B. Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
Escape from Local Minimum

Escape from Local Minimum
Motivation

- **Idea**: with low probability, go against the local field
 - move up the energy surface
 - make the “wrong” microdecision
- **Potential value for optimization**: escape from local optima
- **Potential value for associative memory**: escape from spurious states
 - because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: \(s'_i = \text{sgn}(h_i) \)

\[
\begin{align*}
\Pr\{s'_i = +1\} &= \Theta(h_i) \\
\Pr\{s'_i = -1\} &= 1 - \Theta(h_i)
\end{align*}
\]

Stochastic neuron:

\[
\begin{align*}
\Pr\{s'_i = +1\} &= \sigma(h_i) \\
\Pr\{s'_i = -1\} &= 1 - \sigma(h_i)
\end{align*}
\]

Logistic sigmoid: \(\sigma(h) = \frac{1}{1 + \exp(-2h/T)} \)
Properties of Logistic Sigmoid

\[\sigma(h) = \frac{1}{1 + e^{-2h/T}} \]

- As \(h \to +\infty \), \(\sigma(h) \to 1 \)
- As \(h \to -\infty \), \(\sigma(h) \to 0 \)
- \(\sigma(0) = 1/2 \)

Logistic Sigmoid With Varying \(T \)

\(T \) varying from 0.05 to \(\infty \) (1/\(T \) = \(\beta \) = 0, 1, 2, ..., 20)
Logistic Sigmoid
\[T = 0.5 \]

Slope at origin = \[\frac{1}{2T} \]

Logistic Sigmoid
\[T = 0.01 \]
Logistic Sigmoid

\[T = 0.1 \]

Logistic Sigmoid

\[T = 1 \]
Logistic Sigmoid

\[T = 10 \]

Logistic Sigmoid

\[T = 100 \]
Pseudo-Temperature

- Temperature = measure of thermal energy (heat)
- Thermal energy = vibrational energy of molecules
- A source of random motion
- Pseudo-temperature = a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution

Transition Probability

Recall, change in energy $\Delta E = -\Delta s_k h_k$

$= 2s_k h_k$

$Pr\{s'_k = \pm 1|s_k = \mp 1\} = \sigma(\mp h_k) = \sigma(-s_k h_k)$

$Pr\{s_k \rightarrow -s_k\} = \frac{1}{1 + \exp(2s_k h_k/T)}$

$= \frac{1}{1 + \exp(\Delta E/T)}$
Part 3B: Stochastic Neural Networks

Stability

- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights:
 average values $\langle s_i \rangle$ become time-invariant

Does “Thermal Noise” Improve Memory Performance?

- Experiments by Bar-Yam (pp. 316-20):
 - $n = 100$
 - $p = 8$
- Random initial state
- To allow convergence, after 20 cycles set $T = 0$
- How often does it converge to an imprinted pattern?
Probability of Random State Converging on Imprinted State ($n=100, p=8$)

\[T = \frac{1}{\beta} \]

(fig. from Bar-Yam)
Analysis of Stochastic Hopfield Network

- Complete analysis by Daniel J. Amit & colleagues in mid-80s
- The analysis is beyond the scope of this course

Phase Diagram

- (A) imprinted = minima
- (B) imprinted, but s.g. = min.
- (C) spin-glass states
- (D) all states melt

(fig. from Domany & al. 1991)
Conceptual Diagrams of Energy Landscape

Phase Diagram Detail
Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)

Dilemma

- In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum
- In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it
- **Solution**: decrease the temperature gradually during search
Quenching vs. Annealing

- **Quenching:**
 - rapid cooling of a hot material
 - may result in defects & brittleness
 - local order but global disorder
 - locally low-energy, globally frustrated

- **Annealing:**
 - slow cooling (or alternate heating & cooling)
 - reaches equilibrium at each temperature
 - allows global order to emerge
 - achieves global low-energy state

Multiple Domains
Moving Domain Boundaries

Effect of Moderate Temperature

(fig. from Anderson *Intr. Neur. Comp.*)
Part 3B: Stochastic Neural Networks

Effect of High Temperature

$\Delta E/T_{\text{low}}$

Effect of Low Temperature

$\Delta E/T_{\text{high}}$

(fig. from Anderson Intr. Neur. Comp.)
Annealing Schedule

• Controlled decrease of temperature
• Should be sufficiently slow to allow equilibrium to be reached at each temperature
• With sufficiently slow annealing, the global minimum will be found with probability 1
• Design of schedules is a topic of research

Typical Practical Annealing Schedule

• **Initial temperature** T_0 sufficiently high so all transitions allowed
• **Exponential cooling**: $T_{k+1} = \alpha T_k$
 - typical $0.8 < \alpha < 0.99$
 - at least 10 accepted transitions at each temp.
• **Final temperature**: three successive temperatures without required number of accepted transitions
Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

Hopfield Network for Task Assignment Problem

- Six tasks to be done (I, II, …, VI)
- Six agents to do tasks (A, B, …, F)
- They can do tasks at various rates
 - A (10, 5, 4, 6, 5, 1)
 - B (6, 4, 9, 7, 3, 2)
 - etc
- What is the optimal assignment of tasks to agents?
NetLogo Implementation of Task Assignment Problem

Run TaskAssignment.nlogo

Quantum Annealing

- See for example D-wave Systems
 <www.dwavesys.com>
Additional Bibliography