Lecture 20

Models of Computation II
(S&G, ch. 10)

Read S&G ch. 11
(Using & Managing Data)
for next week
Ordinary Turing Machine

- We can design a Turing machine M for a specific purpose
- For each allowable input x it produces the corresponding output y

Universal Turing Machine

- We can design a Turing machine U that can emulate any Turing machine M
- Let m be an encoding of M (e.g., its rules)
- For each allowable input x it produces the corresponding output y
Equivalence Between TMs and Other Models of Computation

• If we can use some model of computation to program a UTM, then we can emulate any TM
 – So this model is at least as powerful as TMs
• If can design TM to emulate another kind of universal machine, then UTM can emulate it
 – So other model is no more powerful than TMs
• The way to prove equivalent “power” of different models of computation
• Equivalent in terms of “computability” not space/time efficiency

General-Purpose Computers

• The Universal Turing Machine is theoretical foundation of general purpose computer
• Instead of designing a special-purpose computer for each application
• Design one general-purpose computer:
 – interprets program (virtual machine description) stored in its memory
 – emulates that virtual machine
Church-Turing Thesis

- **CT Thesis**: The set of effectively calculable problems is exactly the set of problems solvable by TMs
- Empirical evidence: All the independently designed models of computation turned out to be equivalent to TM in power
- Easy to see how any calculus can be emulated by a TM
- Easy to see how any (digital) computer can be emulated by a TM (and vice versa)
- But, there is research in non-Turing models of computation

The Limits of Computation
The Liar Paradox

- Epimenides the Cretan (7th cent. BCE) said, “The men of Crete were ever liars …”
- “If you say that you are lying, and say it truly, you are lying.” — Cicero (106–43 BCE)

“I am lying.”

Undecidability of the Halting Problem (Informal)

- Assume we have procedure **Halts** that decides halting problem for any program/input pair
- Let \(P(X) \) represent the execution of program \(P \) on input \(X \)
- **Halts** \(P, X \) = **true** if and only if program \(P \) halts on input \(X \)
- **Halts** \(P, X \) = **false** if and only if program \(P \) doesn’t halt on input \(X \)
- Program \(P \) encoded as string or other legal input to programs
Assumed Turing Machine for Halting Problem

- We can design a Turing machine \texttt{Halts} that can decide, for any Turing machine \(P \) and input \(x \), whether \(P \) halts on \(x \).
- Let \(p \) be an encoding of \(P \) (e.g., its rules).
- If \(P \) halts on \(x \):

\[p \ x \rightarrow \text{true} \]

Assumed Turing Machine for Halting Problem (2)

- If \(P \) doesn’t halt on \(x \):

\[p \ x \rightarrow \text{false} \]
Undecidability of the Halting Problem (2)

- Define the “paradoxical procedure” \(Q \):
 1. procedure \(Q(P) \):
 2. if \textbf{Halts}(P, P) then
 3. go into an infinite loop
 4. else // \textbf{Halts}(P, P) is false, so
 5. halt immediately
- Now \(Q \) is a program that can be applied to any program string \(P \)

Turing Machine \(Q \)

- After running TM \textbf{Halts} on \(p \) and \(p \), if result was \textbf{true}, go into an infinite loop
Turing Machine Q (2)

- After running TM Halts on p and p, if result was false, halt immediately

```
Halts

\[ Q \]

\[ \text{false} \]
```

```
Halts

\[ Q \]

\[ \text{false} \]
```

TM Q Applied to q

- After running TM Halts on q and q, if result was true, go into an infinite loop

```
Halts

\[ Q \]

\[ \text{true} \]
```

```
Halts

\[ Q \]

\[ 0000... \]
```
TM Q Applied to q (2)

- After running TM **Halts** on q and q, if result was **false**, halt immediately

- **Halts**
 - q q

- **Halts**
 - q q (false)

- **Halts**
 - Q

- **Halts**
 - Q halts!

- **Halts**
 - false

Undecidability of the Halting Problem (3)

- What will be the effect of executing Q (Q)?
- If **Halts** (Q, Q) = **true**, then go into an infinite loop, that is, don’t halt
 - But **Halts** (Q, Q) = **true** iff Q (Q) halts
- If **Halts** (Q, Q) = **false**, then halt immediately
 - But **Halts** (Q, Q) = **false** iff Q (Q) doesn’t halt
- So Q (Q) halts if and only if Q (Q) doesn’t halt
- A contradiction!
- Our assumption (that **Halts** exists) was false
Rice’s Theorem (Informal)

• Suppose that \(B \) is any behavior that a program might exhibit on a given input
 – examples: print a 0, open a window, delete a file, generate a beep
• Assume that we have a procedure \texttt{DoesB} \((P, X)\) that decides whether \(P (X) \) exhibits behavior \(B \)
• As in Turing’s proof, we show a contradiction

Rice’s Theorem (2)

• Define a paradoxical procedure \(Q \):
 1. procedure \(Q (P) \):
 2. if \texttt{DoesB} \((P, P)\) then
 3. \texttt{don’t do B}
 4. else
 5. \texttt{do B}
• Note that \(B \) must be a behavior that we can control
Rice’s Theorem (3)

- Consider the result of executing $Q (Q)$
- $Q (Q)$ does B if and only if $Q (Q)$ doesn’t do B
- Contradiction shows our assumption of existence of decision procedure DoesB was false
- A TM cannot decide any “controllable” behavior for all program/input combinations

Gödel’s Incompleteness Theorem (informally)

- By constructing a “paradoxical proposition” that asserts own unprovability, can prove:
- *In any system of formal logic (powerful enough to define arithmetic) there will be a true proposition that be neither proved nor disproved in that system*
- Yet by reasoning outside the system, we can prove it’s true
- Does this imply that human reasoning cannot be captured in a formal system (calculus)? Or reduced to calculation?
- Philosophers have been grappling with this problem since the 1930s
Hypercomputation

- CT Thesis says “effectively calculable” = “Turing-computable”
- Some authors equate “computable” with Turing-computable
- If true, then the limits of the TM are the limits of computation
- Is human intelligence “effectively calculable”?
- Hypercomputation = computation beyond the “Turing limit”