Review Questions for Final Exam

The following review questions are similar to the kinds of questions you will be expected to answer on the Final Exam, which will cover LCR, chs. 1–10 and TCS, chs. 1–18. Make sure you do your best to answer each question before you look at the Key; that will help you to learn. If you have any questions about the answers, please ask me by email or ask your Teaching Assistants in the Review Session. The actual exam will be about this length.

1. (5 points)
What is the effect of the following statements?

```c
int x, a = 11, b = 7;
x = a - b;
a = a - x;
b = a + x;
assert (b == 0);
```

2. (5 points)
Who can see member variables and functions that are declared:

(a) public

(b) private

(c) protected

3. (5 points)
What does the word `virtual` mean in front of a function declaration?
4. (5 points)
In the space provided below, indicate what gets printed from the following program?

```cpp
#include <iostream>
using namespace std;
void trace(int, int *);

int main()
{
    int x = 43, y = 15, *ptr = &x, *q = &y;

    trace(x, q);
    cout << "In main:  " << *ptr << "  " << *q << endl;
}

void trace(int x, int *q)
{
    int y;

    y = 2;

    *q += y;
    y = x / 10;
    cout << "In trace:  " << y << "  " << *q << endl;
}
```

5. (5 points)
What does inheritance refer to in the context of object-oriented programming?
6. (5 points)

In the Tic Tac Toe program discussed in ch. 10 of *Learning Computing with Robots* there was a function with the following declaration:

```
int lookahead (Board board, char player, bool MAX, int level);
```

Based on your understanding of the program, describe (1) the purpose of the function, (2) the meaning of each parameter, and (3) the meaning of the returned value.

7. (5 points)

Complete the following definition of a member function `sub()`, which subtracts two complex numbers. That is, `X.sub(Y)` should return the complex number obtained by subtracting the complex number `Y` from the complex number `X`. (Recall that the real part of the difference is the difference of the real parts, and the imaginary part of the difference is the difference of the imaginary parts.)

```
class complex {
public:
    double real, imag;
    complex sub (complex Y) {
        complex dif;

        return dif;
    } // end of sub
};
```

8. (5 points)

Explain what is wrong with the following code segment? Look carefully!

```
int X = new int;
*X = 1;
*X = 0;
delete X;
```
9. (5 points)
Write a definition to overload the “<<” operator to print out a complex number (as defined in question #7). If X is the real part and Y is the imaginary part, it should print it in the form “X + Yi” if Y is nonnegative, and as “X – Yi” if Y is negative (that is, if X = 2 and Y = –1 it should print “2 – 1i”). Treat the operator as a standalone function.

10. (5 points)
Suppose that we extend the declaration of complex in question #7 to include prototypes for three constructors:

   ```
   complex ();              // constructor a
   complex (double);        // constructor b
   complex (double,double); // constructor c
   ```

Implement these constructors as described below:

a. Implement `complex()` to create a complex number with 0 real and imaginary parts.

b. Implement `complex(X)` to create a complex number with real part X and imaginary part 0.

c. Implement `complex(X,Y)` to create a complex number with real part X and imaginary part Y.
11. (5 points)
Given the following definitions, write code to give Joe a 15% raise and his supervisor a 5% raise:

```cpp
class employee {
public:
    string name;
    double salary;
    employee* supervisor;
};
employee* Joe;
/* omitted code to initialize the employee records, 
    including Joe's */
// put your code here:
```

12. (5 points)
Given the following declarations:

```cpp
struct Node {
    int cargo;
    Node* next;
};
Node* data;
```

Write code to remove the second element of the linked list `data` and return it to free storage. (Assume that `data` points to a linked list with at least two Nodes.)
13. (5 points)
Define a subclass of `employee` (see question #11) called `manager` that has an additional public member variable, `subordinates`, which is a vector of pointers to `employee` records.

14. (5 points)
Consider the following function `alike()`, which returns `true` if two integer vectors are alike, and `false` otherwise. The vectors are considered different if they have different lengths.

```cpp
bool alike(const vector<int>& A, const vector<int>& B){
    bool same = true; // assume vectors are alike
    if (A.size() != B.size()) same = false;
    for(int i = 0; i < A.size() && same; i++)
        if(A[i] != B[i])  same = false;
    return same;
}
```
Modify this function so that it will work on vectors of any type (e.g., vectors of `ints`, vectors of `doubles`, vectors of `strings`, and so on).
15. (5 points)
Given the following definition of Complex, define appropriate accessor functions to set and retrieve the private member variables. (Note that this is a different Complex class from question #7.)

```cpp
class Complex {
    private:
        double imag, real;
    public:
        // you fill this in:
}
```
17. (5 points) Examine the following code, and show what is displayed.

```cpp
#include<iostream>
#include<vector>
using namespace std;

void copy_v (vector<int> v1, vector<int> v2) {
    v2 = v1;
}

main() {
    vector<int> v1(4);
    vector<int> v2(4);
    int i;

    for (i = 0; i < v1.size(); i++) {
        v1[i] = i + 10;
        v2[i] = i + 20;
    }

    copy_v (v1, v2);

    for (int i = 0; i < v1.size(); i++)
        cout << v1[i] << "  " << v2[i] << endl;
}
18. (5 points)

You have the following class definition.

```cpp
class Example {
 public:
 Example(); // default constructor
 Example(int, int, string); // parameterized constructor

 private:
 string name; // 20 actual characters maximum
 int x, // range 1 through 30
 y; // range 0 through 19

};
```

a. Write code for the default constructor where the integer member variables are set to 0, and the string member variable is set to the null string ""

b. Write code for the parameterized constructor. Check for valid integers and appropriate string length. If out of range, set to the defaults.
19. (5 points)
Complete function counter() to find the largest integer in a vector A (of size greater than zero) that is sorted in ascending order. Return both the value of the largest element and the number of times it occurs.

    void counter (int* max, int& count, vector<int> A)

20. (5 points)
A palindrome can be defined as a string that reads the same backward or forward. For example, "abcba" and "1234 4321" are palindromes. Complete the function pal() that takes a string as input and returns the length of the string if it is a palindrome and zero otherwise. Declare variables that you need.