51% 0.28%
4 0.97% 0.99% 0.65% 1.34% 0.64%
6 1.60% 1.31% 1.02% 1.52% 0.95%
8 1.60% 1.45% 1.03% 2.12% 0.94%
10 1.69% 1.65% 1.13% 2.34% 1.24%
15 3.30% 2.87% 2.26% 4.15% 2.36%
20 5.65% 5.04% 4.14% 7.21% 1.47%
25 9.26% 8.39% 8.04% 14.82%  15.14%
30 15.42% 15.31% 13.00%  22.28% 23.07%

Table B.13: Average relative error of the converging NMFstor theMeacollection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00%  20.74%  55.56%
4 100.00% 92.59% 100.00%  13.33%  42.96%
6 100.00% 85.19% 100.00%  10.37%  36.30%
8 100.00% 88.89% 96.30% 9.63% 25.93%
10 100.00% 85.19% 100.00% 8.89% 22.96P0
15 100.00% 85.19% 88.89% 6.67% 20.74%
20 100.00% 88.89% 96.30% 6.67% 8.89%
25 100.00% 100.00%  88.89% 2.22% 8.89%
30 100.00% 96.30% 92.59% 2.22% 6.67%

Table B.14: Percentage of NMF runs for thkeacollection that converged.
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k | no constraints W smooth H smooth W sparse H sparse

2 0.02% 0.02% 0.02% 0.02% 0.01%
4 0.12% 0.19% 0.15% 0.12% 0.12%
6 1.20% 0.43% 0.79% 0.08% 0.07%
8 0.76% 0.55% 0.67% 0.16% 0.16%
10 0.56% 0.62% 0.42% 0.24% 0.23%
15 1.89% 1.02% 0.67% 0.36% 0.36%
20 4.37% 4.24% 4.31% 0.48% 0.53%
25 5.67% 5.51% 3.78% 0.76% 0.76%
30 11.30% 11.00% 10.35% 1.23% 1.23%

Table B.15: Average relative error of the converging NMFstor theMea.8collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 70.83% 100.00% 16.67%  40.83%
4 100.00% 87.50% 87.50% 11.67%  23.33%
6 100.00% 87.50% 75.00% 10.00%  10.00P6
8 100.00% 87.50% 75.00% 10.00% 8.33%
10 100.00% 87.50% 75.00% 6.67% 9.17%
15 100.00% 95.83% 75.00% 6.67% 6.67%
20 100.00% 95.83% 75.00% 5.00% 5.83%
25 100.00% 95.83% 70.83% 3.33% 5.00%
30 100.00% 91.67% 66.67% 1.67% 3.33%

Table B.16: Percentage of NMF runs for thiea.8collection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.48% 0.51% 0.46% 1.49% 0.39%
4 1.50% 1.71% 1.53% 3.35% 1.45%
6 2.46% 2.62% 1.97% 5.52% 1.59%
8 2.98% 2.97% 2.32% 6.15% 1.47%
10 4.18% 4.12% 3.33% 8.33% 2.38%
15 6.32% 6.19% 4.73% 11.34%  4.29%
20 11.38% 11.25% 8.94% 19.51% 8.38%
25 23.23% 18.94% 18.97%  36.60% 21.77%
30 56.39% 53.81% 54.05% N/A%  60.54%

Table B.17: Average relative error of the converging NMFstor theSeycollection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 92.59% 100.00%  22.22%  80.00%
4 100.00% 85.19% 100.00% 13.33%  60.74%
6 100.00% 88.89% 100.00%  12.59%  49.63%
8 100.00% 92.59% 96.30% 11.85%  44.44%
10 100.00% 85.19% 96.30% 9.63% 38.52%
15 100.00% 96.30% 96.30% 6.67% 28.15%
20 100.00% 88.89% 96.30% 4.44% 27.41%
25 100.00% 96.30% 96.30% 2.22% 25.93%
30 100.00% 100.00%  96.30% 0.00% 20.00p0

Table B.18: Percentage of NMF runs for tBeycollection that converged.
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k | no constraints W smooth H smooth W sparse H sparse
2 0.05% 0.05% 0.04% 0.07% 0.04%
4 0.33% 0.46% 0.18% 0.22% 0.15%
6 1.74% 1.42% 1.19% 0.33% 0.52%
8 0.26% 0.79% 0.71% 0.42% 1.03%
10 0.54% 0.60% 1.66% 0.61% 0.74%
15 4.89% 3.73% 1.51% 1.17% 1.18%
20 9.66% 8.21% 7.17% 1.97% 1.98%
25 16.36% 19.91% 14.94% 4.04% 4.04%
30 66.87% 61.84% 62.69% 13.12%  17.45W%

Table B.19: Average relative error of the converging NMFstor theSey.8collection.

k | no constraints W smooth H smooth W sparse H sparse
2 100.00% 83.33% 100.00% 18.33%  57.50%
4 100.00% 79.17% 95.83% 11.67%  35.000%
6 100.00% 91.67% 95.83% 11.67%  20.83%
8 100.00% 87.50% 91.67% 10.00%  13.33%
10 100.00% 91.67% 91.67% 8.33% 11.67%
15 100.00% 95.83% 79.17% 5.00% 8.33‘}

20 100.00% 95.83% 83.33% 3.33% 6.679
25 100.00% 95.83% 70.83% 1.67% 6.679
30 100.00% 100.00% 70.83% 1.67% 2.509

0
0
0
0

Table B.20: Percentage of NMF runs for tBey.8collection that converged.
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