B. Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

Motivation

- **Idea:** with low probability, go against the local field
 - move up the energy surface
 - make the "wrong" microdecision
- **Potential value for optimization:** escape from local optima
- **Potential value for associative memory:** escape from spurious states
 - because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: $x'_i = \text{sgn}(h_i)$

- $\Pr[x'_i = +1] = \Theta(h_i)$
- $\Pr[x'_i = -1] = 1 - \Theta(h_i)$

Stochastic neuron:

- $\Pr[x'_i = +1] = \sigma(h_i)$
- $\Pr[x'_i = -1] = 1 - \sigma(h_i)$

Logistic sigmoid: $\sigma(h) = \frac{1}{1 + \exp(-2h/T)}$
Properties of Logistic Sigmoid

\[\sigma(h) = \frac{1}{1 + e^{-2h/T}} \]

- As \(h \to +\infty \), \(\sigma(h) \to 1 \)
- As \(h \to -\infty \), \(\sigma(h) \to 0 \)
- \(\sigma(0) = 1/2 \)

Logistic Sigmoid With Varying \(T \)

\(T \) varying from 0.05 to \(\infty \) (1/\(T = \beta = 0, 1, 2, \ldots, 20 \))

Logistic Sigmoid

\(T = 0.5 \)

Slope at origin = \(1 / 2T \)

Logistic Sigmoid

\(T = 0.01 \)

Logistic Sigmoid

\(T = 0.1 \)

Logistic Sigmoid

\(T = 1 \)
Part 3B: Stochastic Neural Networks

Logistic Sigmoid
\(T = 10 \)

Logistic Sigmoid
\(T = 100 \)

Pseudo-Temperature
- Temperature = measure of thermal energy (heat)
- Thermal energy = vibrational energy of molecules
- A source of random motion
- Pseudo-temperature = a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution

Transition Probability
Recall, change in energy \(\Delta E = -\Delta s_i h_i \)
\(= 2s_i h_i \)
\[\Pr\{s'_i = \pm 1 | s_i = \mp 1\} = \sigma(\pm h_i) = \sigma(-s_i h_i) \]
\[\Pr\{s_i \rightarrow -s_i\} = \frac{1}{1 + \exp(2s_i h_i / T)} \]
\[= \frac{1}{1 + \exp(\Delta E / T)} \]

Stability
- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights:
 average values \(\langle s_i \rangle \) become time - invariant

Does “Thermal Noise” Improve Memory Performance?
- Experiments by Bar-Yam (pp. 316-20):
 - \(n = 100 \)
 - \(p = 8 \)
 - Random initial state
 - To allow convergence, after 20 cycles set \(T = 0 \)
 - How often does it converge to an imprinted pattern?
Part 3B: Stochastic Neural Networks

Probability of Random State Converging on Imprinted State \((n=100, p=8)\)

Phase Diagram

Analysis of Stochastic Hopfield Network

• Complete analysis by Daniel J. Amit & colleagues in mid-80s
• The analysis is beyond the scope of this course

Conceptual Diagrams of Energy Landscape

Phase Diagram Detail
Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)

Dilemma

- In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum
- In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it
- **Solution:** decrease the temperature gradually during search

Quenching vs. Annealing

- **Quenching:**
 - rapid cooling of a hot material
 - may result in defects & brittleness
 - local order but global disorder
 - locally low-energy, globally frustrated
- **Annealing:**
 - slow cooling (or alternate heating & cooling)
 - reaches equilibrium at each temperature
 - allows global order to emerge
 - achieves global low-energy state

Multiple Domains

Moving Domain Boundaries

Effect of Moderate Temperature

- (fig. from Anderson: Intr. Neur. Comp.)
Part 3B: Stochastic Neural Networks

Annealing Schedule

- Controlled decrease of temperature
- Should be sufficiently slow to allow equilibrium to be reached at each temperature
- With sufficiently slow annealing, the global minimum will be found with probability 1
- Design of schedules is a topic of research

Typical Practical Annealing Schedule

- Initial temperature T_0 sufficiently high so all transitions allowed
- Exponential cooling: $T_{k+1} = \alpha T_k$
 - typical $0.8 < \alpha < 0.99$
 - fixed number of trials at each temp.
 - expect at least 10 accepted transitions
- Final temperature: three successive temperatures without required number of accepted transitions

Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

Quantum Annealing

- See for example D-wave Systems <www.dwavesys.com>
Part 3B: Stochastic Neural Networks

Hopfield Network for Task Assignment Problem

- Six tasks to be done (I, II, …, VI)
- Six agents to do tasks (A, B, …, F)
- They can do tasks at various rates
 - A (10, 5, 4, 6, 5, 1)
 - B (6, 4, 9, 7, 3, 2)
 - etc.
- What is the optimal assignment of tasks to agents?

Continuous Hopfield Net

\[
\dot{U}_i = \sum_{j=1}^{n} T_{ij} V_j + I_i - \frac{U_i}{\tau}
\]

\[
V_i = \sigma(U_i) \in (0,1)
\]

k-out-of-n Rule

Network for Task Assignment

NetLogo Implementation of Task Assignment Problem

Run TaskAssignment.nlogo